JPH01119517A - Magnetic powder for magnetic recording - Google Patents

Magnetic powder for magnetic recording

Info

Publication number
JPH01119517A
JPH01119517A JP27534987A JP27534987A JPH01119517A JP H01119517 A JPH01119517 A JP H01119517A JP 27534987 A JP27534987 A JP 27534987A JP 27534987 A JP27534987 A JP 27534987A JP H01119517 A JPH01119517 A JP H01119517A
Authority
JP
Japan
Prior art keywords
magnetic
coprecipitate
magnetic powder
metal element
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27534987A
Other languages
Japanese (ja)
Inventor
Akihisa Yamamoto
陽久 山本
Kozo Mitani
幸三 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP27534987A priority Critical patent/JPH01119517A/en
Publication of JPH01119517A publication Critical patent/JPH01119517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain the title hexagonal magnetic fine powder suitable as magnetic material for perpendicular magnetic recording, by subjecting to composing specified amts. of each metal element as showing in the formula and to having well-regulated particle size. CONSTITUTION:The aq. soln. obtd. by dissolving the material compds. such as (hydro)oxide, nitrate, carbonate, halogenide of each metal element in the amts. equiv. to the constituent ratio of the targeted substance, in water, is mixed with the aq. alkali soln. of hydroxide, carbonate, etc., of alkali metal and adjusted to >=5pH value, and the produced coprecipitate is washed, filtered and dried. Then, the coprecipitate is high temp. calcined at 600-1,100 deg.C for 10min-30hr, as occasion demands, in the presence of the flux such as NaCl, BaCl2, KNO3 to obtain the magnetic powder having <=1mu mean particle diameter and the axis of easy magnetization in the face (c) of hexagonal system, of formula (where, MI is Ba, Sr, Ca, Pb, MII is V, Cr, Mo, W, Ag, Cd, Ge, Sn, P, Bi, Te, (a) is 8-12, (b) and (e) are 0.01-3.0, (c) is 0.05-2.0, (d) is 0.5-3.0 and (f) is the number of oxygen atom satisfying the valence of the other elements).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録用磁性粉に関し、更に詳しくは、高密
度磁気記録媒体用に適する微細な粒子からなる六方晶系
フェライト磁性粉に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to magnetic powder for magnetic recording, and more specifically to hexagonal ferrite magnetic powder consisting of fine particles suitable for high-density magnetic recording media. be.

(従来の技術) 近年、磁気記録に対する高密度化の要求に伴い磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。このような垂直磁気記録方式において使
用される磁性材料は記録媒体表面に垂直な方向に磁化容
易軸を有することが必要である。
(Prior Art) In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording methods that record magnetic fields in the thickness direction of a magnetic recording medium have been attracting attention. The magnetic material used in such perpendicular magnetic recording systems needs to have an axis of easy magnetization in a direction perpendicular to the surface of the recording medium.

六方晶系で一軸磁化異方性を有するフェライト、例えば
Baフェライト(BaFe+zO+v)は六角板状の結
晶であって、板面に垂直な方向に磁化容易軸を有してお
り、塗布膜タイプの垂直磁気記録用磁性材料として下記
の要件を満足する必要がある。該磁性材料としては適度
な保磁力(Hc、通常200〜20000e程度)とで
きるだけ大きな飽和磁化(σ5、少な(とも40 em
u/ g以上)を有している事、及び磁性粉の平均粒子
径は記録波長の関係から0.3μm以下であり、かつ超
常磁性の関係から0.01μm以上の範囲であることが
必要である。
Ferrite with hexagonal crystal system and uniaxial magnetization anisotropy, such as Ba ferrite (BaFe+zO+v), is a hexagonal plate-shaped crystal with an axis of easy magnetization in the direction perpendicular to the plate surface. A magnetic material for magnetic recording must satisfy the following requirements. The magnetic material should have a moderate coercive force (Hc, usually about 200 to 20,000 e) and as large a saturation magnetization (σ5, as small as 40 em).
u/g or more), and the average particle diameter of the magnetic powder must be 0.3 μm or less in relation to the recording wavelength, and in the range of 0.01 μm or more in relation to superparamagnetism. be.

二の範囲では平均粒子径はノイズの関係から小さい方が
好ましく、さらに0.1μm以下であることが好ましい
In the second range, the average particle diameter is preferably smaller in terms of noise, and more preferably 0.1 μm or less.

(発明が解決しようとする問題点) Baフェライト(BaFe+zOtq)は保磁力が50
000e以上であり、このままでは磁気記録用磁性材料
としては大き過るのでFeの一部を他の各種金属で置換
して保磁力を低下させる方法が種々提案されている。
(Problem to be solved by the invention) Ba ferrite (BaFe+zOtq) has a coercive force of 50
000e or more, which is too large to be used as a magnetic material for magnetic recording as it is, and various methods have been proposed to reduce the coercive force by substituting a part of Fe with various other metals.

所で、Baフェライトを製造する方法としてはガラス結
晶化法、水熱合成法及び共沈法が従来から用いられてい
るが、これらの方法の中では共沈法が保磁力制御やその
他の目的で少量添加される各種金属との混合が非常に良
いため均一なフェライトが得られること、共沈物が微結
晶粉末であるので比較的低温でフェライト化し得ること
など多くの長所を有している。
Incidentally, the glass crystallization method, hydrothermal synthesis method, and coprecipitation method have traditionally been used as methods for producing Ba ferrite, but among these methods, the coprecipitation method is used for coercive force control and other purposes. It has many advantages, such as the ability to mix very well with various metals added in small amounts, resulting in uniform ferrite, and the fact that the coprecipitate is a microcrystalline powder, so it can be turned into ferrite at relatively low temperatures. .

しかしながら、一般に、共沈法で得られる磁性粉の粒径
は最小でも、0.15μmと大きく(特開昭61−17
4118号公報参照)、凝集した状態の粉末が生成しや
すく、粒径が0.5μm位のものが含まれており形状の
均一性が低い(特開昭58−2223号公報参照)ため
優れた製造法とは云えない。
However, in general, the particle size of magnetic powder obtained by the coprecipitation method is large, at least 0.15 μm (Japanese Patent Laid-Open No. 61-17
4118), it tends to produce agglomerated powder, contains particles with a particle size of about 0.5 μm, and has a low uniformity of shape (see JP-A-58-2223). It cannot be said that it is a manufacturing method.

(問題点を解決するための手段) 本発明者等は、従来にも増して平均粒径の小さい垂直磁
気記録用磁性粉を開発すべく鋭意検討した結果、特定金
属元素でFeの一部を置換した六方晶フェライト磁性粉
を共沈法により製造することにより目的が達成されるこ
とを見い出し本発明を完成するに到った。
(Means for Solving the Problems) As a result of intensive studies aimed at developing magnetic powder for perpendicular magnetic recording with a smaller average particle size than ever before, the inventors of the present invention discovered that a part of Fe could be replaced with a specific metal element. The present inventors have discovered that the object can be achieved by producing substituted hexagonal ferrite magnetic powder by a coprecipitation method, and have completed the present invention.

かくして本発明によれば、一般組成式 %式% Ca及びPbから選択される少なくとも一種の金属元素
を表わし、MIはV、 Cr、 Mo、 W、 Ag、
 C+L Ge。
Thus, according to the present invention, the general compositional formula % represents at least one metal element selected from Ca and Pb, and MI is V, Cr, Mo, W, Ag,
C+L Ge.

Sn、  P、 Bi及びTeから選択される少なくと
も一種の金属元素を表わし、a、  b、  c、  
d、  e及びfはそれぞれFe、 Zr、 St、 
M” 、 M”及び0の原子数であり、aは8〜12、
bは0.01〜3.0、Cは0.05〜2.0、dは0
.5〜3.0及びeは0.01〜3.0の値をとり、r
は他の元素の原子価を満足する酸素の原子数である。)
で表わされる平均粒子径が0.1μm以下の磁気記録用
磁性粉が提供される。
Represents at least one metal element selected from Sn, P, Bi and Te, a, b, c,
d, e and f are Fe, Zr, St, respectively
The number of atoms of M", M" and 0, a is 8 to 12,
b is 0.01 to 3.0, C is 0.05 to 2.0, d is 0
.. 5 to 3.0 and e takes a value of 0.01 to 3.0, r
is the number of oxygen atoms that satisfies the valences of other elements. )
A magnetic powder for magnetic recording having an average particle diameter of 0.1 μm or less is provided.

本発明の磁性粉は平均粒径が0.1μm以下で、かつ磁
気記録用磁性粉として具備すべき保磁力及び飽和磁化を
有しているので垂直磁気記録用゛に適した磁性粉である
The magnetic powder of the present invention has an average particle diameter of 0.1 μm or less, and has the coercive force and saturation magnetization required for a magnetic powder for magnetic recording, so it is suitable for perpendicular magnetic recording.

本発明においては、磁性粉の各成分元素の原子数a−e
が上記の数値範囲内にあることが必要で、この範囲外で
は平均粒子径が0.1μm以上となるばかりでなく磁気
記録用磁性粉に適した保磁力や飽和磁化を持った磁性粉
は得られ難い。
In the present invention, the number of atoms a-e of each component element of the magnetic powder is
must be within the above numerical range; outside this range, not only will the average particle diameter be 0.1 μm or more, but magnetic powder with coercive force and saturation magnetization suitable for magnetic recording magnetic powder will not be obtained. It's hard to get caught.

好ましい磁性粉の各成分割合は、aは8〜12゜bは0
.02〜2.4.  cは0.1〜1.0.dは0.8
〜2.0及びeは0.02〜2.4の値をとり、fは他
の元素の原子価を満足する酸素の原子数である。本発明
の磁性粉は、製造条件などによっては得られる磁性粉粒
子の結晶がかならずしも正常な六角板状を呈していない
粒子が混在している場合もあるが、該原子数が本発明の
範囲内であれば、本発明の目的を充分に達成することが
できる。
The preferred proportions of each component in the magnetic powder are a: 8 to 12 degrees, b: 0
.. 02-2.4. c is 0.1 to 1.0. d is 0.8
~2.0 and e take values of 0.02 to 2.4, and f is the number of oxygen atoms that satisfies the valences of other elements. The magnetic powder of the present invention may contain particles whose crystals do not necessarily have a normal hexagonal plate shape depending on the manufacturing conditions, but the number of atoms is within the range of the present invention. If so, the purpose of the present invention can be fully achieved.

本発明の磁性粉は従来の共沈法で製造されるものであり
、磁性粉を構成する各金属元素の原料化合物、アルカリ
水溶液、共沈物を焼成する際必要に応じ添加される融剤
(フラックス)等も従来使用のものが用いられる。
The magnetic powder of the present invention is manufactured by a conventional coprecipitation method, and includes raw material compounds of each metal element constituting the magnetic powder, an aqueous alkali solution, and a flux (added as necessary when firing the coprecipitate). Conventionally used fluxes and the like are also used.

各金属元素の原料化合物としては酸化物、オキシ水酸化
物、水酸化物、アンモニウム塩、硝酸塩、硫酸塩、炭酸
塩、有機酸塩、ハロゲン化物、アルカリ金属塩等の塩類
、遊離酸、酸無水物、縮合酸等を挙げることができる。
Raw material compounds for each metal element include oxides, oxyhydroxides, hydroxides, ammonium salts, nitrates, sulfates, carbonates, organic acid salts, halides, salts such as alkali metal salts, free acids, and acid anhydrides. Examples include esters, condensed acids, and the like.

特に水溶性化合物が好ましい。各金属元素の原料化合物
は、水溶液となる様に、水に混合溶解されることが好ま
しい。また、アルカリ水溶液に混合溶解した方が都合が
よい場合には、後述のアルカリ水溶液中に混合溶解され
る。
Particularly preferred are water-soluble compounds. The raw material compounds of each metal element are preferably mixed and dissolved in water to form an aqueous solution. Further, if it is convenient to mix and dissolve in an alkaline aqueous solution, it can be mixed and dissolved in an alkaline aqueous solution, which will be described later.

一部アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであればよく、アルカリ金属の水酸化物や炭
酸塩、アンモニア、炭酸アンモニウム等が挙げられる。
The alkaline component used in the partially alkaline aqueous solution may be any water-soluble one, and examples thereof include alkali metal hydroxides, carbonates, ammonia, ammonium carbonate, and the like.

例えばNaOH*  NatCOz +NaHCOs 
I KOH、KzCQz + NH4OH、(NHi)
tcQs等が用いられ、特に水酸化物と炭酸塩の併用が
賞月される。
For example, NaOH* NatCOz + NaHCOs
I KOH, KzCQz + NH4OH, (NHi)
tcQs etc. are used, and the combined use of hydroxide and carbonate is particularly preferred.

次いで、上記金属イオン水溶液とアルカリ水溶液とを混
合し、pH5以上、好ましくはpH8以上で共沈物を生
ぜしめる。得られた共沈物は、水洗した後炉別する。こ
の様にして得られたケーキ状ないしスラリー状の共沈物
は、これを乾燥後、600〜1100°Cで10分〜3
0時間高温焼成して該当する六方晶系フェライト磁性粉
を得る。また、共沈物をフラックスの存在下に焼成する
場合には、水洗された共沈物に水溶性フラックス(例え
ば塩化ナトリウムや塩化カリウム等のハロゲン化アルカ
リ金属塩、塩化バリウムや塩化ストロンチウム等のハロ
ゲン化アルカリ土類金属塩、硫酸ナトリウム、硫酸カリ
ウム、硝酸ナトリウム、硝酸カリウム、及びこれ等の混
合物等)を適当量加えて、あるいは、金属イオン水溶液
とアルカリ水溶液との混合物から得られる共沈物を水洗
することな(そのまま水分を蒸発させてこれを乾燥後、
600〜1100°Cで10分〜30時間高温焼成した
後、水溶性フラックスを水または酸水溶液で洗浄炉別し
、必要に応じ、更に水洗した後、乾燥して該当する六方
晶系フェライト磁性粉を得る。
Next, the metal ion aqueous solution and the alkaline aqueous solution are mixed to form a coprecipitate at a pH of 5 or higher, preferably at a pH of 8 or higher. The obtained coprecipitate is washed with water and then separated in a furnace. The cake-like or slurry-like coprecipitate obtained in this way is dried at 600-1100°C for 10 minutes to 3 minutes.
The corresponding hexagonal ferrite magnetic powder is obtained by firing at a high temperature for 0 hours. In addition, when the coprecipitate is calcined in the presence of flux, water-soluble flux (for example, alkali metal halides such as sodium chloride and potassium chloride, halogen salts such as barium chloride and strontium chloride) is added to the washed coprecipitate. Add an appropriate amount of alkaline earth metal salts, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, mixtures thereof, etc.) or wash the coprecipitate obtained from a mixture of an aqueous metal ion solution and an aqueous alkali solution. (After evaporating the water and drying it,
After high-temperature firing at 600 to 1100°C for 10 minutes to 30 hours, the water-soluble flux is washed with water or an acid aqueous solution, separated in a furnace, further washed with water if necessary, and dried to produce the corresponding hexagonal ferrite magnetic powder. get.

(発明の効果) 本発明に係る磁性粉は六方晶C面に磁化容易軸を有する
板状粒子であり、平均粒径が0.1am以下と小さいば
かりでなく、粒径もととのっており、共沈法により製造
されるため製造工程が簡単であり、またこのため経済的
であり、垂直磁気記録用磁性材料として好適である。
(Effects of the Invention) The magnetic powder according to the present invention is a plate-shaped particle having an axis of easy magnetization in the hexagonal C plane, and not only has an average particle size as small as 0.1 am or less, but also has the same particle size as the original particle size. Since it is manufactured by a precipitation method, the manufacturing process is simple and economical, and it is suitable as a magnetic material for perpendicular magnetic recording.

以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化はVSM (振
動磁気測定装置)を用い、最大印加磁場10kOe、測
定温度28°Cで測定した。平均粒子径は、透過型電子
顕微鏡で得られた写真から400個の粒子の最大直径を
測定し算術平均により算出した。
The present invention will be explained in more detail with reference to Examples below. The coercive force and saturation magnetization in the examples were measured using a VSM (vibrating magnetometer) at a maximum applied magnetic field of 10 kOe and a measurement temperature of 28°C. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic average.

また、実施例中に示す磁性粉の組成式は、原料調製時の
各元素の原子比を用いている。磁性粉成分中の酸素の表
示については、筒略化のため省略した。
Further, the compositional formula of the magnetic powder shown in the examples uses the atomic ratio of each element at the time of raw material preparation. The display of oxygen in the magnetic powder components has been omitted for brevity.

実施例l BaC1z ・2Hz0 0.55モル、 ZrO(N
Os)g ・2Hz00.2モル、5nCffi z 
’ 2HzOO,5モル及びFeCj’+’6uto 
 5.3モルを101の蒸留水にこの順に溶解してA液
を調製した。NaOH17,5モル、Na2CO34,
72モル及びNatSiOs ・9Hz0 0.15モ
ルを151の室温の蒸留水に溶解してB液を得た。50
°Cに熱したA液にB液を徐々に加えた後、50°Cで
16時間攪拌した。こうして得られた共沈物を決別し充
分水洗した後150°Cで乾燥し、870°Cで2.5
時間電気炉で焼成した。こうして得られたBa−フェラ
イトはBa1. +Fet o、 b’lro、 as
nl、 osio、 sで示される。
Example l BaC1z ・2Hz0 0.55 mol, ZrO(N
Os) g ・2Hz00.2mol, 5nCffi z
'2HzOO, 5mol and FeCj'+'6uto
A solution A was prepared by dissolving 5.3 moles in 101 distilled water in this order. NaOH17.5 mol, Na2CO34,
72 mol and 0.15 mol of NatSiOs.9Hz0 were dissolved in 151 room temperature distilled water to obtain Solution B. 50
Solution B was gradually added to solution A heated to 0.degree. C., and then stirred at 50.degree. C. for 16 hours. The coprecipitate thus obtained was separated, thoroughly washed with water, dried at 150°C, and heated to 870°C for 2.5
Fired in an electric furnace for an hour. The Ba-ferrite thus obtained has a Ba1. +Fet o, b'lro, as
Indicated by nl, osio, s.

この微粒子粉末は、平均1粒径0.064μmの板状で
あり、保磁力(Hc)は6750e 、飽和磁化(C3
)は54.8 emu/ gであった。
This fine particle powder has a plate shape with an average grain size of 0.064 μm, a coercive force (Hc) of 6750e, and a saturation magnetization (C3
) was 54.8 emu/g.

比較例1 塩化スズを除いた他は実施例1と全く同様の方法でBa
−フェライトを製造した。得られたBa−フェライトは
Bat、 +Fe+a、 hZro、 4sia、 3
で示される。
Comparative Example 1 Ba was prepared in exactly the same manner as in Example 1 except for tin chloride.
-Produced ferrite. The obtained Ba-ferrite is Bat, +Fe+a, hZro, 4sia, 3
It is indicated by.

この微粒子粉末は平均粒径0.33μmの板状であり、
Hcは10840e 、 a、は38.6emu/gで
あった。
This fine particle powder has a plate shape with an average particle size of 0.33 μm,
Hc was 10840e and a was 38.6 emu/g.

実施例2 BaCl z ・21zOQ、55モル、 Zr0(N
(h) z ・2Hz80.4モル、GeCl1a  
0.35モル及びFeCj! x ・6Hz05.25
モルを10fの蒸留水にこの順に溶解してA液を得た。
Example 2 BaCl z ・21zOQ, 55 mol, Zr0(N
(h) z ・2Hz80.4 mol, GeCl1a
0.35 mol and FeCj! x ・6Hz05.25
A solution A was obtained by dissolving the moles in 10 f of distilled water in this order.

NaOH17,5モル、NatCOx 4.72モル及
びNazSiO:+・98z8 0.15モルを151
の室温の蒸留水に溶解してB液を得た。50°Cに熱し
たA液にB液を徐々に加えた後、50°Cで16時間攪
拌した。こうして得られた共沈物を決別し水洗して得ら
れたケーキ状の共沈物スラリーにフラックスとしてNa
Cl 400 gを加え、充分に混合した後水分を蒸発
乾固せしめ、これを880°Cで2.5時間電気炉で焼
成した。この焼成物を水を用いて可溶物がなくなるまで
洗浄した後、決別、乾燥した。
17.5 mol of NaOH, 4.72 mol of NatCOx and 0.15 mol of NazSiO:+98z8 at 151
Solution B was obtained by dissolving in distilled water at room temperature. After gradually adding Solution B to Solution A heated to 50°C, the mixture was stirred at 50°C for 16 hours. The coprecipitate thus obtained was separated and washed with water, and Na was added as a flux to the cake-like coprecipitate slurry obtained.
After adding 400 g of Cl and thoroughly mixing, water was evaporated to dryness, and the mixture was fired in an electric furnace at 880°C for 2.5 hours. The fired product was washed with water until all soluble materials were removed, separated, and dried.

こうして得られたBa−フェライトは、Ba1.1Fe
lo、 5Zro、 5Geo、 tsia、 sで示
される。
The Ba-ferrite thus obtained is Ba1.1Fe
Lo, 5Zro, 5Geo, tsia, s.

この微粒子粉末は、平均粒径0.069μmの板状であ
り、Hcは4410e 、σSは56.4 emu/ 
gであった。
This fine particle powder has a plate shape with an average particle size of 0.069 μm, Hc is 4410e, and σS is 56.4 emu/
It was g.

実施例3〜6 M1成分、組成比、フラックスの種類及び量を変えた他
は、実施例2と全く同様の方法で第1表に示すBa−フ
ェライトを製造した。
Examples 3 to 6 Ba-ferrite shown in Table 1 was produced in exactly the same manner as in Example 2, except that the M1 component, composition ratio, and type and amount of flux were changed.

実施例1〜6の結果から、本発明の磁性粉は、平均粒径
が0.1μm以下で、垂直磁気記録用に適した保磁力及
び飽和磁化を有する磁性粉であることがわかる。
From the results of Examples 1 to 6, it can be seen that the magnetic powder of the present invention has an average particle size of 0.1 μm or less and has coercive force and saturation magnetization suitable for perpendicular magnetic recording.

実施例7〜31 M■成分MI成分及び組成比を変えた他は、実施例2と
全く同様の方法によって第2表に示す磁性粉を調製した
。なお、MI成分の原料は塩化物を使用し、M1成分の
原料は、Cr及びTeはナトリウム塩を使用し、V、 
Mo、 W及びPはアンモニウム塩を使用し、Ag及び
Biは硝酸塩を使用し、その他の成分は塩化物を使用し
た。Cr、 Te、 V、 Mo。
Examples 7 to 31 Magnetic powders shown in Table 2 were prepared in exactly the same manner as in Example 2, except that the MI component and the composition ratio were changed. Note that the raw material for the MI component is chloride, the raw material for the M1 component is sodium salt for Cr and Te, and V,
Ammonium salts were used for Mo, W and P, nitrates were used for Ag and Bi, and chlorides were used for the other components. Cr, Te, V, Mo.

W、及びPの原料化合物はアルカリ水溶液中に溶解した
The raw material compounds of W and P were dissolved in an alkaline aqueous solution.

Claims (1)

【特許請求の範囲】[Claims]  一般組成式Fe_aZr_bSi_cM^ I _dM
^II_eO_f(ここでM^ I はBa,Sr,Ca及
びPbから選択される少なくとも一種の金属元素を表わ
し、M^IIはV,Cr,Mo,W,Ag,Cd,Ge,
Sn,P,Bi及びTeから選択される少なくとも一種
の金属元素を表わし、a,b,c,d,e及びfはそれ
ぞれFe,Zr,Si,M^ I ,M^II及びOの原子
数であり、aは8〜12、bは0.01〜3.0、cは
0.05〜2.0、dは0.5〜3.0及びeは0.0
1〜3.0の値をとり、fは他の元素の原子価を満足す
る酸素の原子数である。)で表わされる平均粒子径が0
.1μm以下の磁気記録用磁性粉。
General composition formula Fe_aZr_bSi_cM^ I_dM
^II_eO_f (here, M^I represents at least one metal element selected from Ba, Sr, Ca, and Pb, and M^II represents V, Cr, Mo, W, Ag, Cd, Ge,
Represents at least one metal element selected from Sn, P, Bi, and Te, and a, b, c, d, e, and f are the number of atoms of Fe, Zr, Si, M^I, M^II, and O, respectively. , a is 8 to 12, b is 0.01 to 3.0, c is 0.05 to 2.0, d is 0.5 to 3.0, and e is 0.0
It takes a value of 1 to 3.0, and f is the number of oxygen atoms that satisfies the valences of other elements. ) is 0.
.. Magnetic powder for magnetic recording of 1 μm or less.
JP27534987A 1987-10-30 1987-10-30 Magnetic powder for magnetic recording Pending JPH01119517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27534987A JPH01119517A (en) 1987-10-30 1987-10-30 Magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27534987A JPH01119517A (en) 1987-10-30 1987-10-30 Magnetic powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH01119517A true JPH01119517A (en) 1989-05-11

Family

ID=17554234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27534987A Pending JPH01119517A (en) 1987-10-30 1987-10-30 Magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH01119517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
US5062982A (en) * 1989-04-07 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062982A (en) * 1989-04-07 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media
US5062983A (en) * 1989-05-11 1991-11-05 Nippon Zeon Co., Ltd. Magnetic powder for magnetic recording media

Similar Documents

Publication Publication Date Title
JPS61168532A (en) Production of fine crystal powder of barium ferrite
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US4820433A (en) Magnetic powder for magnetic recording
JPH01119517A (en) Magnetic powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
US5062983A (en) Magnetic powder for magnetic recording media
JPH06104574B2 (en) Coating film type magnetic powder for magnetic recording
JPH01119521A (en) Magnetic powder for magnetic recording
JPH01119516A (en) Magnetic powder for magnetic recording
JPS63185829A (en) Magnetic powder for magnetic recording
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS6377105A (en) Magnetic powder for magnetic recording
JPS63260103A (en) Magnetic powder for magnetic recording
JPS63260104A (en) Magnetic powder for magnetic recording
JPS63260105A (en) Magnetic powder for magnetic recording
JPH0618073B2 (en) Magnetic powder for magnetic recording
JPS63260107A (en) Magnetic powder for magnetic recording
JPS6364922A (en) Magnetic powder for magnetic recording
JPS63260109A (en) Magnetic powder for magnetic recording
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPS63260106A (en) Magnetic powder for magnetic recording
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS6369716A (en) Magnetic powder for magnetic recording
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPS62107436A (en) Magnetic powder for magnetic recording