JPS62107436A - Magnetic powder for magnetic recording - Google Patents
Magnetic powder for magnetic recordingInfo
- Publication number
- JPS62107436A JPS62107436A JP24605785A JP24605785A JPS62107436A JP S62107436 A JPS62107436 A JP S62107436A JP 24605785 A JP24605785 A JP 24605785A JP 24605785 A JP24605785 A JP 24605785A JP S62107436 A JPS62107436 A JP S62107436A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- magnetic
- magnetic recording
- powder
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は磁気記録用磁性粉に関し、更に詳しくは、高密
度磁気記録媒体用に適する微細な粒子からなる大方晶系
フェライト磁性粉に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to magnetic powder for magnetic recording, and more specifically to macrogonal ferrite magnetic powder consisting of fine particles suitable for high-density magnetic recording media. be.
(従来の技術)
近年、磁気記録に対する高密度化の要求に伴い磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。このような垂直磁気記録方式において使
用される磁性材料は記録媒体表面に垂直な方向に磁化容
易軸を有することが必要である。(Prior Art) In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording methods that record magnetic fields in the thickness direction of a magnetic recording medium have been attracting attention. The magnetic material used in such perpendicular magnetic recording systems needs to have an axis of easy magnetization in a direction perpendicular to the surface of the recording medium.
六方晶系で一軸磁化異方性を有するフェライト、例えば
Baフェライト (B a F e 12019)は六
角板状の結晶であって、板面に垂直な方向に磁化容易軸
を有しており、塗布膜タイプの垂直磁気記録用磁性材料
として上記の要件を満足するものである。該磁性材料と
しては適度な保磁力(Hc、通常300〜20000e
程度)とできるだけ大きな飽和磁化(σS)を有してい
る事、及び記録波長の関係から、磁性粉の平均粒子径は
0.3μm以下であることが必要である。Ferrite with hexagonal crystal system and uniaxial magnetization anisotropy, such as Ba ferrite (B a Fe 12019), is a hexagonal plate-shaped crystal with an axis of easy magnetization perpendicular to the plate surface. This material satisfies the above requirements as a film-type magnetic material for perpendicular magnetic recording. The magnetic material has a moderate coercive force (Hc, usually 300 to 20,000 e
It is necessary that the average particle diameter of the magnetic powder be 0.3 μm or less in view of the relationship between the magnetic powder and the recording wavelength, and the saturation magnetization (σS) as large as possible.
ところで、Baフェライトは保磁力が50000e以上
であり、このままでは磁気記録用磁性材料としては大き
すぎるので、Feの一部をCo及びTiで置換して、保
磁力を低下させる方法が提案されている(例えば特開昭
55−86103号公報、特開昭59−175707号
公報、 I EEETrans、 on Magn、、
MAG 18. 16 (1982)P、1122な
ど)。By the way, Ba ferrite has a coercive force of 50,000e or more, which is too large to be used as a magnetic material for magnetic recording as it is, so a method has been proposed to reduce the coercive force by replacing part of Fe with Co and Ti. (For example, JP-A-55-86103, JP-A-59-175707, IEEET Trans, on Magn,
MAG 18. 16 (1982) P, 1122, etc.).
(発明が解決しようとする問題点)
ところで、Feの一部をCo及びTiで置換した公知の
磁性粉は、構成元素の組成比がほぼ同一であっても、磁
性粉の製造方法や製造条件が異なると、保磁力や飽和磁
化は、表1に示すとうり、全くまちまちである。このこ
とは、Feの一部をCo及びTiで置換しただけでは、
保磁力の制御はまだ不充分であることを示している。(Problems to be Solved by the Invention) By the way, in the known magnetic powder in which a part of Fe is replaced with Co and Ti, even if the composition ratio of the constituent elements is almost the same, the manufacturing method and manufacturing conditions of the magnetic powder are different. As shown in Table 1, the coercive force and saturation magnetization will vary if the values are different. This means that if only a part of Fe is replaced with Co and Ti,
This shows that the control of coercive force is still insufficient.
(問題点を解決するための手段)
本発明者等は、従来のこの様な欠点のない垂直磁気記録
用磁性粉を開発すべく鋭意検討した結果、従来のCo及
びTiの他に更に特定の金属を加える事が効果的である
ことを見出し、本発明を完成するに至った。(Means for Solving the Problems) As a result of intensive study to develop a magnetic powder for perpendicular magnetic recording that does not have these conventional drawbacks, the inventors of the present invention discovered that in addition to the conventional Co and Ti, more specific They discovered that adding metal was effective and completed the present invention.
すなわち、本発明により一般組成式
%式%
(ここでMIはBa、Sr、Ca及びPbから選択され
る少なくとも一種の金属元素を表わし、MI[はMo、
W、Ru、Rh、Pd及びReから選択される少なくと
も一種の金属元素を表わし、a、b、c、d、e及びf
はそれぞれFe、Co。That is, according to the present invention, the general compositional formula % (where MI represents at least one metal element selected from Ba, Sr, Ca and Pb, and MI[ is Mo,
Represents at least one metal element selected from W, Ru, Rh, Pd and Re, a, b, c, d, e and f
are Fe and Co, respectively.
Ti、Ml、MI[及びOの原子数であり、aは8〜1
1.8.bは0.05〜2.0. cは0.05〜2
.0゜dは0.5〜3.0及びeは0.01〜2.0の
値をとり、fは他の元素の原子価を満足する酸素の原子
数を表わす。)で表わされ、且つ平均粒子径o、oi〜
0.3μmであることを特徴とする磁気記録用磁性粉が
提供される。Ti, Ml, MI [and the number of atoms of O, a is 8 to 1
1.8. b is 0.05 to 2.0. c is 0.05-2
.. 0°d takes a value of 0.5 to 3.0, e takes a value of 0.01 to 2.0, and f represents the number of oxygen atoms satisfying the valences of other elements. ), and the average particle diameter o, oi ~
A magnetic recording magnetic powder characterized in that the particle size is 0.3 μm is provided.
本発明においては、磁性粉の各成分元素の原子数a ”
−eが上記の数値範囲内にあることが必要で、この範囲
外では磁気記録用磁性粉に適した保磁力や飽和磁化を持
った磁性粉は得られ難い。In the present invention, the number of atoms of each component element of the magnetic powder a ”
It is necessary that -e falls within the above numerical range; outside this range, it is difficult to obtain magnetic powder with coercive force and saturation magnetization suitable for magnetic recording magnetic powder.
好ましい磁性粉の各成分割合は、aは8〜11.8゜5
は0.1〜1.5 、 cは0.1〜1.5 、 dは
0.8〜2.0及びeは0.02〜1.0の値をとり、
fは他の元素の原子価を満足する酸素の原子数である。The preferable ratio of each component of the magnetic powder is a: 8 to 11.8°5
takes a value of 0.1 to 1.5, c takes a value of 0.1 to 1.5, d takes a value of 0.8 to 2.0, and e takes a value of 0.02 to 1.0,
f is the number of oxygen atoms satisfying the valences of other elements.
本発明の磁性粉は、製造方法あるいは製造条件などによ
っては得られる磁性粉粒子の結晶が正常な六角板状を呈
していない粒子が混在している場合もあるが、該原子数
が本発明の範囲内であれば、本発明の目的を充分に達成
することができる。The magnetic powder of the present invention may contain particles whose crystals do not have a normal hexagonal plate shape depending on the manufacturing method or manufacturing conditions. Within this range, the object of the present invention can be fully achieved.
かかる本発明磁性粉によれば、製造方法や製造条件が異
なる場合であっても、磁気記録用磁性粉として具備され
ていなければならない保磁力及び飽和磁化を有している
。このことは、本発明に係る磁性粉が従来のCo及びT
iを含む磁性粉とは全く異なる機能を具備していること
によるものと考えられる。According to the magnetic powder of the present invention, even if the manufacturing method and manufacturing conditions are different, it has the coercive force and saturation magnetization required for magnetic recording magnetic powder. This means that the magnetic powder according to the present invention is different from conventional Co and T magnetic powders.
This is thought to be due to the fact that it has a completely different function from the magnetic powder containing i.
本発明による磁性粉は、この分野で公知のいろいろの方
法、例えば、ガラス結晶化法、共沈法、フラックス法、
水熱合成法等によって製造することができる。用いられ
る各元素の原料物質としては、酸化物、アンモニウム塩
、硝酸塩、炭酸塩、存機酸塩、ハロゲン化物等の塩類、
遊離酸、酸無水物、縮合酸等を挙げることができる。The magnetic powder according to the present invention can be prepared by various methods known in this field, such as glass crystallization method, coprecipitation method, flux method,
It can be produced by a hydrothermal synthesis method or the like. Raw materials for each element used include oxides, ammonium salts, nitrates, carbonates, organic acid salts, salts such as halides,
Examples include free acids, acid anhydrides, and condensed acids.
本発明に係る磁性粉は、大方晶C面に磁化容易軸を有す
る板状粒子であり、垂直磁気記録用磁性材料として好適
である。The magnetic powder according to the present invention is a plate-like particle having an axis of easy magnetization in the orthogonal C-plane, and is suitable as a magnetic material for perpendicular magnetic recording.
本発明に係る磁性粉のうち、特に保磁力300〜200
00eで、且つ飽和磁化が40 emu/ g以上のも
のが賞月される。Among the magnetic powders according to the present invention, especially those with a coercive force of 300 to 200
00e and a saturation magnetization of 40 emu/g or more will be awarded.
以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化は、得られた磁
性粉を内径5N、長さ5cmのガラス製試験管に充てん
し、直流磁化特性測定機を用い、最大印加磁場3500
0eで行った。平均粒子径は、透過型電子顕微鏡で得ら
れた写真から400個の粒子の最大直径を測定し算術平
均により算出した。ここに掲げた実施例について、X線
回折を行ったが、いずれも、磁性粉の結晶相はマグネト
ブランバイト構造をもつ大方晶系フェライトであった。The present invention will be explained in more detail with reference to Examples below. The coercive force and saturation magnetization in the examples were determined by filling a glass test tube with an inner diameter of 5 N and a length of 5 cm with the obtained magnetic powder, using a DC magnetization characteristic measuring machine, and measuring the maximum applied magnetic field of 3500.
I went with 0e. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic average. X-ray diffraction was performed on the examples listed here, and in all cases the crystal phase of the magnetic powder was macrogonal ferrite having a magnetoblanbite structure.
また、実施例中に示す磁性粉の実験式は、原料調製時の
各金属の原子比を用いている。磁性粉成分中の酸素の表
示については、簡略化のため省略した。Further, the experimental formula for magnetic powder shown in the examples uses the atomic ratio of each metal at the time of raw material preparation. The display of oxygen in the magnetic powder components has been omitted for the sake of brevity.
実施例1
Ba(l z ’ 2H200,55モル、TiC1,
0,375モル、CoCJ 2 ・6HzO0,375
モル、Rh(NO3)30、075モル及びI’eCi
2a ’ 6HzO5,25モルを101の蒸留水に
この順に溶解し、これをA液とした。NaOH17,5
モル及びNazCOz4.72モルを151の室温の蒸
留水に溶解し、これをB液とした。50℃に熱したA液
にB液を徐々に加えた後、50℃で16時間攪拌した。Example 1 Ba(l z '2H200, 55 mol, TiC1,
0,375 mol, CoCJ 2 ・6HzO0,375
mol, Rh(NO3)30,075 mol and I'eCi
5.25 moles of 2a' 6HzO were dissolved in 101 distilled water in this order, and this was used as liquid A. NaOH17,5
mol and 4.72 mol of NazCOz were dissolved in distilled water at room temperature of 151, and this was used as liquid B. After gradually adding Solution B to Solution A heated to 50°C, the mixture was stirred at 50°C for 16 hours.
攪拌後のpiは10.35であった。こうして得られた
共沈物を決別し充分水洗した後150℃で乾燥し、90
0 ’Cで2時間電気炉で焼成した。こうして得られた
Ba−フェライトはBa+、 IFe+++、 5Co
o、 、5Tio、 ysR)lo、 +sで示される
。The pi after stirring was 10.35. The coprecipitate thus obtained was separated, washed thoroughly with water, dried at 150°C, and dried at 90°C.
It was fired in an electric furnace at 0'C for 2 hours. The Ba-ferrite thus obtained contains Ba+, IFe+++, 5Co
o, , 5Tio, ysR) lo, +s.
この微粒子粉末は平均粒径0.08μmの板状であり、
保磁力は7650e、飽和磁化は56 emu/gであ
った。This fine particle powder has a plate shape with an average particle size of 0.08 μm,
The coercive force was 7650e, and the saturation magnetization was 56 emu/g.
比較例1
硝酸ロジウムを除いた他は実施例1と全く同様の方法で
Ba−フェライトを製造した。得られたBa−フェライ
トはBa、 lFe10.5Coo、7sTio、 7
5で示される。この微粒子粉末は平均粒径o、25μm
の板状であり、Hcは4440e、a3は35emu/
gであった。Comparative Example 1 Ba-ferrite was produced in exactly the same manner as in Example 1 except that rhodium nitrate was removed. The obtained Ba-ferrite is Ba, lFe10.5Coo, 7sTio, 7
5. This fine particle powder has an average particle size o of 25 μm.
It is plate-shaped, Hc is 4440e, a3 is 35emu/
It was g.
実施例2
Ba(J z ・2HzO0,55モル、TiCff1
n 0.375モル、CoCjl! 2 ’ 6Hz0
0.375 モ)Ii、Rh (NO3) yo、 0
75モル及びFeCl!z ・68zO5,’25モ
ルを、10fの蒸留水にこの順に溶解し、これをA液と
した。NaOHI 7.5モル及びNazCO34,7
2モルを15Aの蒸留水に溶解し、これをB液とした。Example 2 Ba(J z ・2HzO0.55 mol, TiCff1
n 0.375 mol, CoCjl! 2' 6Hz0
0.375 Mo) Ii, Rh (NO3) yo, 0
75 mol and FeCl! 25 moles of z.68zO5,' were dissolved in 10f of distilled water in this order, and this was used as liquid A. NaOHI 7.5 mol and NazCO34,7
2 mol was dissolved in 15A distilled water, and this was used as liquid B.
50℃に熱したA液及びB液をオートクレーブに加え3
00℃で4時間攪拌した後、これを室温まで冷却した。Add liquid A and liquid B heated to 50℃ to the autoclave 3.
After stirring at 00° C. for 4 hours, it was cooled to room temperature.
この時のpHは10.44であった。こうして得られた
沈殿物を充分水洗後150℃で乾燥し、750℃で8時
間電気炉で熱処理した。The pH at this time was 10.44. The thus obtained precipitate was thoroughly washed with water, dried at 150°C, and heat-treated in an electric furnace at 750°C for 8 hours.
こうして得られたBa−フェライトは
B a 1.+ F e +o、sCOo、75T
lo、tsRho、+sで示される。The Ba-ferrite thus obtained has Ba 1. +F e +o, sCOo, 75T
It is indicated by lo, tsRho, +s.
この微粒子粉末は、平均粒径0.10.czmの板状で
あり、Hcは、7800e、σSは54 emu/gで
あった。この結果から、本実施例の水熱合成法を用いて
も、実施例1の共沈法を用いても、はぼ同じ磁気特性を
有する磁性粉が得られることが分る。This fine particle powder has an average particle size of 0.10. It was plate-like with czm, Hc was 7800e, and σS was 54 emu/g. From this result, it can be seen that magnetic powder having almost the same magnetic properties can be obtained whether the hydrothermal synthesis method of this example is used or the coprecipitation method of Example 1 is used.
比較例2
硝酸ロジウムを除いた他は、実施例2と全く同様の方法
でBa−フェライトを製造した。得られたBa−フェラ
イトは、Bad、 +Fe+ o、 5Coo、?5r
iO,ff5で示される。この微粒子粉末の平均粒径は
、0.33μmの板状であり、Hcは2250e、
σSは21 emu/ gであった。Comparative Example 2 Ba-ferrite was produced in exactly the same manner as in Example 2, except that rhodium nitrate was removed. The obtained Ba-ferrite has the following properties: Bad, +Fe+ o, 5Coo, ? 5r
It is denoted by iO,ff5. The average particle size of this fine particle powder is plate-like with 0.33 μm, Hc is 2250e,
σS was 21 emu/g.
実施例3
B液中のNaOHを25.0モルとした他は、実施例1
と全く同様の方法でBa−フェライトを製造した。Example 3 Same as Example 1 except that NaOH in liquid B was 25.0 mol.
Ba-ferrite was produced in exactly the same manner.
この微粒子粉末は、平均粒径0.10μmの板状であり
、Hcは、7540e、σSは55 emu/gであっ
た。This fine particle powder was plate-shaped with an average particle size of 0.10 μm, Hc was 7540e, and σS was 55 emu/g.
比較例3
B液中のNaOHを25.0モルとした他は、比較例1
と全く同様の方法でBa−フェライトを製造した。Comparative Example 3 Comparative Example 1 except that NaOH in liquid B was 25.0 mol.
Ba-ferrite was produced in exactly the same manner.
この微粒子粉末は、平均粒径0.13μmの板状であり
、Hcは9200e、σSは23 emu/ gであっ
た。This fine particle powder had a plate shape with an average particle size of 0.13 μm, Hc of 9200e, and σS of 23 emu/g.
実施例1〜3の結果から、本発明に係る磁性粉は製造条
件が異ってもほぼ同一性能を有する磁性粉が得られるこ
とがわかる。From the results of Examples 1 to 3, it can be seen that the magnetic powder according to the present invention has almost the same performance even if the manufacturing conditions are different.
実施例4〜18
M1成分M![成分及び組成比を変えた他は、実施例1
と同様の方法によって表2に示す磁性粉を調製した。な
お、Ml成分の原料は塩化物を使用し、Mll成分の原
料はMO及びWは酸化物を使用し、その他は塩化物を使
用した。ただしMoO、及びWO,はB液中に溶解させ
た。Examples 4-18 M1 component M! [Example 1 except that the components and composition ratio were changed
Magnetic powders shown in Table 2 were prepared in the same manner as above. Note that chloride was used as the raw material for the Ml component, oxides were used for MO and W, and chlorides were used for the others. However, MoO and WO were dissolved in the B solution.
Claims (1)
1〜0.3μmであることを特徴とする磁気記録用磁性
粉 Fe_aCo_bTi_cM^ I _dM^II_eO_
f(ここでM^ I はBa、Sr、Ca及びPbから選
択される少なくとも一種の金属元素を表わし、M^IIは
Mo、W、Ru、Rh、Pd及びReから選択される少
なくとも一種の金属元素を表わし、a、b、c、d、e
及びfはそれぞれFe、Co、Ti、M^ I 、M^II
及びOの原子数であり、aは8〜11.8、bは0.0
5〜2.0、cは0.05〜2.0、dは0.5〜3.
0及びeは0.01〜2.0の値をとり、fは他の元素
の原子価を満足する酸素の原子数である。)。 2、aは8〜11.8、bは0.1〜1.5、cは0.
1〜1.5、dは0.8〜2.0及びeは0.02〜1
.0の値をとり、fは他の元素の原子価を満足する酸素
の原子数である特許請求の範囲第1項記載の磁気記録用
磁性粉。 3、保磁力が300〜2000Oeで且つ飽和磁化が4
0emu/g以上である特許請求の範囲第1項記載の磁
気記録用磁性粉。[Claims] 1. Represented by the following general compositional formula, and having an average particle size of 0.0
Magnetic powder for magnetic recording Fe_aCo_bTi_cM^I_dM^II_eO_, characterized by having a particle size of 1 to 0.3 μm
f (here, M^I represents at least one metal element selected from Ba, Sr, Ca, and Pb, and M^II represents at least one metal element selected from Mo, W, Ru, Rh, Pd, and Re) Represents an element, a, b, c, d, e
and f are Fe, Co, Ti, M^I, M^II respectively
and the number of atoms of O, a is 8 to 11.8, b is 0.0
5-2.0, c is 0.05-2.0, d is 0.5-3.
0 and e take values of 0.01 to 2.0, and f is the number of oxygen atoms that satisfies the valences of other elements. ). 2, a is 8-11.8, b is 0.1-1.5, c is 0.
1-1.5, d is 0.8-2.0 and e is 0.02-1
.. The magnetic powder for magnetic recording according to claim 1, wherein the value is 0, and f is the number of oxygen atoms satisfying the valences of other elements. 3. Coercive force is 300-2000 Oe and saturation magnetization is 4.
The magnetic powder for magnetic recording according to claim 1, wherein the magnetic powder has a particle diameter of 0 emu/g or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24605785A JPS62107436A (en) | 1985-11-01 | 1985-11-01 | Magnetic powder for magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24605785A JPS62107436A (en) | 1985-11-01 | 1985-11-01 | Magnetic powder for magnetic recording |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62107436A true JPS62107436A (en) | 1987-05-18 |
JPH0580729B2 JPH0580729B2 (en) | 1993-11-10 |
Family
ID=17142822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24605785A Granted JPS62107436A (en) | 1985-11-01 | 1985-11-01 | Magnetic powder for magnetic recording |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62107436A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369206A (en) * | 1986-09-10 | 1988-03-29 | Toshiba Glass Co Ltd | Hexagonal system ferrite system magnetic powder and its manufacture |
US5062983A (en) * | 1989-05-11 | 1991-11-05 | Nippon Zeon Co., Ltd. | Magnetic powder for magnetic recording media |
-
1985
- 1985-11-01 JP JP24605785A patent/JPS62107436A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369206A (en) * | 1986-09-10 | 1988-03-29 | Toshiba Glass Co Ltd | Hexagonal system ferrite system magnetic powder and its manufacture |
US5062983A (en) * | 1989-05-11 | 1991-11-05 | Nippon Zeon Co., Ltd. | Magnetic powder for magnetic recording media |
Also Published As
Publication number | Publication date |
---|---|
JPH0580729B2 (en) | 1993-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5585032A (en) | Ferromagnetic fine powder for magnetic recording | |
DE3885335T2 (en) | Disc-shaped magnetic powder and its production process and a recording medium from this magnetic powder. | |
JPH0690969B2 (en) | Magnetic powder for magnetic recording medium and magnetic recording medium using the same | |
US5075169A (en) | Plate-like composite ferrite particles for magnetic recording and process for producing the same | |
US4820433A (en) | Magnetic powder for magnetic recording | |
JPS62123023A (en) | Magnetic powder for magnetic recording | |
JPS62107436A (en) | Magnetic powder for magnetic recording | |
JPS62123024A (en) | Magnetic powder for magnetic recording | |
JPS62107437A (en) | Magnetic powder for magnetic recording | |
JPS63185829A (en) | Magnetic powder for magnetic recording | |
JPH02296303A (en) | Magnetic powder for magnetic record medium | |
JPS5841728A (en) | Manufacture of fine ferrite powder | |
JP2745306B2 (en) | Ferromagnetic fine powder for magnetic recording and method for producing the same | |
KR960011787B1 (en) | Proces for preparing ferromagnetic fine particles for magnetic recording | |
US4311770A (en) | Novel ferromagnetic chromium dioxide and rhodium dioxide material and its preparation | |
EP0310682B1 (en) | Fine ferromagnetic powder for magnetic recording | |
JPS6291426A (en) | Magnetic powder for magnetic recording | |
JPH01119517A (en) | Magnetic powder for magnetic recording | |
JPS62289926A (en) | Magnetic powder for magnetic recording | |
JPS6377105A (en) | Magnetic powder for magnetic recording | |
JPH0712933B2 (en) | Magnetic powder for magnetic recording | |
JPS63260109A (en) | Magnetic powder for magnetic recording | |
JPH0459619A (en) | Magnetic powder for magnetic recording and magnetic recording medium therefrom | |
JPS63260103A (en) | Magnetic powder for magnetic recording | |
JPS6369716A (en) | Magnetic powder for magnetic recording |