JPS62128561A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62128561A
JPS62128561A JP26854685A JP26854685A JPS62128561A JP S62128561 A JPS62128561 A JP S62128561A JP 26854685 A JP26854685 A JP 26854685A JP 26854685 A JP26854685 A JP 26854685A JP S62128561 A JPS62128561 A JP S62128561A
Authority
JP
Japan
Prior art keywords
fet
transistor
terminal
bipolar transistor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26854685A
Other languages
Japanese (ja)
Inventor
Kyoichi Ishii
恭一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26854685A priority Critical patent/JPS62128561A/en
Publication of JPS62128561A publication Critical patent/JPS62128561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7302Bipolar junction transistors structurally associated with other devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a high frequency high output semiconductor device which has the respective features of an FET and a bipolar transistor by forming the FET and the bipolar transistor in the same semiconductor substrate adjoining to each other. CONSTITUTION:A bipolar transistor Q1 and an FET Q2 are provided in a same semiconductor substrate adjoining to each other. The source terminal of the FET Q2 and the base terminal of the transistor Q1 are electrically connected by a metal layer 18 on the substrate surface. The semiconductor substrate is constituted as a common region of the drain D of the FET Q2 and the collector C of the transistor Q1. The gate electrode 17 of the FET Q2, the backplane electrode 20 of the semiconductor substrate and the emitter electrode 19 of the transistor Q1 are provided as an input terminal 1, an output terminal and a common grounding terminal respectively. When a positive voltage is applied to the input terminal 1, the drain current ID of the MOS FET Q2 is increased and the base current IB of the transistor Q1 is increased and the collector current IC multiplied by beta by the transistor Q1 is increased. When a negative voltage is applied to the input terminal 1, the collector current IC is reduced. In other words, the device operates basically as an amplifier and a switching device.

Description

【発明の詳細な説明】 〔概要〕 1?ETとバイポーラトランジスタからなる複合デバイ
スを同一半導体チノブ内に構成し、両方の特徴をもち、
1 (lfflのデバイスとして動作する高周波高出力
半導体装置である。
[Detailed Description of the Invention] [Summary] 1? A composite device consisting of an ET and a bipolar transistor is configured in the same semiconductor chip, and has the characteristics of both.
1 (This is a high frequency, high power semiconductor device that operates as an lffl device.

〔産業上の利用分野〕[Industrial application field]

本発明は高周波高出力半導体装置に関するもので、さら
に詳しく言えば、同一の半導体基板内にバイポーラ型ト
ランジスタと電界効果型トランジスタ(FET)を隣合
って配設し、両者の利点を結合し”どなる高周波高出力
用の半導体装置に関するものである。
The present invention relates to a high frequency, high power semiconductor device, and more specifically, a bipolar transistor and a field effect transistor (FET) are arranged next to each other in the same semiconductor substrate, and the advantages of both are combined. The present invention relates to a semiconductor device for high frequency and high output.

C従来の技術) 高周波高出力バイポーラトランジスタは、■チップ面積
に対する出力電力比が大である、すなわ 。
C. Prior Art) High-frequency, high-output bipolar transistors have a large ratio of output power to chip area.

ち、チップ面積が小さくコストが安価であり、■いわゆ
るON抵抗が小さく電力損失が少ない利点をもつ。
The chip area is small, the cost is low, and the so-called ON resistance is small, resulting in low power loss.

他方、高周波高出力電界効果型トランジスタ(PET 
)は、■電圧駆動型であるため、入カインビ−ダンスが
高(、■チャネル温度が上昇すると、チャネル抵抗が高
くなってチャネル動作電流が減少し、熱暴走を起し難い
利点をもつ。
On the other hand, high frequency high power field effect transistor (PET
) has the advantage of high input impedance because it is a voltage-driven type (2), when the channel temperature rises, the channel resistance increases and the channel operating current decreases, making it difficult to cause thermal runaway.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、バイポーラトランジスタにおいては、■電流駆
動型デバイスであるために、入力インピーダンスが数オ
ーム以下ときわめて小であり、インピーダンス整合回路
の設計製作が難しく、■動作電流の温度系数が正で、熱
暴走を起して破壊し易い問題がある。
However, in bipolar transistors, ■As they are current-driven devices, their input impedance is extremely small, a few ohms or less, making it difficult to design and manufacture impedance matching circuits.■The temperature coefficient of the operating current is positive, resulting in thermal runaway. There is a problem in that it is easy to cause damage and damage.

高周波高出力+jETは、■バイポーラトランジスタに
比べてチップの面積効率が劣り、従って大きな動作電流
能力をもったチップは大きなものでなければならず、■
構造および動作原理上、バイポーラトランジスタに比べ
てON抵抗が大で、電力損失が多大である問題がある。
High-frequency, high-output +JETs have inferior chip area efficiency compared to bipolar transistors, so a chip with a large operating current capacity must be large;
Due to its structure and operating principle, it has a problem that its ON resistance is larger than that of a bipolar transistor, and power loss is large.

本発明はこのような点に鑑みて創作されたもので、バイ
ポーラトランジスタとFETの双方の長所を具備した高
周波高出力半導体増幅素子を提供することを目的とする
The present invention was created in view of these points, and it is an object of the present invention to provide a high frequency, high power semiconductor amplifier element that has the advantages of both bipolar transistors and FETs.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の断面図であり、同図において、
11と12はn/n+型半導体基板のn゛型層例えば埋
込層)とn型層(エピタキシャルIn)、13はp型の
ベース領域、14と15はp型ベース領域13にそれぞ
れ形成されたn+型のソース領域とエミッタ領域、16
は二酸化シリコーン(5iO2)膜、17はゲート電極
、18はソースとベース領域の接続メタル層、19はエ
ミッタ電極、20は基板裏面電極20である。
FIG. 1 is a sectional view of an embodiment of the present invention, and in the same figure,
11 and 12 are an n-type layer (for example, a buried layer) and an n-type layer (epitaxial In) of an n/n+ type semiconductor substrate, 13 is a p-type base region, and 14 and 15 are formed in the p-type base region 13, respectively. n+ type source region and emitter region, 16
17 is a silicon dioxide (5iO2) film, 17 is a gate electrode, 18 is a connecting metal layer between the source and base regions, 19 is an emitter electrode, and 20 is a backside electrode 20 of the substrate.

第1図において、同一半導体基板内にバイポーラ型トラ
ンジスタロ1とFET Q2が隣接して配設され、FE
T Q2のソース端子とトランジスタ旧のベース端子は
基板表面上でメタル1i18によって電気的に接続され
、半導体基板はPET 02のドレイン(D)とトラン
ジスタQ1のコレクタ(C)の共通領域として構成され
、FHT Qlのゲート電極17を入力端子(1)、半
導体基板の裏面電極20を出力端子(2)、トランジス
タΩ1のエミッタ電極19を共通接地端子(3)とする
In FIG. 1, a bipolar transistor 1 and a FET Q2 are arranged adjacent to each other in the same semiconductor substrate, and an FE
The source terminal of T Q2 and the base terminal of the old transistor are electrically connected by metal 1i18 on the substrate surface, and the semiconductor substrate is configured as a common area of the drain (D) of PET 02 and the collector (C) of transistor Q1, The gate electrode 17 of the FHT Ql is used as an input terminal (1), the back electrode 20 of the semiconductor substrate is used as an output terminal (2), and the emitter electrode 19 of the transistor Ω1 is used as a common ground terminal (3).

〔作用〕[Effect]

上記した半導体装置において、バイポーラ型と電界効果
型トランジスタを1つの半導体チップ内に配設し内部接
続して、入力インピーダンスが高く、温度係数が負で、
熱暴走し難く、かつ、ON抵抗が小で電力損失が少なく
、チップの面積効率もバイポーラ型に比べて劣らない高
周波高出力半導体デバイスが得られる。
In the semiconductor device described above, bipolar type and field effect transistors are arranged and internally connected in one semiconductor chip, and the input impedance is high and the temperature coefficient is negative.
A high-frequency, high-output semiconductor device that is difficult to cause thermal runaway, has low ON resistance, low power loss, and has a chip area efficiency comparable to that of a bipolar type can be obtained.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の原理を示すための回路図で、Nチャネ
ルMOS型FET Q2と、NPNバイポーラトランジ
スタ01との組合せを示す。前段にPET Q2、後段
にバイポーラトランジスタQ1を配置し、FET Q2
のドレイン端子(D)とトランジスタ旧のコレクタ端子
(C)を接続して出力端子(2)とし、ソース端子(S
)とベース端子(B)を接続して共通端子(3)とし、
ゲート端子を入力端子(1)とする。
FIG. 2 is a circuit diagram showing the principle of the present invention, and shows a combination of an N-channel MOS FET Q2 and an NPN bipolar transistor 01. PET Q2 is placed in the front stage, bipolar transistor Q1 is placed in the rear stage, and FET Q2
The drain terminal (D) of the transistor is connected to the collector terminal (C) of the old transistor to form the output terminal (2), and the source terminal (S
) and the base terminal (B) to make a common terminal (3),
Let the gate terminal be the input terminal (1).

第3図は第2図の回路の動作原理を説明するための回路
図で、入力端子1に正の電圧を印加すると、MOS F
ET Q2のドレイン電流■りは増加し、従って、トラ
ンジスタ旧のベース流入電流I8は増加し、それがトラ
ンジスタ01により2倍されコレクタ流入電流rcが増
加する。
Figure 3 is a circuit diagram for explaining the operating principle of the circuit in Figure 2. When a positive voltage is applied to input terminal 1, the MOS F
The drain current of ET Q2 increases, and therefore the base inflow current I8 of transistor 01 increases, which is doubled by transistor 01 and the collector inflow current rc increases.

逆に、入力端子1に負の電圧を印加すると、コレクタ流
入電流1cは減少する。すなわち、本発明のデバイスは
、基本的に増幅素子およびスイッチ素子として動作する
ことができる。
Conversely, when a negative voltage is applied to the input terminal 1, the collector inflow current 1c decreases. That is, the device of the present invention can basically operate as an amplifying element and a switching element.

高周波特性という観点からはNチャネルMOS型FET
とNI’N型トランジスタの組合せにより良好な結果が
得られるが、Pチャネル型MO5I’ETとPNP型ト
ランジスタの組合せ、さらにはFET素子として接合型
(J−FET )も可能である。
From the viewpoint of high frequency characteristics, N-channel MOS FET
Good results can be obtained by combining a P-channel type MO5I'ET and a PNP type transistor, and a junction type (J-FET) as an FET element is also possible.

以上に説明したデバイスにおいて、入力にはFETを配
置したので、F (”” IJはきわめて小であり、入
力インピーダンスは大きくなる。
In the device described above, since the FET is placed at the input, F(''IJ is extremely small and the input impedance is large.

出力にはバイポーラトランジスタを配置したので、ON
抵抗は小になる。
Since a bipolar transistor is placed at the output, it is ON.
resistance becomes small.

また、2つのトランジスタは同一チップ内に配置されて
いるので、大電流、すなわち大電力を増幅、制御、消費
しているバイポーラトランジスタの接合温度が異常に高
(なると、その熱は前段のFETのチャネル温度をも上
昇させるので、負の温度係数特性により結果的にベース
流入電流II3を減少させ、コレクタ流入電流1cを減
少させ、熱暴走に至ることを防止する。
In addition, since the two transistors are placed on the same chip, the junction temperature of the bipolar transistor, which amplifies, controls, and consumes a large amount of current, that is, large amount of power, is abnormally high. Since the channel temperature is also increased, the negative temperature coefficient characteristic results in a decrease in the base inflow current II3 and a decrease in the collector inflow current 1c, thereby preventing thermal runaway.

前段のFETの取り扱い電流は後段のバイポーラトラン
ジスタのそれのl/βでよいため、小さなパターン面積
(FET単独の場合の1/β)のFETでよく、チップ
の面積効率の劣化は少ない。
Since the current handled by the FET in the front stage can be 1/β of that of the bipolar transistor in the rear stage, a FET with a small pattern area (1/β in the case of a single FET) is sufficient, and there is little deterioration in the area efficiency of the chip.

本発明のデバイスは二段増幅となっているのでゲインが
高く、結果として装置が小型化できる利点がある。
Since the device of the present invention is a two-stage amplification device, the gain is high, and as a result, there is an advantage that the device can be made smaller.

次に、第4図(alないしくdlの断面図を参照して第
1図の装置を作る一つの方法を説明する。
Next, one method for manufacturing the device shown in FIG. 1 will be described with reference to FIG. 4 (al to dl cross-sectional views).

第4図+a+参照: n+型基板11の上に通常の技術でエビタギンヤル1i
12(a度10 ” 〜10 I6/ cm”のn型)
を成長する。
See Figure 4+a+: Evitaginyal 1i is placed on the n+ type substrate 11 using the usual technique.
12 (n-type with a degree of 10” to 10 I6/cm”)
grow.

第4図+b>参照: エピタキシャル層12の表面にS io2膜21を形成
し、それをパターニングし、ボロンイオン(B゛)をイ
オン注入して濃度10 ” 〜1017/ cm’のp
型ベース領域13を形成する。
See Figure 4+b>: Form an Sio2 film 21 on the surface of the epitaxial layer 12, pattern it, and implant boron ions (B) to a concentration of 10'' to 1017/cm'.
A mold base region 13 is formed.

第4図(cl参照: SiO2膜21全21し、新たにS i02膜22を形
成し、それを図示の如くバターニングし、りんイオン(
P+)をイオン注入してn+型ソース領域14、エミッ
タ領域15を形成する。
FIG. 4 (see cl: SiO2 film 21 is completely removed, a new SiO2 film 22 is formed, and it is buttered as shown in the figure, and phosphorus ions (
P+) ions are implanted to form an n+ type source region 14 and emitter region 15.

第4図(d)参照: 5i0211922を除去し、 5iOz 1IQ16
を500〜1000Aの厚さに形成し、それを図示の如
(パターニングし、アルミニウム(^7りを1.0μm
の厚さに成長し、それをバターニングしてゲート電極I
7、ソース/ベース接続メタル!1B、エミッタ電極1
9を形成し、次いで基板裏面電極2oを形成する。
See Figure 4(d): Remove 5i0211922, 5iOz 1IQ16
was formed to a thickness of 500 to 1000A, patterned as shown in the figure, and made of aluminum (1.0 μm thick).
The gate electrode I is grown to a thickness of
7. Source/base connection metal! 1B, emitter electrode 1
9 is formed, and then a substrate backside electrode 2o is formed.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、同一半導体基
板内にFETとバイポーラトランジスタを11J接して
配設することにより、両方のそれぞれの特徴をもった高
周波高出力半導体装置が提供されるものである。
As described above, according to the present invention, by arranging an FET and a bipolar transistor in contact with each other by 11J within the same semiconductor substrate, a high frequency, high output semiconductor device having the respective characteristics of both can be provided. It is.

【図面の簡単な説明】 第1図は本発明実施例の断面図、 第2図は本発明の原理を示す回路図、 第3図は第2図の回路の動作原理を示す回路図、第4図
(a)ないしくd)は第1図の装置を作る工程を示す断
面図である。 第1図ないし第4図において、 1は入力端子、 2は出力端子、 3は共通端子、 11はn+型層、 12はn型エピタキシャル層、 IJはベース領域、 14はn+型ソース領域、 15はn+型エミッタ領域、 16は 5i02膜、 L7はゲート電極、 18はソース/ベース接続メタルIL 19はエミッタ電極、 20は基板裏面電極、 21と22はS ioz膜である。 不整FIfJ突党例#rω図 第1図 本Δト日月4L製!tイ;亨回絡閃         
 syr、jU;Jk5D6.2+w        
 ”’図 第4図
[Brief Description of the Drawings] Figure 1 is a sectional view of an embodiment of the present invention, Figure 2 is a circuit diagram showing the principle of the invention, Figure 3 is a circuit diagram showing the operating principle of the circuit in Figure 2, and Figure 3 is a circuit diagram showing the principle of operation of the circuit in Figure 2. 4(a) to 4(d) are cross-sectional views showing the steps for making the device of FIG. 1. 1 to 4, 1 is an input terminal, 2 is an output terminal, 3 is a common terminal, 11 is an n + type layer, 12 is an n type epitaxial layer, IJ is a base region, 14 is an n + type source region, 15 is an n+ type emitter region, 16 is a 5i02 film, L7 is a gate electrode, 18 is a source/base connection metal IL, 19 is an emitter electrode, 20 is a back surface electrode of the substrate, and 21 and 22 are Sioz films. Irregular FIfJ protrusion example #rω diagram Figure 1 Book Δto Sun Moon 4L made! t ii;
syr, jU; Jk5D6.2+w
''Figure 4

Claims (1)

【特許請求の範囲】 同一半導体基板(11、12)内にバイポーラ型トラン
ジスタ(Q1)と電界効果型トランジスタ(FET)(
Q2)が隣接して配設され、 FET(Q2)のソース端子とバイポーラ型トランジス
タ(Q1)のベース端子は基板表面上にてメタル層(1
8)において接続され、 半導体基板(11、12)はFET(Q2)のドレイン
(D)とバイポーラトランジスタ(Q1)のコレクタ(
C)の共通領域であり、 FET(Q2)のゲート電極(17)を入力端子、基板
裏面電極(20)を出力端子、バイポーラトランジスタ
(Q1)のエミッタ電極(19)を共通接地端子として
なることを特徴とする半導体装置。
[Claims] A bipolar transistor (Q1) and a field effect transistor (FET) (
Q2) are arranged adjacent to each other, and the source terminal of the FET (Q2) and the base terminal of the bipolar transistor (Q1) are connected to a metal layer (1) on the substrate surface.
8), and the semiconductor substrates (11, 12) connect the drain (D) of the FET (Q2) and the collector (D) of the bipolar transistor (Q1).
C), where the gate electrode (17) of the FET (Q2) serves as the input terminal, the substrate back electrode (20) serves as the output terminal, and the emitter electrode (19) of the bipolar transistor (Q1) serves as the common ground terminal. A semiconductor device characterized by:
JP26854685A 1985-11-29 1985-11-29 Semiconductor device Pending JPS62128561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26854685A JPS62128561A (en) 1985-11-29 1985-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26854685A JPS62128561A (en) 1985-11-29 1985-11-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62128561A true JPS62128561A (en) 1987-06-10

Family

ID=17460029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26854685A Pending JPS62128561A (en) 1985-11-29 1985-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62128561A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693329B2 (en) * 2001-01-19 2004-02-17 Seiko Epson Corporation Semiconductor devices having a field effect transistor and a bi-polar transistor
US6734500B2 (en) 2000-12-15 2004-05-11 Seiko Epson Corporation Semiconductor devices including a bi-polar transistor and a field effect transistor
US6762465B2 (en) 2001-01-19 2004-07-13 Seiko Epson Corporation BiCMOS inverter
JP2009239202A (en) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd Amplifying element and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734500B2 (en) 2000-12-15 2004-05-11 Seiko Epson Corporation Semiconductor devices including a bi-polar transistor and a field effect transistor
US6693329B2 (en) * 2001-01-19 2004-02-17 Seiko Epson Corporation Semiconductor devices having a field effect transistor and a bi-polar transistor
US6762465B2 (en) 2001-01-19 2004-07-13 Seiko Epson Corporation BiCMOS inverter
JP2009239202A (en) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd Amplifying element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4425516A (en) Buffer circuit and integrated semiconductor circuit structure formed of bipolar and CMOS transistor elements
US4547791A (en) CMOS-Bipolar Darlington device
US4259681A (en) Integrated circuit
US20020130409A1 (en) Semiconductor device and drive circuit using the semiconductor devices
JPH0865063A (en) Semiconductor integrated circuit
US6300669B1 (en) Semiconductor integrated circuit device and method of designing same
JPS608628B2 (en) Semiconductor integrated circuit device
JPS62128561A (en) Semiconductor device
JPH07211875A (en) Analog output driving circuit for gate array
JPH1065146A (en) Semiconductor integrated circuit device
US7902635B2 (en) High-power-gain, bipolar transistor amplifier
US5856218A (en) Bipolar transistor formed by a high energy ion implantation method
JPS6228586B2 (en)
JP2003017946A (en) Semiconductor device
Villa Improved second breakdown of integrated bipolar power transistors
JP3499394B2 (en) Microwave integrated circuit
JPS62104068A (en) Semiconductor integrated circuit device
JP2944115B2 (en) Composite transistor circuit device
JPH02260561A (en) Semiconductor device
JPS5833707Y2 (en) transistor circuit device
JPH0612818B2 (en) Semiconductor device
JPS6362901B2 (en)
JPS60116170A (en) Semiconductor device
JPS6238881B2 (en)
JPH04164365A (en) Gate circuit and gate device