JPS6212802B2 - - Google Patents

Info

Publication number
JPS6212802B2
JPS6212802B2 JP13779179A JP13779179A JPS6212802B2 JP S6212802 B2 JPS6212802 B2 JP S6212802B2 JP 13779179 A JP13779179 A JP 13779179A JP 13779179 A JP13779179 A JP 13779179A JP S6212802 B2 JPS6212802 B2 JP S6212802B2
Authority
JP
Japan
Prior art keywords
hydrogenation
copolymer
polymer
vinyl
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13779179A
Other languages
Japanese (ja)
Other versions
JPS5662805A (en
Inventor
Isaburo Fukawa
Hideo Morita
Shozo Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13779179A priority Critical patent/JPS5662805A/en
Priority to GB8034049A priority patent/GB2061961B/en
Priority to DE19803040205 priority patent/DE3040205A1/en
Priority to FR8022842A priority patent/FR2468618B1/en
Publication of JPS5662805A publication Critical patent/JPS5662805A/en
Publication of JPS6212802B2 publication Critical patent/JPS6212802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、共役ジエンとビニル置換芳香族炭化
水素の共重合体に熱安定性、耐候性および耐オゾ
ン性を付与するために、該共重合体を接触水添す
る方法に関するものであり、さらに詳しくは、低
い温度かつ低い水素圧で反応させることができ、
共役ジエン部分を選択的に水添することができ、
さらに反応後物理的方法で触媒を分離することが
できるようにした接触水添方法に関するものであ
る。 共役ジエンとビニル置換芳香族炭化水素の共重
合体は、共役ジエンユニツトに炭素−炭素二重結
合を有するため、熱安定性、耐候性、耐オゾン性
に劣る。特に共役ジエンとビニル置換芳香族炭化
水素のブロツク共重合体は、熱可塑性弾性体や透
明な耐衝撃性樹脂として、あるいはスチレン系樹
脂やオレフイン系樹脂の改質剤として加硫せずに
使用されるため、熱安定性、耐候性、耐オゾン性
が劣る点が問題となり、用途が限定される。 これは不飽和結合によるものであり、重合体中
のジエン部分の炭素−炭素二重結合を水添する
と、それらの性質が格段に改善される。 この水添反応に用いられる触媒には、(1)ニツケ
ル、コバルトの有機酸塩またはアセチルアセトン
塩と有機アルミニウム等の還元剤を溶媒中で反応
して得られるいわゆるチーグラータイプの均一系
触媒と、(2)ニツケル、パラジウム、ルテニウム等
の金属を一般にカーボン、アルミナ、シリカ、シ
リカ・アルミナ、ケイソウ土等の担体に担持させ
た担持型触媒とが知られている。 前者のチーグラータイプの均一系触媒は、担持
型に比べ低い温度と、低い水素圧で反応が進む特
徴があり、また共役ジエンとビニル置換芳香族炭
化水素共重合体の共役ジエン部分を選択的に水添
することが可能である。 しかしながら、水添後の重合体溶液は見掛上均
一であつて、ロ過等の物理的方法で触媒を分離す
ることは不可能で、たとえば特開昭48−37482号
に示されるように、過酸化水素等の酸化剤で触媒
を酸化した後、酒石酸を加え反応させ、これをア
ルコールで抽出するという複雑な化学反応を行な
う必要がある。触媒残渣が重合体中に残ると、重
合体の耐候性、耐熱性は非常に悪くなるため、上
記の触媒除去操作は必ず必要となる。 一方、担持型触媒は一般に活性が低く、水添反
応条件は高温、高圧の厳しい条件となる。とくに
重合体が担持型触媒と接触して反応が進むため、
液状の低重合度重合体に比べ高分子重合体は大き
な立体障害を受けて水添しにくい。このため高重
合度重合体を水添するためには、特に高温かつ高
圧での反応が必要となるが、この際、重合体の分
解やゲル化が起りやすい。 また、一般に担持系触媒では水添選択性がな
く、共役ジエン部分と芳香核部分が同時に水添さ
れる。たとえば、特開昭54−77689号にはスチレ
ン−ブタジエン−スチレン型ブロツク共重合体を
アルミナに担持した白金触媒を用いて水添する方
法が示されており、実施例によれば、水素圧10
Kg/cm2、温度150℃で水添した場合、ブタジエン
部分とスチレン部分の水素転化率は、ほぼ同じ値
が得られており、選択性は全く認められない。耐
熱性、耐候性、耐オゾン性の改良には、共役ジエ
ン部分の水添だけで十分であり、物性的に芳香核
部分まで水添するメリツトはなく、水素消費量が
増える不利を招くものである。 また、担持型触媒は、水添後の触媒を物理的方
法で分離しやすいと言われるが、これは有機化合
物や低重合度の重合体に当てはまることで、高重
合体では溶液粘度が高かつたり、重合体が溶媒に
不溶性となつて溶液がプリン状になるなどの不都
合が生じ、分離は必しも容易でない。 本発明者らは、かゝる問題点を解決すべく、鋭
意検討した結果、共役ジエンとビニル置換芳香族
炭化水素の共重合体を接触水添する方法におい
て、該共重合体中のビニル置換芳香族炭化水素重
合体ブロツク含有率(a)と共役ジエンのビニル結合
含有率(b)の和(a+b)が全共重合体中の30重量
%以上である該共重合体を、不活性溶媒中で、担
体に担持したロジウム金属を触媒として、120℃
以下の温度で水添することによつて、共役ジエン
部分が70%以上、ビニル置換芳香族炭化水素部分
が30%以下に選択的に水添され、かつ反応後溶液
から触媒を物理的方法により分離することが可能
なことを見出し、本発明に到達した。さらにま
た、物理的方法により分離・回収された触媒は、
繰り返し触媒として使用することが可能で、その
活性は実質的に変わらない。 本発明に用いられる共役ジエンとビニル置換芳
香族炭化水素の共重合体中の共役ジエンとして
は、たとえばブタジエン、イソプレン、1・3−
ペンタジエン、2・3−ジメチルブタジエン等が
含まれ、またビニル置換芳香族炭化水素として
は、たとえばスチレン、t−ブチルスチレン、メ
チルスチレン、ジビニルベンゼン、1・1−ジフ
エニルエチレン等が含有される。共役ジエンとし
て好ましくはブタジエン、イソプレンであり、ま
たビニル置換芳香族炭化水素として好ましくはス
チレンである。 該共重合体中のビニル置換芳香族炭化水素含有
量は5重量%ないし95重量%が好ましく、その範
囲外では共重合体としての特徴が十分得られな
い。 本発明の該共重合体には、ランダム共重合体、
漸減ブロツク共重合体、完全ブロツク共重合体が
含まれるが、該共重合体中のビニル置換芳香族炭
化水素重合体ブロツク含有率(a)と共役ジエン部分
のビニル結合含有率(b)の和(a+b)が全共重合
体の30重量%以上でなければならない。30重量%
未満では、水添後の反応溶液が極めて粘稠になつ
たり、重合体が不溶性となり溶液全体がプリン状
となるため、触媒との分離が極めて困難となり、
またしばしば水添した重合体が架橋やゲル化を生
じる。 ビニル置換芳香族炭化水素重合体ブロツク含有
率(a)は、L.M.Kolthoff et al、J.Polymer Sci.
、429(1946)の方法にしたがつて測定し、含
有率(a)は全重合体中のブロツク重合体含有率で表
わしたものである。 重合体中の共役ジエン部分のビニル結合含有率
(b)は、赤外線吸収スペクトルを用い、ハンプトン
法〔R.R.Hampton Anal.Chem.29、923
(1949)〕によつて、共役ジエン部分中のビニル結
合の割合を計算し、これを全重合体中の重量比率
に換算したものである。使用した波数は、SBRの
場合、ブタジエンのシス−1・4(724cm-1)、ト
ランス−1・4(967cm-1)、1・2−ビニル
(911cm-1)、スチレン(699cm-1)であり、これよ
り各成分の濃度が求められる。 本発明の共重合体は、好ましくはビニル置換芳
香族炭化水素重合体ブロツクの含有量が10%以
上、90%以下のブロツク共重合体である。ブロツ
ク共重合体とは少なくとも一つのビニル置換芳香
族炭化水素を主とした重合体ブロツクAと少なく
とも一つの共役ジエンを主とした重合体ブロツク
Bを有する共重合体で、次のような一般式で示さ
れる。ブロツクAには少量の共役ジエンが、また
ブロツクBには少量のビニル置換芳香族炭化水素
が含まれていてもよい。 A(−B−A)n B−A(−B−A)o {(A−B)p}−qX {B(−A−B)p}−qX (式中、m=1〜5、n=0〜5、p=1〜5、
q=2〜10であり、Xは炭素、ケイ素、錫、ジビ
ニルベンゼン等を表わす。) 一般式A(−B−A)n、B−A(−B−A)oで示さ
れる直鎖状重合体は、有機アルカリ金属触媒を用
い、共役ジエン単量体とビニル置換芳香族炭化水
素単量体を遂次添加して重合することにより製造
できる。 また、{(A−B)p}−qXと{B(−A−B)p
q
で示される分岐型、ラジアル型あるいは星型のブ
ロツク共重合体は、上記の方法でつくつたブロツ
ク共重合体のリビング末端を、ハロゲン化炭化水
素、四塩化ケイ素、四塩化スズ、ジビニルベンゼ
ン等のカツプリング剤でカツプリングすることに
より製造できる。 さらに好ましくは、本発明に使用されるブロツ
ク共重合体は、共役ジエン部分のミクロ構造がビ
ニル結合30〜70%、1・4−結合(シス結合とト
ランス結合)30〜70%である。この範囲にあるブ
ロツク共重合体は、水添した後、オレフイン部分
がゴム弾性を有するため、工業的価値が高いばか
りでなく、水添した重合溶液の粘度が極めて低
く、触媒の分離上とくに有利である。 本発明に使用される共重合体の分子量として
は、2万以上100万以下が好ましい2万以下では
得られる水添重合体の機械的物性が劣り、100万
以上では加工性が劣る。 本発明に使用されるロジウム金属を担持する物
質としては、公知のカーボン、アルミナ、シリ
カ・アルミナ、ケイソウ土等が用いられる。好ま
しくはカーボンとアルミナに担持したものであ
り、特にカーボンに担持したものは、水添した重
合溶液から分離しやすく好ましい。担体の粒径と
しては、公知のものゝ粒径でよく、たとえば0.1
〜500μの範囲である。特に好ましくは10〜200μ
の範囲である。 本発明に使用される不溶性溶媒としては、シク
ロヘキサン、ヘキサン、ヘプタン、オクタン等の
脂肪族および脂環式の飽和炭化水素、テトラヒド
ロフラン、塩素化炭化水素またはそれらの混合物
が使用される。本発明に使用される水添用共重合
体は、一般に不活性炭化水素溶媒中で製造される
ため、その溶液をそのまゝ水添に使用することが
有利である。 各種のアルコールおよびエーテルは、触媒を活
性化する働きがあるので、重合体の溶解性を特に
低下させない範囲で、これらを溶媒に添加して使
用することも可能である。 本発明で使用される水添温度は120℃以下、好
ましくは100℃以下である。120℃以上では、共役
ジエン部分と芳香核部分の水添選択性が得られな
い。水添温度が低い方が選択性は優れるが、水添
速度は低下する。 使用される水素の圧力は、常圧ないし200Kg/
cm2である。 水添反応時間は1分ないし20時間である。 水添反応は固定床方式、懸濁方式等いかなる方
法でもよい。懸濁方式では、たとえば重合体溶液
と触媒を添加した後、所定の温度、水素圧力下撹
拌しながら水添を行なう。反応はバツチ方式、連
続方式のどちらでもよい。 反応の進行を水素吸収量で追跡することによつ
て、ジエン部分の水添転化率が70%以上、芳香核
部分の水添転化率が30%以下の本発明の水添共重
合体を得ることができる。ジエン部分の水添転化
率が70%未満であると、耐熱性、耐オゾン性、耐
候性の改善効果が十分でない。また、芳香核部分
の水添転化率を30%以上にしても物性面の改良効
果は認められず、むしろビニル置換芳香族炭化水
素重合体ブロツクの優れた成形性が失われる。ま
た、芳香核の水添には多量の水素が消費され、さ
らに長時間の水添を必要とするためコストアツプ
となる。 上記水添転化率は、紫外線吸収スペクトルと赤
外線吸収スペクトルから算出した。すなわち、ス
チレン部分の水添転化率は、紫外線吸収スペクト
ルの250mμのスチレン部分の吸収より重合体中
のスチレン含有量を測定し、次式から求めた。 スチレン部分の水添転化率(%)=(1−水添後の重合体のスチレン含有量/水添前の重合体のスチレン含
有量)×100 またブタジエン部分の水添転化率は、水添重合
体の赤外吸収スペクトルより、不飽和部分すなわ
ちブタジエン部分(未水添)とスチレン部分(未
水添)の重合体中の濃度の比νと、上記で求めた
水添前後のスチレン含有量から計算した。 ν=水添後の重合体のブタジエン含有量(未水添ジエン含有量)/水添後の重合体のスチレン含有量(未水
添スチレン含有量) ブタジエン部分の水添率(%)=(1−水添後の重合体のブタジエン含有量/水添前の重合体のブタジエン
含有量)×100 =(1−a(水添後のスチレン含有量)/(1−水添前のスチレン含有量))×100 本発明に規定した共重合体を用い、本発明の方
法を用いて水添した重合体溶液からは、デカンテ
ーシヨン、ロ過、加圧ロ過、遠心分離、遠心沈降
等の物理的方法で触媒を分離・回収することが可
能である。本発明に規定される共重合体と水添条
件の範囲外では、水添重合体溶液は粘稠あるいは
プリン状あるいはスラリー状となり、また、しば
しばゲル化を生じ、触媒の分離がきわめて困難で
ある。一般に水添温度が低く、反応時間が短い方
が触媒の分離・回収は容易となる。触媒の分離が
良好の時には、触媒が自然沈降し、ロ液がほとん
ど透明となる。 回収された触媒は、そのまゝあるいは溶媒で洗
浄した後、再使用することが可能である。ロジウ
ム金属は高価なため、触媒の回収・再使用は必須
の要件であり、それが可能となつたことの工業的
意味は大きい。 以上のように、本発明によつて、担持型触媒を
使用しても、共役ジエンとモノビニル置換芳香族
炭化水素の共重合体の共役ジエン部分を選択的に
還元することが可能となり、かつ触媒を回収・再
使用することが可能となつた。 本発明で得られた水添共重合体は、熱可塑性弾
性体もしくは熱可塑性樹脂として、あるいは耐候
性、耐熱性のすぐれたゴムとして使用される。ま
た、該水添共重合体に安定剤、紫外線吸収剤、オ
イル、フイラー等を加えて使用することも可能で
ある。 以下若干の実施例を挙げ、本発明の具体的実施
態様を示すが、これは本発明の趣旨をより具体的
に説明するものであつて、本発明を限定するもの
ではない。 参考例 1 オートクレープ中にシクロヘキサン400g、ス
チレンモノマー15gとn−ブチルリチウム0.11g
を加え、60℃で3時間重合し、次いでブタジエン
モノマーを70g加え60℃で3時間重合した。最後
に15gのスチレンモノマー15gを添加し、60℃3
時間重合し、結合スチレン30%、ブロツクスチレ
ン含有量29.5%、ブタジエン部分の1・2−ビニ
ル結合含有量13%(全重合体換算9%)の重量平
均分子量が約6万のスチレン−ブタジエン−スチ
レン型3型ブロツク共重合体を得た。 参考例 2 シクロヘキサン500gにスチレンモノマー30g
とn−ブチルリチウム0.45gを加え、60℃で3時
間重合し、次いでブタジエンモノマーを70gとテ
トラヒドロフラン(THF)をモル比でn−ブチ
ルリチウム/テトラヒドロフラン=20の割合で加
え、40℃で2時間重合し、その後、四塩化ケイ素
を触媒量の1/4モル加え、カツプリングを行つ
た。得られた重合体の特性は表1に示す。 参考例 3 容積1で高さ/直径=4の撹拌器付ベツセル
型反応器に、シクロヘキサンを1200g/hr、ブタ
ジエンモノマー210g/hr、n−ブチリウム1.35
Kg/hr、テトラヒドロフラン(n−BuLi/THF
=30モル比)を反応器の底より連続的に供給し、
また反応器の上部よりスチレンモノマー90g/hr
供給して、重合温度100℃、平均滞留時間25分で
重合し、重合体溶液を連続的に反応器より取り出
した。得られた重合体の特性は表1に示す。 参考例 4 シクロヘキサン400gにブタジエンモノマー70
g、スチレンモノマー20g、テトラヒドロフラン
0.9gおよびn−ブチルリチウム0.05gを加え、
40℃で2時間重合した後、スチレンモノマーを10
g加え、さらに60℃で1時間重合した。得られた
重合体の特性は表1に示す。 参考例 5 シクロヘキサン400g、ブタジエンモノマー70
g、スチレンモノマー30g、n−ブチルリチウム
0.05gおよびTHF0.9gを同時にオートクレーブ
に加え、40℃で2時間重合した。得られた重合体
の特性は表1に示す。 参考例 6 オートクレーブ(2)に、シクロヘキサン
400gとn−ブチルリチウム0.05gを加え、次い
でブタジエン/スチレン=70/30のモノマー混合
液を定量ポンプを使つて、3時間にわたつて一定
量づつ供給しながらオートクレーブを90℃に保ち
重合した。モノマーの全供給量は100gである。
モノマーの供給終了後、重合体溶液をオートクレ
ーブからとり出した。得られた重合体の特性は表
1に示す。 参考例 7 スチレンモノマー量をそれぞれ40g(計80
g)、ブタジエンモノマー量を20gとする以外
は、参考例1と同じ方法で高スチレン含有量のブ
ロツク共重合体を合成した。得られた重合体の特
性は表1に示す。 参考例 8 ブタジエンのかわりにイソプレンを使用した以
外は、全く参考例1と同じ方法でスチレン−イソ
プレン−スチレン型ブロツク共重合体を合成し
た。得られた重合体の特性は表1に示す。
The present invention relates to a method for catalytically hydrogenating a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon in order to impart thermal stability, weather resistance, and ozone resistance to the copolymer. Specifically, the reaction can be carried out at low temperature and low hydrogen pressure,
The conjugated diene moiety can be selectively hydrogenated,
Furthermore, the present invention relates to a catalytic hydrogenation method in which the catalyst can be separated by a physical method after the reaction. A copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon has a carbon-carbon double bond in the conjugated diene unit, and therefore has poor thermal stability, weather resistance, and ozone resistance. In particular, block copolymers of conjugated dienes and vinyl-substituted aromatic hydrocarbons are used without vulcanization as thermoplastic elastomers, transparent impact-resistant resins, or as modifiers for styrenic and olefin resins. This poses a problem in that it has poor thermal stability, weather resistance, and ozone resistance, which limits its uses. This is due to unsaturated bonds, and hydrogenation of the carbon-carbon double bonds in the diene portion of the polymer significantly improves these properties. The catalysts used in this hydrogenation reaction include (1) a so-called Ziegler type homogeneous catalyst obtained by reacting an organic acid salt or acetylacetone salt of nickel or cobalt with a reducing agent such as organoaluminum in a solvent; 2) Supported catalysts in which metals such as nickel, palladium, and ruthenium are generally supported on carriers such as carbon, alumina, silica, silica/alumina, and diatomaceous earth are known. The former Ziegler type homogeneous catalyst has the characteristic that the reaction proceeds at lower temperature and lower hydrogen pressure than the supported type, and it also selectively reacts with the conjugated diene moiety of the conjugated diene and vinyl-substituted aromatic hydrocarbon copolymer. It is possible to hydrogenate. However, the polymer solution after hydrogenation is apparently homogeneous, and it is impossible to separate the catalyst by physical methods such as filtration. It is necessary to perform a complex chemical reaction in which the catalyst is oxidized with an oxidizing agent such as hydrogen peroxide, then tartaric acid is added and reacted, and this is extracted with alcohol. If catalyst residue remains in the polymer, the weather resistance and heat resistance of the polymer will be extremely poor, so the above-mentioned catalyst removal operation is always necessary. On the other hand, supported catalysts generally have low activity, and the hydrogenation reaction conditions are severe, such as high temperature and high pressure. In particular, as the reaction progresses when the polymer comes into contact with the supported catalyst,
Compared to liquid low polymerization degree polymers, high molecular weight polymers suffer from greater steric hindrance and are difficult to hydrogenate. Therefore, in order to hydrogenate a highly polymerized polymer, a reaction particularly at high temperature and pressure is required, but in this case, decomposition and gelation of the polymer are likely to occur. Furthermore, supported catalysts generally do not have hydrogenation selectivity, and the conjugated diene portion and the aromatic nucleus portion are hydrogenated simultaneously. For example, JP-A-54-77689 discloses a method of hydrogenating a styrene-butadiene-styrene type block copolymer using a platinum catalyst supported on alumina.
When hydrogenation was carried out at Kg/cm 2 and a temperature of 150° C., the hydrogen conversion rates of the butadiene portion and the styrene portion were almost the same, and no selectivity was observed. To improve heat resistance, weather resistance, and ozone resistance, it is sufficient to hydrogenate only the conjugated diene part, and there is no merit in hydrogenating the aromatic nucleus part in terms of physical properties, and it causes the disadvantage of increased hydrogen consumption. be. Additionally, supported catalysts are said to be easier to separate by physical methods after hydrogenation, but this applies to organic compounds and polymers with a low degree of polymerization; high polymers have high solution viscosity and Separation is not always easy because the polymer becomes insoluble in the solvent and the solution becomes pudding-like. In order to solve such problems, the present inventors have conducted intensive studies and have developed a method for catalytic hydrogenation of a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon. The copolymer in which the sum (a+b) of the aromatic hydrocarbon polymer block content (a) and the vinyl bond content of the conjugated diene (b) is 30% by weight or more based on the total copolymer is treated with an inert solvent. Inside, rhodium metal supported on a carrier is used as a catalyst at 120℃.
By hydrogenating at the following temperature, the conjugated diene part is selectively hydrogenated to 70% or more and the vinyl-substituted aromatic hydrocarbon part to 30% or less, and after the reaction, the catalyst is removed from the solution by a physical method. We have discovered that it is possible to separate the two, and have arrived at the present invention. Furthermore, the catalyst separated and recovered by physical methods is
It can be used repeatedly as a catalyst and its activity remains virtually unchanged. Examples of the conjugated diene in the copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon used in the present invention include butadiene, isoprene, 1.3-
Pentadiene, 2,3-dimethylbutadiene, etc. are included, and vinyl-substituted aromatic hydrocarbons include, for example, styrene, t-butylstyrene, methylstyrene, divinylbenzene, 1,1-diphenylethylene, and the like. Preferred conjugated dienes are butadiene and isoprene, and preferred vinyl-substituted aromatic hydrocarbons are styrene. The vinyl-substituted aromatic hydrocarbon content in the copolymer is preferably from 5% to 95% by weight, and if it is outside this range, sufficient characteristics as a copolymer cannot be obtained. The copolymer of the present invention includes a random copolymer,
Gradually decreasing block copolymers and complete block copolymers are included, and the sum of the vinyl-substituted aromatic hydrocarbon polymer block content (a) and the vinyl bond content of the conjugated diene moiety (b) in the copolymer (a+b) must be at least 30% by weight of the total copolymer. 30% by weight
If it is less than 100%, the reaction solution after hydrogenation becomes extremely viscous, the polymer becomes insoluble, and the entire solution becomes pudding-like, making it extremely difficult to separate it from the catalyst.
Additionally, hydrogenated polymers often undergo crosslinking and gelation. Vinyl-substituted aromatic hydrocarbon polymer block content (a) was determined by LMKolthoff et al, J. Polymer Sci.
1 , 429 (1946), and the content (a) is expressed as the block polymer content in the total polymer. Vinyl bond content of conjugated diene moiety in polymer
(b) uses an infrared absorption spectrum, and the Hampton method [RRHampton Anal.Chem. 29 , 923
(1949)], the proportion of vinyl bonds in the conjugated diene moiety was calculated and converted to the weight proportion in the total polymer. In the case of SBR, the wavenumbers used were cis-1,4 (724 cm -1 ) of butadiene, trans-1,4 (967 cm -1 ), 1,2-vinyl (911 cm -1 ), and styrene (699 cm -1 ). From this, the concentration of each component can be determined. The copolymer of the present invention preferably has a vinyl-substituted aromatic hydrocarbon polymer block content of 10% or more and 90% or less. A block copolymer is a copolymer having at least one polymer block A mainly composed of a vinyl-substituted aromatic hydrocarbon and at least one polymer block B mainly composed of a conjugated diene, and has the following general formula: It is indicated by. Block A may contain a small amount of conjugated diene and block B may contain a small amount of vinyl substituted aromatic hydrocarbon. A(-B-A) n B-A(-B-A) o {(A-B) p }- q X {B(-A-B) p }- q X (where m=1 to 5, n=0-5, p=1-5,
q=2 to 10, and X represents carbon, silicon, tin, divinylbenzene, etc. ) Linear polymers represented by the general formulas A(-B-A) n and B-A(-B-A) o are produced by carbonization of conjugated diene monomers and vinyl-substituted aromatic compounds using organic alkali metal catalysts. It can be produced by sequentially adding hydrogen monomers and polymerizing them. Also, {(A-B) p }- q X and {B(-A-B) p }
−q
The branched, radial, or star-shaped block copolymer represented by It can be manufactured by coupling with a coupling agent. More preferably, the microstructure of the conjugated diene portion of the block copolymer used in the present invention is 30 to 70% vinyl bonds and 30 to 70% 1,4-bonds (cis bonds and trans bonds). Block copolymers in this range not only have high industrial value because the olefin portion has rubber elasticity after hydrogenation, but also have extremely low viscosity in the hydrogenated polymer solution, making them particularly advantageous for catalyst separation. It is. The molecular weight of the copolymer used in the present invention is preferably from 20,000 to 1,000,000, and preferably from 20,000 to 1,000,000, and when it is less than 20,000, the mechanical properties of the resulting hydrogenated polymer are poor, and when it is more than 1,000,000, the processability is poor. As the substance supporting rhodium metal used in the present invention, known carbon, alumina, silica/alumina, diatomaceous earth, etc. are used. Preferably, it is supported on carbon and alumina, and in particular, it is preferably supported on carbon because it can be easily separated from the hydrogenated polymer solution. The particle size of the carrier may be any known particle size, for example 0.1
~500μ range. Particularly preferably 10-200μ
is within the range of As the insoluble solvent used in the present invention, aliphatic and alicyclic saturated hydrocarbons such as cyclohexane, hexane, heptane, octane, tetrahydrofuran, chlorinated hydrocarbons or mixtures thereof are used. Since the hydrogenation copolymer used in the present invention is generally produced in an inert hydrocarbon solvent, it is advantageous to use its solution as is for hydrogenation. Since various alcohols and ethers have the function of activating the catalyst, they can be added to the solvent for use as long as they do not particularly reduce the solubility of the polymer. The hydrogenation temperature used in the present invention is below 120°C, preferably below 100°C. At temperatures above 120°C, hydrogenation selectivity between the conjugated diene moiety and the aromatic nucleus moiety cannot be obtained. The lower the hydrogenation temperature, the better the selectivity, but the lower the hydrogenation rate. The pressure of hydrogen used is normal pressure to 200Kg/
cm2 . The hydrogenation reaction time is 1 minute to 20 hours. The hydrogenation reaction may be carried out by any method such as a fixed bed method or a suspension method. In the suspension method, for example, after adding a polymer solution and a catalyst, hydrogenation is performed at a predetermined temperature and under hydrogen pressure with stirring. The reaction may be carried out either batchwise or continuously. By tracking the progress of the reaction based on the hydrogen absorption amount, the hydrogenated copolymer of the present invention has a hydrogenation conversion rate of 70% or more in the diene portion and a hydrogenation conversion rate of 30% or less in the aromatic nucleus portion. be able to. If the hydrogenation conversion rate of the diene portion is less than 70%, the effect of improving heat resistance, ozone resistance, and weather resistance will not be sufficient. Further, even if the hydrogenation conversion rate of the aromatic nucleus portion is increased to 30% or more, no improvement in physical properties is observed, and rather the excellent moldability of the vinyl-substituted aromatic hydrocarbon polymer block is lost. Furthermore, hydrogenation of aromatic nuclei consumes a large amount of hydrogen and requires hydrogenation for a long time, resulting in increased costs. The above hydrogenation conversion rate was calculated from the ultraviolet absorption spectrum and the infrared absorption spectrum. That is, the hydrogenation conversion rate of the styrene portion was determined from the following equation by measuring the styrene content in the polymer from the absorption of the styrene portion at 250 mμ in the ultraviolet absorption spectrum. Hydrogenation conversion rate (%) of the styrene part = (1 - styrene content of the polymer after hydrogenation / styrene content of the polymer before hydrogenation) × 100 In addition, the hydrogenation conversion rate of the butadiene part is From the infrared absorption spectrum of the polymer, the ratio ν of the concentration of the unsaturated part, that is, the butadiene part (unhydrogenated) and the styrene part (unhydrogenated) in the polymer, and the styrene content before and after hydrogenation determined above. Calculated from. ν = Butadiene content of the polymer after hydrogenation (unhydrogenated diene content) / Styrene content of the polymer after hydrogenation (unhydrogenated styrene content) Hydrogenation rate of butadiene portion (%) = ( 1-Butadiene content of the polymer after hydrogenation/Butadiene content of the polymer before hydrogenation) x 100 = (1-a (Styrene content after hydrogenation)/(1-Styrene content before hydrogenation) Amount))×100 A polymer solution hydrogenated using the method of the present invention using the copolymer specified in the present invention can be subjected to decantation, filtration, pressure filtration, centrifugation, centrifugal sedimentation, etc. It is possible to separate and recover the catalyst using physical methods. Outside the copolymer and hydrogenation conditions specified in the present invention, the hydrogenated polymer solution becomes viscous, pudding-like, or slurry-like, and often gels, making separation of the catalyst extremely difficult. . Generally, the lower the hydrogenation temperature and the shorter the reaction time, the easier the separation and recovery of the catalyst. When the catalyst is separated well, the catalyst naturally settles and the filtrate becomes almost transparent. The recovered catalyst can be reused as it is or after being washed with a solvent. Since rhodium metal is expensive, it is essential to recover and reuse the catalyst, and the fact that this has become possible has great industrial significance. As described above, the present invention makes it possible to selectively reduce the conjugated diene moiety of a copolymer of a conjugated diene and a monovinyl-substituted aromatic hydrocarbon even if a supported catalyst is used, and It has become possible to collect and reuse. The hydrogenated copolymer obtained in the present invention is used as a thermoplastic elastomer or thermoplastic resin, or as a rubber with excellent weather resistance and heat resistance. It is also possible to add stabilizers, ultraviolet absorbers, oils, fillers, etc. to the hydrogenated copolymer. Hereinafter, some examples will be given to show specific embodiments of the present invention, but these are intended to explain the gist of the present invention more specifically, and are not intended to limit the present invention. Reference example 1 400g of cyclohexane, 15g of styrene monomer and 0.11g of n-butyllithium in an autoclave
was added and polymerized at 60°C for 3 hours, then 70g of butadiene monomer was added and polymerized at 60°C for 3 hours. Finally, add 15g of styrene monomer and heat at 60°C.
Styrene-butadiene, which is polymerized for hours and has a weight average molecular weight of approximately 60,000, with a bound styrene content of 30%, a blocked styrene content of 29.5%, and a 1,2-vinyl bond content of the butadiene portion of 13% (9% in terms of total polymer). A styrene type 3 block copolymer was obtained. Reference example 2 30g of styrene monomer in 500g of cyclohexane
and 0.45 g of n-butyllithium were added and polymerized at 60°C for 3 hours, then 70 g of butadiene monomer and tetrahydrofuran (THF) were added at a molar ratio of n-butyllithium/tetrahydrofuran = 20, and the polymerization was conducted at 40°C for 2 hours. After polymerization, a catalytic amount of 1/4 mole of silicon tetrachloride was added to perform coupling. The properties of the obtained polymer are shown in Table 1. Reference example 3 In a Bethel reactor with a volume of 1 and a height/diameter of 4 equipped with a stirrer, 1200 g/hr of cyclohexane, 210 g/hr of butadiene monomer, and 1.35 g/hr of n-butyrium were added.
Kg/hr, tetrahydrofuran (n-BuLi/THF
= 30 molar ratio) is continuously supplied from the bottom of the reactor,
In addition, 90g/hr of styrene monomer is added from the top of the reactor.
The polymer solution was continuously taken out from the reactor. The properties of the obtained polymer are shown in Table 1. Reference example 4 70 g of butadiene monomer in 400 g of cyclohexane
g, styrene monomer 20g, tetrahydrofuran
Add 0.9g and 0.05g of n-butyllithium,
After polymerizing for 2 hours at 40°C, 10% of the styrene monomer
g was added, and polymerization was further carried out at 60°C for 1 hour. The properties of the obtained polymer are shown in Table 1. Reference example 5 cyclohexane 400g, butadiene monomer 70
g, styrene monomer 30g, n-butyllithium
0.05g and 0.9g of THF were simultaneously added to the autoclave and polymerized at 40°C for 2 hours. The properties of the obtained polymer are shown in Table 1. Reference example 6 Add cyclohexane to autoclave (2)
400 g and 0.05 g of n-butyllithium were added, and then a monomer mixture of butadiene/styrene = 70/30 was fed in constant amounts over 3 hours using a metering pump, and the autoclave was kept at 90° C. for polymerization. The total amount of monomer fed is 100 g.
After the monomer supply was completed, the polymer solution was taken out from the autoclave. The properties of the obtained polymer are shown in Table 1. Reference example 7 The amount of styrene monomer was 40g each (total 80
g) A block copolymer with a high styrene content was synthesized in the same manner as in Reference Example 1, except that the amount of butadiene monomer was changed to 20 g. The properties of the obtained polymer are shown in Table 1. Reference Example 8 A styrene-isoprene-styrene type block copolymer was synthesized in the same manner as in Reference Example 1 except that isoprene was used instead of butadiene. The properties of the obtained polymer are shown in Table 1.

【表】【table】

【表】 実施例 1〜6 参考例1〜8で合成した重合体溶液のサンプル
N0.1〜8を同量のシクロヘキサンで希釈し、重
合体濃度10重量%にして水添反応に供した(これ
をそれぞれサンプル名1〜8とする)。また液状
ポリブタジエンNISSO−PB、B−3000(日本曹
達(株)製)とジエン35(旭化成製)をシクロヘキサ
ンに溶解し、10重量%にして水添反応に供した
(サンプル名9および10)。 触媒には日本エンゲルハルド(株)製のロジウムカ
ーボン−Rh/C(ロジウム担持量5%、担体の
カーボンは平均20〜40ミクロンの活性炭粉末で、
比表面積は約1100m2/g)を使用した。容量2
の撹拌器付オートクレーブに各重合体溶液を1000
g(重合体100g)と、触媒のRh/Cを20g(ロ
ジウム金属として1g)を加え、オートクレーブ
内の空気を水素で置換した後、一定温度(80
℃)、一定水素圧(50Kg/cm2G)で激しく撹拌し
ながら水添反応を90分行つた後、反応液を常温、
常圧に戻し、オートクレーブより取り出し、溶液
の状態を観察し、加圧ロ過器を用いて触媒をロ過
分離した。加圧ロ過器に使用したロ布には、プレ
イン・カーボンで前処理したロ布400番を使用し
た。触媒を分離した重合体溶液に多量のメタノー
ルを加え、重合体を沈澱させた。 得られた重合体の水添率、反応溶液の状態、ロ
過のし易さ、水添重合体の状態を表2にまとめ
た。
[Table] Examples 1 to 6 Samples of polymer solutions synthesized in Reference Examples 1 to 8
N0.1 to 8 were diluted with the same amount of cyclohexane to give a polymer concentration of 10% by weight and subjected to a hydrogenation reaction (these samples were named 1 to 8, respectively). In addition, liquid polybutadiene NISSO-PB, B-3000 (manufactured by Nippon Soda Co., Ltd.) and diene 35 (manufactured by Asahi Kasei) were dissolved in cyclohexane to 10% by weight and subjected to a hydrogenation reaction (sample names 9 and 10). The catalyst was Rhodium Carbon-Rh/C manufactured by Nippon Engelhard Co., Ltd. (Rhodium loading amount was 5%, and the carbon carrier was activated carbon powder with an average size of 20 to 40 microns.
The specific surface area was approximately 1100 m 2 /g). Capacity 2
Add 1000 ml of each polymer solution to an autoclave with a stirrer.
(100 g of polymer) and 20 g of Rh/C catalyst (1 g as rhodium metal) were added, and after replacing the air in the autoclave with hydrogen, the autoclave was heated at a constant temperature (80 g).
After carrying out the hydrogenation reaction for 90 minutes with vigorous stirring at a constant hydrogen pressure (50 Kg/cm 2 G), the reaction solution was heated to room temperature.
The pressure was returned to normal, the solution was taken out from the autoclave, the state of the solution was observed, and the catalyst was separated by filtration using a pressure filter. The cloth used in the pressure filter was No. 400 cloth, which had been pretreated with plain carbon. A large amount of methanol was added to the polymer solution from which the catalyst had been separated to precipitate the polymer. The hydrogenation rate of the obtained polymer, the state of the reaction solution, the ease of filtration, and the state of the hydrogenated polymer are summarized in Table 2.

【表】【table】

【表】 表2に示すように、実施例1〜6および比較例
3は水添反応液が均一の低粘度溶液で、加圧ロ過
により分離される。とくに1・2−ビニル結合の
多い実施例2、3、4は水添速度が速く、しかも
水添重合体溶液の粘度が低く、分離が容易であ
る。 一方、比較例1と2は水添物がプリン状とな
り、これから触媒を除くためには、溶液を重合体
濃度が1重量%以下になるまで希釈した後、60〜
70℃に加熱しながらロ過する必要があつた。比較
例3の液状ポリブタジエンはロ過が可能である
が、比較例4の高分子量ポリブタジエンは、溶媒
不溶性のプリン状またはスラリー状となり、分離
が難しい。 また、重合体の水添転化率は非常に高く、大部
分の水素がジエン部分の水添に消費されているこ
とがわかる。 実施例 7〜9 参考例2でつくつたサンプル2のスチレン−ブ
タジエン−スチレン3型ブロツク共重合体溶液
を、等量のシクロヘキサンで希釈して10重量%と
し、これを表3の条件で水添した。結果を表3に
示す。
[Table] As shown in Table 2, in Examples 1 to 6 and Comparative Example 3, the hydrogenation reaction liquid was a uniform low viscosity solution and was separated by pressure filtration. In particular, Examples 2, 3, and 4, which have a large number of 1,2-vinyl bonds, have a high hydrogenation rate and a low viscosity of the hydrogenated polymer solution, making separation easy. On the other hand, in Comparative Examples 1 and 2, the hydrogenated product became pudding-like, and in order to remove the catalyst from it, the solution was diluted until the polymer concentration was 1% by weight or less, and then
It was necessary to filter it while heating it to 70℃. The liquid polybutadiene of Comparative Example 3 can be filtered, but the high molecular weight polybutadiene of Comparative Example 4 becomes a pudding-like or slurry-like product that is insoluble in solvents and is difficult to separate. Furthermore, it can be seen that the hydrogenation conversion rate of the polymer is very high, and most of the hydrogen is consumed for hydrogenation of the diene moiety. Examples 7 to 9 The styrene-butadiene-styrene type 3 block copolymer solution of Sample 2 prepared in Reference Example 2 was diluted with an equal amount of cyclohexane to 10% by weight, and this was hydrogenated under the conditions shown in Table 3. did. The results are shown in Table 3.

【表】 表3より明らかなように、Rh/Cを使用した
場合、水添温度70℃、80℃、100℃についてはす
ぐれた選択性が得られ、とくに低温の方が選択性
が良好である。130℃では、スチレン部分の水添
転化率が40%となり、一方、ジエン部分の水添転
化率が70%をわずかに超える程度で好ましくな
い。さらに130℃でジエン部分の水添率を90%以
上に上げようとすると、スチレン部分の水添率は
60%を超えてしまう。 一方、ルテニウムをアルミナに担持した触媒
(Ru/Al2O3)を使用した場合、低温では実質的に
水添は進行せず、140℃の高温では水添は進行す
るものゝ速度は極めて遅く、しかも選択性は全く
認められない。 また、パラジウムを炭素に担持した触媒
(Pd/C)を使用した場合、水添速度はルテニウ
ムに比べて速いものゝ、選択性はやはり全くなか
つた。 実施例 10 実施例2で使用した触媒を分離・回収し、これ
を使用して実施例2と同一条件で水添を行なつた
ところ、次のように水添成績はほとんど変わらな
かつた。 水添時間 90分 ブタジエン部分の水添転化率 95% スチレン部分の水添転化率 11% 実施例 11 実施例2において、触媒を除いて、他は全て同
一条件で水添を行なつた。触媒としては、アルミ
ナにロジウムを担持したものを使用した。その結
果、水添成績はほゞ同じであつた。 水添時間 100分 ブタジエン部分の水添転化率 92% スチレン部分の水添転化率 13% 触媒の分離は遠心分離器を用い、15000rpmで
沈降させ、デカンテーシヨンで分離した。
[Table] As is clear from Table 3, when Rh/C is used, excellent selectivity is obtained at hydrogenation temperatures of 70°C, 80°C, and 100°C, and the selectivity is particularly good at lower temperatures. be. At 130°C, the hydrogenation conversion rate of the styrene portion is 40%, while the hydrogenation conversion rate of the diene portion is slightly over 70%, which is not preferable. Furthermore, if you try to increase the hydrogenation rate of the diene part to over 90% at 130℃, the hydrogenation rate of the styrene part will decrease.
It exceeds 60%. On the other hand, when using a catalyst in which ruthenium is supported on alumina (Ru/Al 2 O 3 ), hydrogenation does not substantially proceed at low temperatures, and although hydrogenation does proceed at high temperatures of 140°C, the rate is extremely slow. , and no selectivity is observed. Furthermore, when a catalyst in which palladium was supported on carbon (Pd/C) was used, the hydrogenation rate was faster than that of ruthenium, but there was still no selectivity at all. Example 10 The catalyst used in Example 2 was separated and recovered, and hydrogenation was carried out using it under the same conditions as in Example 2. As shown below, there was almost no difference in the hydrogenation results. Hydrogenation time: 90 minutes Hydrogenation conversion rate of butadiene portion: 95% Hydrogenation conversion rate of styrene portion: 11% Example 11 Hydrogenation was carried out under the same conditions as in Example 2 except for the catalyst. As the catalyst, alumina supported with rhodium was used. As a result, the hydrogenation results were almost the same. Hydrogenation time: 100 minutes Hydrogenation conversion rate of butadiene portion: 92% Hydrogenation conversion rate of styrene portion: 13% The catalyst was separated using a centrifugal separator, sedimented at 15,000 rpm, and separated by decantation.

Claims (1)

【特許請求の範囲】 1 共役ジエンとビニル置換芳香族炭化水素の共
重合体を接触水添する方法において、該共重合体
中のビニル置換芳香族炭化水素重合体ブロツク含
有率(a)と共役ジエン部分のビニル結合含有率(b)の
和(a+b)が全重合体の30重量%以上である該
共重合体を不活性溶媒中で、担体に担持されたロ
ジウム金属を触媒として、120℃以下の温度で水
添し、共役ジエン部分を選択的に水添することを
特徴とする重合体の水添方法。 2 水添反応後、重合体溶液から触媒を物理的方
法により分離、回収し、これを水添反応に再使用
する特許請求の範囲第1項記載の方法。 3 該共重合体中の共役ジエン部分の水添率が70
%以上、芳香核部分の水添率が30%以下に選択水
添する特許請求の範囲第1項または第2項記載の
方法。 4 該共重合体の分子量が2万以上100万以下で
ある特許請求の範囲第1項ないし第3項記載の方
法。 5 該共重合体がビニル置換芳香族炭化水素重合
体ブロツクの含有量10重量%以上90重量%以下の
ブロツク共重合体である特許請求の範囲第1項な
いし第4項記載の方法。 6 該共重合体中の共役ジエン部分のミクロ構造
において、ビニル結合が30〜70%、1・4−結合
が30〜70%である特許請求の範囲第1項ないし第
5項記載の方法。
[Scope of Claims] 1. In a method of catalytically hydrogenating a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon, the block content (a) of the vinyl-substituted aromatic hydrocarbon polymer in the copolymer and the conjugate The copolymer in which the sum (a+b) of the vinyl bond content (b) in the diene portion is 30% by weight or more of the total polymer is heated at 120°C in an inert solvent using rhodium metal supported on a carrier as a catalyst. A method for hydrogenating a polymer, which comprises hydrogenating at the following temperature and selectively hydrogenating a conjugated diene moiety. 2. The method according to claim 1, wherein after the hydrogenation reaction, the catalyst is separated and recovered from the polymer solution by a physical method and is reused in the hydrogenation reaction. 3 The hydrogenation rate of the conjugated diene moiety in the copolymer is 70
% or more, and selectively hydrogenating the aromatic nucleus portion to a hydrogenation rate of 30% or less. 4. The method according to claims 1 to 3, wherein the copolymer has a molecular weight of 20,000 or more and 1,000,000 or less. 5. The method according to any one of claims 1 to 4, wherein the copolymer is a block copolymer having a vinyl-substituted aromatic hydrocarbon polymer block content of 10% by weight or more and 90% by weight or less. 6. The method according to claims 1 to 5, wherein the microstructure of the conjugated diene moiety in the copolymer is 30 to 70% vinyl bonds and 30 to 70% 1,4-bonds.
JP13779179A 1979-10-26 1979-10-26 Selective hydrogenation of polymer Granted JPS5662805A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13779179A JPS5662805A (en) 1979-10-26 1979-10-26 Selective hydrogenation of polymer
GB8034049A GB2061961B (en) 1979-10-26 1980-10-22 Catalytic hydrogenation of diene copolymers
DE19803040205 DE3040205A1 (en) 1979-10-26 1980-10-24 METHOD FOR SELECTIVE HYDRATION OF POLYMERS
FR8022842A FR2468618B1 (en) 1979-10-26 1980-10-24 PROCESS FOR THE SELECTIVE HYDROGENATION OF POLYMERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13779179A JPS5662805A (en) 1979-10-26 1979-10-26 Selective hydrogenation of polymer

Publications (2)

Publication Number Publication Date
JPS5662805A JPS5662805A (en) 1981-05-29
JPS6212802B2 true JPS6212802B2 (en) 1987-03-20

Family

ID=15206926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13779179A Granted JPS5662805A (en) 1979-10-26 1979-10-26 Selective hydrogenation of polymer

Country Status (4)

Country Link
JP (1) JPS5662805A (en)
DE (1) DE3040205A1 (en)
FR (1) FR2468618B1 (en)
GB (1) GB2061961B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202305A (en) * 1981-06-05 1982-12-11 Nippon Zeon Co Ltd Hydrogenation of conjugated diene polymer
JPS585360A (en) * 1981-07-03 1983-01-12 Asahi Chem Ind Co Ltd Glass fiber reinforced thermoplastic resin composition
JPS587443A (en) * 1981-07-06 1983-01-17 Asahi Chem Ind Co Ltd Composition consisting of thermoplastic polymer
US5272209A (en) * 1981-08-13 1993-12-21 Asahi Kasei Kogyo Kabushiki Kaisha Modified block copolymer composition
US4820768A (en) * 1981-08-13 1989-04-11 Asahi Kasei Kogyo Kabushiki Kaisha Modified block copolymer composition
US5278246A (en) * 1981-08-13 1994-01-11 Asahi Kasei Kogyo Kabushiki Kaisha Modified block copolymer and a process for producing the same
EP0371001B1 (en) * 1981-08-13 1996-02-07 Asahi Kasei Kogyo Kabushiki Kaisha A modified block copolymer
US5272208A (en) * 1981-08-13 1993-12-21 Asahi Kasei Kogyo Kabushiki Kaisha Modified block copolymer composition
US4412087A (en) * 1981-12-16 1983-10-25 Phillips Petroleum Company Viscosity index improver with high thickening power
JPS5924711A (en) * 1982-07-31 1984-02-08 Japan Synthetic Rubber Co Ltd Rubber-modified graft thermoplastic resin composition
US4501685A (en) * 1982-09-10 1985-02-26 Johnson Matthey Public Limited Company Catalytic selective hydrogenation of aliphatic unsaturation in copolymers
DE3338393A1 (en) * 1982-10-23 1984-04-26 Arakawa Kagaku Kogyo K.K., Osaka METHOD FOR PRODUCING A HYDRATED PETROLEUM RESIN
IT1246410B (en) * 1990-07-25 1994-11-18 Enichem Elastomers BRANCHED BLOCK COPOLYMER, PROCEDURES FOR ITS PREPARATION AND USE
IT1246287B (en) * 1990-07-25 1994-11-17 Enichem Elastomers BRANCHED AND HYDROGENATED BLOCK COPOLYMER AND PROCEDURES FOR ITS PREPARATION
IT1244550B (en) * 1991-02-06 1994-07-15 Enichem Elastomers HYDROGENATED BLOCK COPOLYMERS CONTAINING EPOXY GROUPS AND THEIR PREPARATION METHOD
US5378767A (en) * 1993-06-18 1995-01-03 Shell Oil Company Fixed bed hydrogenation of low molecular weight polydiene polymers
FR2818650B1 (en) * 2000-12-21 2003-02-07 Atofina PROCESS FOR HYDROGENATION OF UNSATURATED BLOCK COPOLYMERS AND HYDROGEN BLOCK COPOLYMERS
JP2009270096A (en) * 2008-04-11 2009-11-19 Kuraray Co Ltd Method of hydrogenating polymer, and hydrogenated polymer obtained by hydrogenation reaction
TW201710309A (en) * 2015-07-22 2017-03-16 Jsr Corp Hydrogenated conjugated diene polymer, production method therefor, polymer composition, crosslinked polymer, and tire
CN109810209A (en) * 2018-12-25 2019-05-28 山东玉皇化工有限公司 A kind of preparation method of hydrogenated styrene-butadiene-styrene block copolymers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311304A (en) * 1969-06-27 1973-03-28 Borg Warner Hydrogentated graft copolymers
GB2011911B (en) * 1977-10-20 1982-09-15 Johnson Matthey Co Ltd Production of stable polymers
DE2748884C2 (en) * 1977-11-02 1982-05-19 Basf Ag, 6700 Ludwigshafen Process for the catalytic hydrogenation of polymers of conjugated dienes
DE2931736A1 (en) * 1979-08-04 1981-02-26 Basf Ag Hydrogenated star-shaped copolymers - derived from diene! and styrene! cpds., useful as viscosity index improvers

Also Published As

Publication number Publication date
JPS5662805A (en) 1981-05-29
FR2468618A1 (en) 1981-05-08
GB2061961A (en) 1981-05-20
DE3040205C2 (en) 1988-01-28
DE3040205A1 (en) 1981-09-17
FR2468618B1 (en) 1985-10-18
GB2061961B (en) 1984-02-29

Similar Documents

Publication Publication Date Title
JPS6212802B2 (en)
JP2718059B2 (en) Polymer hydrogenation method and catalyst
JPH0137970B2 (en)
KR100201228B1 (en) Process for hydrogenating living polymers
JPS634841B2 (en)
JP3484155B2 (en) Process for selective hydrogenation of polymers containing conjugated dienes
JPS6133132A (en) Method for hydrogenating olefin
JPS635401B2 (en)
JP3260298B2 (en) Production method of hydrogenated rubber
JP2955528B2 (en) Method for selective hydrogenation of living polymer having olefinic double bond
JP2725986B2 (en) A method for hydrogenating the double bond of a conjugated diene polymer in solution.
JP2587893B2 (en) Olefin hydrogenation
KR100267080B1 (en) Method for hydrogenation of conjugated diene polymer
US5910566A (en) Living polymer hydrogenation catalyst and process for hydrogenating polymers with the catalyst
KR101721713B1 (en) Catalyst for the hydrogenation of unsaturated compounds
US6040390A (en) Process for hydrogenating conjugated diene polymers
CA2016250A1 (en) Process for hydrogenation of polymers
JPH04108809A (en) Hydrogenation of polymer
JP2609534B2 (en) Method for hydrogenating olefinically unsaturated polymers
JPS585304A (en) Production of hydrogenated polymer
JPS635402B2 (en)
KR100221358B1 (en) New catalyst for hydrogenation of living polymer and hydrogenation process using it
JPS6157524A (en) Hydrogenation of olefin
KR100295599B1 (en) Hydrogenation of conjugated diene polymer
JP3651931B2 (en) Hydrogenation of alkyl-substituted conjugated diene polymers