JPS634841B2 - - Google Patents

Info

Publication number
JPS634841B2
JPS634841B2 JP671883A JP671883A JPS634841B2 JP S634841 B2 JPS634841 B2 JP S634841B2 JP 671883 A JP671883 A JP 671883A JP 671883 A JP671883 A JP 671883A JP S634841 B2 JPS634841 B2 JP S634841B2
Authority
JP
Japan
Prior art keywords
polymer
hydrogenation
conjugated diene
catalyst
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP671883A
Other languages
Japanese (ja)
Other versions
JPS59133203A (en
Inventor
Yasushi Kishimoto
Hideo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP671883A priority Critical patent/JPS59133203A/en
Priority to US06/568,692 priority patent/US4501857A/en
Priority to GB08400305A priority patent/GB2134909B/en
Priority to FR8400820A priority patent/FR2539745B1/en
Priority to DE3448317A priority patent/DE3448317C2/de
Priority to DE19843401983 priority patent/DE3401983A1/en
Publication of JPS59133203A publication Critical patent/JPS59133203A/en
Publication of JPS634841B2 publication Critical patent/JPS634841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は共役ジエン重合体に耐候性、耐酸化
性、耐熱性等を付与するための接触水添方法に関
し、さらに詳しくは新規な重合体用水添触媒を用
いて温和な水添条件下にて、共役ジエン重合体の
共役ジエン単位の不飽和二重結合を優先的に水添
する方法に関するものである。 本発明で用いる共役ジエン重合体なる語は、共
役ジエンからなる単独重合体および共重合体の両
方を意味する。具体的には、共役ジエン単独重合
体、2種以上の共役ジエンのランダムまたはブロ
ツク重合体、および少なくとも1種の共役ジエン
と少なくとも1種の他のオレフイン単量体とのラ
ンダム、ブロツクおよび/またはグラフト共重合
体を包含する。 一般に共役ジエンを重合または共重合して得ら
れる重合体は弾性体として広く工業的に利用され
ている。しかし、これら重合体は重合体鎖中に不
飽和二重結合が残存しているので加硫等に有利に
利用される反面、かかる二重結合は耐候性、耐酸
化性等の安定性に劣る欠点を有している。特に、
共役ジエンとビニル置換芳香族炭化水素とから得
られるブロツク共重合体は、熱可塑性弾性体や透
明な耐衝撃性樹脂として、あるいは、スチレン系
樹脂やオレフイン系樹脂の改質材として加硫せず
に使用されるが、重合体鎖中の不飽和二重結合の
ために耐候性、耐酸化性、耐オゾン性が劣り、か
かる性能が要求される外装材分野等では問題とな
り用途が限定される。 これらの安定性に劣る欠点は、重合体を水添し
て重合体鎖中の不飽和二重結合をなくすことによ
つて著るしく改善される。かかる目的で不飽和二
重結合を有する炭化水素重合体を水添する方法は
数多く提案されており、これらの重合体水添反応
に用いられる触媒には、(1)ニツケル、白金、パラ
ジウム、ルテニウム等の金属を一般にカーボン、
シリカ、アルミナ、シリカ・アルミナ、ケイソウ
土等の担体に担持させた担持型不均一触媒と、(2)
ニツケル、コバルト、鉄、クロム等の有機酸塩ま
たはアセチルアセトン塩と有機アルミニウム等の
還元剤を溶媒中で反応して得られるいわゆるチー
グラー型の均一触媒とが一般に知られている。 前者の担持型不均一触媒は、チーグラー型均一
触媒と比べると一般に活性が低く、水添反応を行
うためには高温、高圧の厳しい条件が必要であ
る。また、被水添物が触媒と接触することによつ
て水添反応が進行するので、重合体を水添する場
合には低分子化合物の水添に比べて、反応系の粘
度や重合体鎖の立体障害等の影響を受けて触媒と
接触しにくくなる。従つて、重合体を効率良く水
添するためには多量の触媒を要し不経済になると
共に、より高温、高圧での水添反応が必要となる
ので、重合体の分解やゲル化が起こり易くなると
共にエネルギーコストも高くなる。また、共役ジ
エンとビニル置換炭化水素との共重合体の水添に
おいては、通常芳香核部分も水添され、共役ジエ
ン単位の不飽和二重結合のみ選択的に水添しにく
くなる等の欠点がある。 一方、後者のチーグラー型均一触媒は、通常均
一系で水添反応が進行するので、担持型不均一触
媒と比べると一般に活性が高く、触媒使用量は少
なくて済み、より低温、低圧で水添反応できる特
徴がある。また、水添条件を選択すれば共役ジエ
ンとビニル置換芳香族炭化水素との共重合体の共
役ジエン単位の不飽和二重結合をかなりの程度優
先的に水添することも可能であり、工業的にも利
用されている。しかしながら、チーグラー型均一
触媒は一般にあらかじめ触媒成分を混合して還元
してから使用しないと水添活性が発現しにくく、
また再現性も劣り、さらに還元された触媒自体の
安定性が悪いために、水添反応の都度反応直前に
触媒を調整する必要がある等の問題点がある。ま
た、特に共役ジエンとビニル置換芳香族炭化水素
との共重合体を水添する場合、芳香核部分に対す
る共役ジエン単位の不飽和二重結合の水添選択性
もいまだ十分達成されていない。例えば、共役ジ
エン単位の不飽和二重結合を完全に水添する条件
では、芳香核部分がある程度水添されてしまうの
は避けられず、逆に芳香核部分の水添を完全に抑
える条件では共役ジエン単位の不飽和二重結合の
水添率が上がらなくなる。従つて、共役ジエン単
位の不飽和二重結合のみを選択的に水添する触媒
の開発が強く望まれているのが現状である。 さらに、現状のチーグラー型水添触媒は高価で
あり、かつ水添後触媒残渣を除去するために複雑
な脱灰工程を要する欠点があり、経済的に有利に
水添するためには、脱灰の不要な程度の使用量で
活性を示す高活性水添触媒、あるいは極めて容易
に脱灰できる触媒の開発が強く望まれている。 本発明者等は、かかる状況に鑑み、共役ジエン
重合体または共重合体に対して、共役ジエン単位
の不飽和二重結合のみを水添する高選択性水添触
媒について鋭意検討した結果、ビス(シクロペン
タジエニル)チタニウムジクロライドとアルキル
リチウム化合物からなる触媒が該重合体に対し
て、少量の使用で再現性良く極めて高い活性を有
し、特に極めて良好な共役ジエン単位の不飽和二
重結合水添選択性を有することを見出し、本発明
を完成するに至つたものである。 即ち、本発明は、共役ジエンを重合または共重
合して得られる重合体を不活性有機溶媒中にて、 (A) ビス(シクロペンタジエニル)チタニウムジ
クロライド および (B) 一般式R―Li(但し、Rは炭素原子数が1〜
6個のアルキル基を示す。)で示されるアルキ
ルリチウム化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、該
重合体中の共役ジエン単位の不飽和二重結合を水
添することを特徴とする重合体の水添方法であ
る。 本発明で用いる水添触媒に係るビス(シクロペ
ンタジエニル)チタニウム化合物を還元性有機金
属化合物と組み合わせて用いる触媒が低分子有機
化合物の不飽和二重結合に対して水添活性を有す
ることはすでに知られている。(例えば、M.F.
Sloanら、J.Am.Chem.Soc.、第85巻、4014〜
4018頁(1965年)、Y.Tajimaら、J.org.Chem.、
第33巻、1689〜1690頁(1968年)等)。しかし、
現在工業的に用いられている前記チーグラー型水
添触媒と比べると水添活性は低く、水添率を高め
るためには触媒量を定め、より高温高圧の条件を
要するので工業的に不利であると見做されてい
る。また、重合体、特に共役ジエン重合体や共役
ジエンとビニル置換芳香族炭化水素との共重合体
の水添に用いた例は知られてなく、かつかかる重
合体の共役ジエン単位の不飽和二重結合と芳香核
部分との水添選択性については全く知られていな
い。かかる現状技術からすると、本発明によつて
重合体の共役ジエン単位の不飽和二重結合のみを
選択的に水添し、しかも低い触媒量、温和な条件
で重合体の水添が可能になつたことは驚くべきこ
とである。 本発明は不飽和二重結合を有する炭化水素重合
体の全てに適用することができるが、好ましい実
施態様は共役ジエンを重合または共重合して得ら
れる共役ジエン重合体である。かかる共役ジエン
重合体としては、共役ジエン単独重合体及び共役
ジエン相互あるいは共役ジエンの少なくとも1種
と共役ジエンと共重合可能なオレフイン単量体の
少なくとも1種とを共重合して得られる共重合体
等が包含される。かかる共役ジエン重合体の製造
に用いられる共役ジエンとしては、一般的には4
〜約12個の炭素原子を有する共役ジエンが挙げら
れ、具体的な例としては、1,3―ブタジエン、
イソプレン、2,3―ジメチル―1,3―ブタジ
エン、1,3―ペンタジエン、2―メチル―1,
3―ペンタジエン、1,3―ヘキサジエン、4,
5―ジエチル―1,3―オクタジエン、3―ブチ
ル―1,3―オクタジエン等が挙げられる。工業
的に有利に展開でき、物性の優れた弾性体を得る
上からは、1,3―ブタジエン、イソプレンが特
に好ましく、ブタジエン重合体、イソプレン重合
体、ブタジエン/イソプレン共重合体の如き弾性
体が本発明の実施に特に好ましい。かかる重合体
においては、重合体鎖のミクロ構造は特に制限さ
れずいかなるものも好適に使用できるが、1,2
―ビニル結合が少ないと水添後の重合体の溶解性
が低下し、均一に水添を行う為には溶媒が限定さ
れるので該結合を約30%以上含有する重合体がよ
り好ましい。 一方、本発明の方法は共役ジエンの少なくとも
1種と共役ジエンと共重合可能なオレフイン単量
体の少なくとも1種とを共重合して得られる共重
合体の水添に特に好適に用いられる。かかる共重
合体の製造に用いられる好適な共役ジエンとして
は、前記共役ジエンが挙げられ、一方のオレフイ
ン単量体としては、共役ジエンと共重合可能な全
ての単量体が挙げられるが、特にビニル置換芳香
族炭化水素が好ましい。即ち、共役ジエン単位の
不飽和二重結合のみを選択的に水添する本発明の
効果を十分発揮し、工業的に有用で価値の高い弾
性体や熱可塑性弾性体を得るためには、共役ジエ
ンとビニル置換芳香族炭化水素との共重合体が特
に重要である。かかる共重合体の製造に用いられ
るビニル置換芳香族炭化水素の具体例としては、
スチレン、t―ブチルスチレン、α―メチルスチ
レン、p―メチルスチレン、ジビニルベンゼン、
1,1―ジフエニルエチレン、N,N―ジメチル
―p―アミノエチルスチレン、N,N―ジエチル
―p―アミノエチルスチレン等が挙げられ、特に
スチレンが好ましい。具体的な共重合体の例とし
ては、ブタジエン/スチレン共重合体、イソプレ
ン/スチレン共重合体等が工業的価値の高い水添
共重合体を与えるので最も好適である。 かかる共重合体においては、ビニル置換芳香族
炭化水素含有量5重量%ないし95重量%が好まし
く、この範囲外では熱可塑性弾性体としての特徴
が得られにくくなる。 本発明の方法に係る共重合体においては、単量
体は重合体鎖全体に統計的に分布しているランダ
ム共重合体、漸減ブロツク共重合体、完全ブロツ
ク共重合体、グラフト共重合体が含まれる。これ
ら共重合体においては、ビニル置換芳香族炭化水
素重合体ブロツク含有率と共役ジエン単位の
1,2―ビニル結合含有率との和(+)が
全共重合体の30重量%以上の共重合体が好まし
い。(+)が30重量%未満であると物性の良
好な熱可塑性弾性体もしくは熱可塑性樹脂が得ら
れにくくなる。また、水添後の共重合体が水添溶
媒に溶解しにくくなるので反応系がプリン状とな
り、反応液からの水添共重合体の回収が複雑にな
る。さらに良好な熱可塑性弾性体もしくは熱可塑
性樹脂を得る上からは、該共重合体としてビニル
置換芳香族炭化水素重合体ブロツクの含有率が
10重量%以上90重量%以下のブロツク共重合体が
好適である。 ビニル置換芳香族炭化水素重合体ブロツク含有
率は、L.M.Kolthoffら、J.Polymer Sci.、第
1巻、429頁(1946年)の方法に従つて測定し、
含有率は全重合体中のブロツク重合体含有率で
表わしたものである。 重合体中の共役ジエン単位の1,2―ビニル結
合含有率は、赤外線吸収スペクトルを用い、ハ
ンプトン法(R.R.Hampton、Anal.Chem.、第29
巻、923頁、(1949年)によつて、共役ジエン単位
中の1,2―ビニル結合の割合を計算し、これを
全重合体中の重量比率に換算したものである。使
用した波長はブタジエン/スチレン共重合体の場
合、ブタジエンのシス―1,4(724cm-1)、トラ
ンス―1,4(967cm-1)、1,2―ビニル(911cm
-1)、スチレン(699cm-1)であり、これにより各
成分の濃度が求められる。 前記ブロツク共重合体は少なくとも1個のビニ
ル置換芳香族炭化水素を主とした重合体ブロツク
Aと、少なくとも1個の共役ジエンを主とした重
合体ブロツクBを有する共重合体で、ブロツクA
には少量の共役ジエンが、またブロツクBには少
量のビニル置換芳香族炭化水素が含まれていても
よい。かかるブロツク共重合体は直鎖型の他に、
カツプリング剤でカツプリングしたいわゆる分岐
型、ラジアル型あるいは星型のブロツク共重合体
が包含される。 さらに、本発明に好ましく使用される前記ブロ
ツク共重合体は、共役ジエン単位のミクロ構造が
1,2―ビニル結合30〜70重量%、1,4―結合
(シス結合とトランス結合)70〜30重量%が特に
好ましい。かかる範囲にあるブロツク共重合体
は、水添反応後オレフイン部分が良好なゴム弾性
を有するため、工業的に有用であるばかりでな
く、水添反応後の溶液粘度が低く、溶媒の除去が
容易で経済的に製造することができる。 本発明の水添反応に用いる重合体は、一般的に
は数平均分子量約1000〜約100万を有するもので、
公知のいかなる重合方法、例えばアニオン重合
法、カチオン重合法、配位重合法、ラジカル重合
法、あるいは溶液重合法、エマルジヨン重合法等
で製造される重合体を用いることができる。 本発明に係る重合体の水添反応に用いる水添触
媒は、(A)ビス(シクロペンタジエニル)チタニウ
ムジクロライドと(B)一般式R―Li(但し、Rは炭
素原子数が1〜6個のアルキル基を示す。)で示
されるアルキルリチウム化合物の少なくとも1
種、を組み合わせたものである。 触媒成分(A)としては、ビス(シクロペンタジエ
ニル)チタニウムジクロライド以外のシクロペン
タジエニルチタン化合物、例えばシクロペンタジ
エニルチタニウムトリクロライド、ビス(シクロ
ペンタジエニル)チタニウムジメチル、ビス(シ
クロペンタジエニル)チタニウムジエチル、ビス
(シクロペンタジエニル)チタニウムジフエニル、
ビス(シクロペンタジエニル)チタニウムジカル
ボニル、ビス(ペンタメチルシクロペンタジエニ
ル)チタニウムジクロライド、ビス(シクロペン
タジエニル)チタニウムジイオダイド等を単独あ
るいは相互に組も合わせて用いても重合体の共役
ジエン単位の不飽和二重結合を選択的に水添する
ことは可能である。本発明はこれらのチタニウム
化合物の使用を制限するものではないが、重合体
の共役ジエン単位の不飽和二重結合を極めて良好
に選択的に水添する本発明の目的を達成するため
には、触媒成分(A)としてビス(シクロペンタジエ
ニル)チタニウムジクロライドを使用することが
必要である。また、ビス(シクロペンタジエニ
ル)チタニウムジクロライドの使用によつて、従
来公知のチーグラー型均一触媒よりも少量の使用
で重合体に対して高水添活性を示す別の目的も達
成される。 一方、触媒成分(B)としては、触媒成分(A)のビス
(シクロペンタジエニル)チタニウムジクロライ
ドを還元する能力のある有機金属化合物、例えば
有機リチウム化合物、有機アルミニウム化合物、
有機亜鉛化合物、有機マグネシウム化合物等を単
独あるいは相互に組み合わせて用いることによつ
て重合体を水添することができる。しかし、従来
公知のチーグラー型重合体水添触媒よりも高い活
性を発現し、重合体の共役ジエン単位の不飽和二
重結合を選択的に水添するためには、有機リチウ
ム化合物、特にアルキルリチウム化合物の使用が
必須である。即ち、ビス(シクロペンタジエニ
ル)チタニウムジクロライドにアルキルリチウム
化合物を組み合わせて用いることによつて本発明
の目的は好適に達成され、驚くべきことに、少量
の触媒添加でしかも温和な条件にて、重合体の共
役ジエン単位の不飽和二重結合をほゞ定量的に、
しかも優先的に水添することが可能である。 かかる触媒成分(B)としては、一般式R―Li(但
し、Rは炭素原子数1〜6個のアルキル基を示
す。)で示されるアルキルリチウム化合物が好ま
しく用いられ、具体的な例としてはメチルリチウ
ム、エチルリチウム、n―プロピルリチウム、イ
ソプロピルリチウム、n―ブチルリチウム、sec
―ブチルリチウム、イソブチルリチウム、n―ペ
ンチルリチウム、n―ヘキシルリチウム等が挙げ
られる。これらは2種以上を相互に混合して使用
してもさしつかえないし、2種以上相互の錯体で
あつてもよい。最も高い重合体水添活性を示し、
重合体の共役ジエン単位の不飽和二重結合を選択
的に水添するためにはn―ブチルリチウムが最も
好ましい。 本発明の水添反応の好ましい実施態様は、共役
ジエン重合体を不活性有機溶媒に溶解した溶液に
おいて行われる。「不活性有機溶媒」とは溶媒が
水添反応のいかなる関与体とも反応しないものを
意味する。好適な溶媒は、例えばn―ペンタン、
n―ヘキサン、n―ヘプタン、n―オクタンの如
き脂肪族炭化水素類、シクロヘキサン、シクロヘ
プタンの如き脂環族炭化水素類、ジエチルエーテ
ル、テトラヒドロフランの如きエーテル類の単独
もしくは混合物である。また、ベンゼン、トルエ
ン、キシレン、エチルベンゼンの如き芳香族炭化
水素も、選択された水添反応条件下で芳香族性二
重結合が水添されない時に限つて使用することが
できる。より好ましくは、本発明に使用する共役
ジエン重合体を、水添反応に使用する溶媒と同一
の溶媒中で重合し、その重合溶液をそのまま水添
反応に用いるのが有利である。本発明の水添反応
は共役ジエン重合体を溶媒に対して1〜50重量
%、好ましくは3〜25重量%の濃度に溶解した溶
液中で行われる。 本発明の水添反応は、一般的には上記重合体溶
液を所定の温度に保持し、撹拌下または不撹拌下
にて水添触媒を添加し、次いで水素ガスを導入し
て所定圧に加圧することによつて実施される。 一方、触媒はあらかじめ触媒成分(A)と触媒成分
(B)とを混合して還元したものを用いるのが、高活
性を有するので好ましい。触媒成分(A)と触媒成分
(B)とをいずれか一方を先に別々に重合体溶液に加
えても、また同時に加えても水添反応を行うこと
ができる。また、各々の触媒成分はそのまま重合
体溶液に加えてもよいし、不活性有機溶媒の溶液
として加えてもよい。各々の触媒成分を溶液とし
て用いる場合に使用する不活性有機溶媒は、水添
反応のいかなる関与体とも反応しない前記各種溶
媒を使用することができる。好ましくは水添反応
に用いる溶媒と同一の溶媒である。 また、各々の触媒成分は不活性雰囲気下で取扱
うことが必要である。不活性雰囲気とは、例えば
ヘリウム、ネオン、アルゴン等の水添反応のいか
なる関与体とも反応しない雰囲気下を意味する。
空気や酸素は触媒成分を酸化したりして触媒の失
活を招くので好ましくない。また窒素は、触媒成
分(A)または触媒成分(B)を単独に取扱う場合には用
いることもできるが、両成分を混合する場合や水
添反応時等の両成分が共存する環境下では触媒毒
として作用し、水添活性を損うので好ましくな
い。特に、触媒成分をあらかじめ混合する場合や
水添反応器に触媒成分を添加する場合は、水素雰
囲気下で行うのが最も好適である。さらに不活性
有機溶媒中、水素雰囲気下で触媒成分(A)と触媒成
分(B)とをあらかじめ混合して用いるのが、水添活
性を最も高め重合体の水添反応を均一に速やかに
進行させる上で好ましい実施態様である。触媒成
分(A)と触媒成分(B)とをあらかじめ混合して使用す
る場合は、水添反応直前に調製するのが好ましい
が、不活性雰囲気下に貯蔵すれば、室温でも約1
週間以内は実質的な重合体水添活性は変らずに用
いることができる。 触媒成分(A)と触媒成分(B)との混合比率は、触媒
成分(A)のチタニウムモル数と触媒成分(B)のリチウ
ムモル数の比が約1/0.5〜約1/20の範囲で混
合することができる。約1/0.5以下の場合は水
添活性が十分発現されず、また約1/20以上では
高い水添活性が得られなくなると共に、実質的に
活性向上に関与しない高価な触媒成分(B)を過剰に
用いることになり不経済であるばかりでなく、重
合体のゲル化や不必要な副反応を招き易くなり好
ましくない。Ti/Liモル比=1/2〜1/6は
重合体に対する水添活性が著るしく向上するので
特に好適である。もち論、他の選択された水添条
件に応じてTi/Li比は適宜選択して実施するこ
とができる。 一方、触媒の添加量は重合体100g当り触媒成
分(A)の量で0.05〜20ミリモルで十分である。この
添加量範囲であれば重合体の共役ジエン単位の不
飽和二重結合を優先的に水添することが可能で、
芳香核二重結合の水添は実質的に起こらないの
で、極めて高い水添選択性が実現される。20ミリ
モル以上の添加においても水添反応は可能である
が、必要以上の触媒使用は不経済となり、水添反
応後の触媒脱灰、除去が複雑となる等不利とな
る。選択された条件下で重合体の共役ジエン単位
の不飽和二重結合を定量的に水添する好ましい触
媒添加量は、触媒成分(A)の量で重合体100g当り
0.1〜5ミリモルである。 本発明の水添反応は元素状水素を用いて行わ
れ、より好ましくはガス状で重合体溶液中に導入
される。水添反応は撹拌下行われるのがより好ま
しく、導入された水素を十分迅速に重合体と接触
させることができる。水添反応は一般的に0〜
150℃の温度範囲で実施される。0℃以下では触
媒の活性が低下し、かつ水添速度も遅くなり多量
の触媒を要するので経済的でなく、また150℃以
上では重合体の分解やゲル化を併発し易くなり、
かつ芳香核部分の水添も起こりやすくなつて水添
選択性が低下するので好ましくない。さらに好ま
しくは20〜100℃の範囲である。 水添反応に使用される水素の圧力は1〜100Kg/
cm2が好適である。1Kg/cm2以下では水添速度が遅
くなつて実質的に頭打ちとなるので水添率を上げ
るのが難しくなり、100Kg/cm2以上では昇圧と同時
に水添反応がほゞ完了し実質的に意味がなく、不
必要な副反応やゲル化を招くので好ましくない。
より好ましい水添水素圧力は2〜30Kg/cm2である
が、触媒添加量等との相関で最適水素圧力は選択
され、実質的には前記好適触媒量が少量になるに
従つて水素圧力は高圧側を選択して実施するのが
好ましい。 本発明の水添反応時間は通常数秒ないし50時間
である。他の水添反応条件の選択によつて水添反
応時間は上記範囲内で適宜選択して実施される。 本発明の水添反応はバツチ式、連続式等のいか
なる方法で実施しても良い。水添反応の進行は水
素吸収量を追跡することによつて把握することが
できる。 本発明の方法によつて、重合体の共役ジエン単
位の不飽和二重結合が50%以上好ましくは90%以
上水添された水添重合体を得ることができる。ま
たより好ましくは共役ジエンとビニル置換芳香族
炭化水素との共重合体を水添した場合、共役ジエ
ン単位の不飽和二重結合の水添率が50%以上好ま
しくは90%以上、かつ芳香核部分の水添率が10%
以下の選択的に水添された水添共重合体を得るこ
とができる。共役ジエン単位の水添率が50%未満
であると耐候性、耐酸化性、耐熱性の改良効果が
十分でない。また、共役ジエンとビニル置換芳香
族炭化水素との共重合体の場合には、芳香核部分
が水添されても顕著な物性改良効果は認められ
ず、特にブロツク共重合体の場合は本来の優れた
加工性、成形性が悪くなる。さらに芳香核部分の
水添には多量の水素が消費され、高温、高圧、長
時間の水添反応が必要となり経済的に実施しにく
くなる。本発明に係る重合体水添触媒は極めて選
択性に優れ、実質的に芳香核部分は水添されない
ので工業上極めて有利である。 上記重合体の水添率は、芳香核部分を含む場合
は紫外線吸収スペクトルおよび赤外線吸収スペク
トルの測定により、また芳香核部分を含まない場
合は赤外線吸収スペクトルの測定により求めるこ
とができる。即ち、芳香核部分の水添率は紫外線
吸収スペクトルの芳香核部分の吸収(例えば、ス
チレンの場合は250mμ)より重合体中の芳香核
部分の含有量を測定し、次式から算出される。 重合体中の芳香核部分の水添率(%)=(1−水添
反応後の重合体中の芳香核含量/水添反応前の重合体中
の芳香核含量)×100 また、共役ジエン単位の水添率は赤外線吸収ス
ペクトルより、前記ハンプトン法によつて不飽和
部分、即ち共役ジエン単位からなる部分(シス、
トランス、ビニル各結合の合計)と芳香核部分の
重合体中の濃度比rと、紫外線吸収スペクトルで
求めた水添前後の芳香核含量から計算される。 r=水添反応後の重合体中の共役ジエン単位含量(
未水添共役ジエン単位含量)/水添反応後の重合体中の
芳香核含量(未水添芳香核含量) 重合体中の共役ジエン単位水添率(%) =(1−水添反応後の重合体中の共役ジエン単位含
量)/水添反応前の重合体中の共役ジエン単位含量×10
0 =〔1−r×(水添反応後の芳香核含量)/(1−
水添反応前の芳香核含量)〕×100 本発明の方法により水添反応を行つた重合体溶
液からは触媒の残渣を除去し、水添された重合体
を溶液から容易に単離することができる。例え
ば、水添後の反応液にアセトンまたはアルコール
などの水添重合体に対する貧溶媒となる極性溶媒
を加えて重合体を沈殿せしめる方法、または反応
液を熱湯中に撹拌下投入した後、溶媒と共に蒸留
することによつて触媒を除去する方法等で行うこ
とができる。これらの水添重合体の単離過程にお
いて触媒も大部分が分解、除去され、重合体より
除かれる。従つて触媒を脱灰、除去するための特
別な操作は必要としないが、触媒除去をより効果
的に実施する場合は、酸性の極性溶媒または水を
重合体水添反応液に加えることが好ましい。 以上のように本発明によつて、共役ジエン重合
体を高活性な触媒によつて温和な条件で水添する
こと、特に共役ジエンとビニル置換芳香族炭化水
素との共重合体の共役ジエン単位の不飽和二重結
合を極めて選択的に水添することが可能となつ
た。 本発明の方法によつて得られる水添重合体は、
耐候性、耐酸化性の優れた弾性体、熱可塑性弾性
体もしくは熱可塑性樹脂として使用され、また紫
外線吸収剤、オイル、フイラー等の添加剤を加え
たり、他の弾性体や樹脂とブレンドして使用さ
れ、工業上極めて有用である。 以下実施例により本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 実施例に用いた各重合体の合成例を以下の参考
例に示した。 参考例 1 2のオートクレーブ中にシクロヘキサン500
g、1,3―ブタジエンモノマー100g、n―ブ
チルリチウム0.05gを加え、撹拌下60℃にて3時
間重合しブタジエン単独重合体を合成した。得ら
れたブタジエン重合体は1,2―ビニル結合を13
%含有し、GPCで測定した数平均分子量は約15
万であつた。 参考例 2 1,3―ブタジエンの代りにイソプレンを用い
た以外は参考例1と同様に重合し、1,2―ビニ
ル結合10%、数平均分子量約15万のイソプレン重
合体を得た。 参考例 3 シクロヘキサン400g、1,3―ブタジエンモ
ノマー70g、スチレンモノマー30g、n―ブチル
リチウム0.03gおよびテトラヒドロフラン0.9g
を同時にオートクレーブに加え、40℃で2時間重
合した。 得られた重合体はブタジエン/スチレンの完全
ランダム共重合体で、ブタジエン単位の1,2―
ビニル結合含有率50%、数平均分子量20万を有す
るものであつた。 参考例 4 オートクレーブ中にシクロヘキサン400g、ス
チレンモノマー15gとn―ブチルリチウム0.11g
を加え、60℃で3時間重合し、次いで1,3―ブ
タジエンモノマーを70g加えて60℃で3時間重合
した。最後にスチレンモノマー15gを添加し、60
℃で3時間重合し、結合スチレン含有量30%、ブ
ロツクスチレン含有量29.5%、ブタジエン単位の
1,2―ビニル結合含有量13%(全重合体換算9
%)の数平均分子量が約6万であるスチレン―ブ
タジエン―スチレン型ブロツク共重合体を得た。 参考例 5 スチレンモノマー量を各々40g(合計80g)
1,3―ブタジエンモノマー量を20gとする以外
は参考例4と同じ方法で、高スチレン量のブロツ
ク共重合体を合成した。得られたスチレン―ブタ
ジエン―スチレンブロツク共重合体は、結合スチ
レン含有量80%、ブロツクスチレン含有量78%、
ブタジエン単位の1,2―ビニル結合含有量15%
(全重合体換算3%)、数平均分子量約6万のもの
であつた。 参考例 6 容積1で高さ/直径=4の撹拌器付ベツセル
型反応器に、シクロヘキサンを1200g/hr、1,
3―ブタジエンモノマー210g/hr、n―ブチルリ
チウム(n―BuLi)1.33g/hr、テトラヒドロフ
ラン(THF)〔THF/n―BuLi=30モル比〕を
反応器の底より連続的に供給し、また反応器の上
部よりスチレンモノマー90g/hr供給して重合温
度100℃、平均滞留時間25分で重合し、重合体溶
液を連続的に反応器より取り出した。 得られた共重合体はブタジエン―スチレン型構
造を有し、結合スチレン含有量30%、ブロツクス
チレン含有量10.2%、ブタジエン単位の1,2―
ビニル結合含有量40%(全重合体換算28%)、数
平均分子量約18万であつた。 参考例 7 シクロヘキサン500gにスチレンモノマー30g
とn―ブチルリチウム0.45gを加え、60℃で3時
間重合し、次いで1,3―ブタジエンモノマーを
70gとテトラヒドロフランをモル比でTHF/n
―BuLi=20の割合で加え、40℃で2時間重合し、
その後、四塩化ケイ素を触媒量の1/4モル加
え、カツプリングを行い、(スチレン―ブタジエ
ン)oSi型ブロツク共重合体を合成した。 得られたブロツク共重合体は、結合スチレン含
有量30%、ブロツクスチレン含有量30%、ブタジ
エン単位の1,2―ビニル結合含有量50%(全重
合体換算35%)、数平均分子量約6万であつた。 参考例 8 オートクレーブ中にシクロヘキサン400g、1,
3―ブタジエンモノマー13g、n―ブチルリチウ
ム0.15gおよびテトラヒドロフランをモル比で
THF/n―BuLi=40の割合で加え、70℃で45分
重合し、次いでスチレンモノマー20gを加えて30
分、次いで1,3―ブタジエンモノマー47gを加
えて75分、そして最後にスチレンモノマー20gを
加えて30分重合し、ブタジエン―スチレン―ブタ
ジエン―スチレン型ブロツク共重合体を合成し
た。 このものは結合スチレン含有量40%、ブロツク
スチレン含有量33%、ブタジエン単位の1,2―
ビニル結合含有量35%(全重合体換算30%)、数
平均分子量約6万のブロツク共重合体であつた。 参考例 9 1,3―ブタジエンの代りにイソプレンを用い
た以外は参考例4と全く同じ方法で、スチレン―
イソプレン―スチレン型ブロツク共重合体を合成
した。 このものの結合スチレン含有量は30%、ブロツ
クスチレン含有量は29.5%、イソプレン単位の
1,2―ビニル結合含有量は10%(全重合体換算
7%)、数平均分子量は約6万であつた。 実施例 1〜9 参考例1と2で得られた各重合体溶液をトルエ
ンで希釈し、また参考例3〜9で得られた各重合
体溶液をシクロヘキサンで希釈し、重合体濃度5
重量%に調製して水添反応に供した。 十分に乾燥した容量2の撹拌器付オートクレ
ーブに上記重合体溶液1000g(重合体量50g)を
仕込み、減圧脱気した後水素置換し、撹拌下50℃
に保持した。 次いで触媒成分(A)としてビス(シクロペンタジ
エニル)チタニウムジクロライド(関東化学(株)
製)0.25g(1.0ミリモル)を含むベンゼン溶液
50mlと触媒成分(B)としてn―ブチルリチウム(本
荘ケミカル(株)製)0.27g(4.0ミリモル)を含む
シクロヘキサン溶液10mlを2.0Kg/cm2の水素圧下で
混合した触媒溶液(Ti/Liモル比=1/4)全
量をオートクレーブ中へ仕込み、5.0Kg/cm2の乾燥
したガス状水素を供給し撹拌下2時間水添反応を
行つた。いずれも30分以内に実質的な水素吸収は
完了し、反応液は微黒〜灰黒色の均一低粘度溶液
であつた。反応液を常温常圧に戻してオートクレ
ーブより取出し、多量のメタノールを加えて重合
体を沈殿させ、別後乾燥し、白色の水添重合体
を得た。得られた水添重合体の水添率、性状を表
にまとめた。 表に示した如く、いずれの重合体も共役ジエ
ン単位は定量的に水添され、かつスチレン単位は
殆んど水添されず極めて良好な活性と選択性を示
した。
The present invention relates to a catalytic hydrogenation method for imparting weather resistance, oxidation resistance, heat resistance, etc. to a conjugated diene polymer, and more specifically, the present invention relates to a catalytic hydrogenation method for imparting weather resistance, oxidation resistance, heat resistance, etc. to a conjugated diene polymer. , relates to a method for preferentially hydrogenating unsaturated double bonds in conjugated diene units of a conjugated diene polymer. The term conjugated diene polymer used in the present invention means both homopolymers and copolymers comprising conjugated dienes. Specifically, conjugated diene homopolymers, random or block polymers of two or more conjugated dienes, and random, block and/or block polymers of at least one conjugated diene and at least one other olefin monomer. Includes graft copolymers. Generally, polymers obtained by polymerizing or copolymerizing conjugated dienes are widely used industrially as elastic bodies. However, these polymers have unsaturated double bonds remaining in the polymer chain, so while they are advantageously used for vulcanization, etc., these double bonds have poor stability such as weather resistance and oxidation resistance. It has its drawbacks. especially,
Block copolymers obtained from conjugated dienes and vinyl-substituted aromatic hydrocarbons can be used as thermoplastic elastomers, transparent impact-resistant resins, or as modifiers for styrene resins and olefin resins without vulcanization. However, due to the unsaturated double bonds in the polymer chain, it has poor weather resistance, oxidation resistance, and ozone resistance, which is a problem in areas such as exterior materials that require such performance, which limits its use. . These disadvantages of poor stability can be significantly improved by hydrogenating the polymer to eliminate unsaturated double bonds in the polymer chain. Many methods have been proposed for hydrogenating hydrocarbon polymers having unsaturated double bonds for this purpose, and the catalysts used for these polymer hydrogenation reactions include (1) nickel, platinum, palladium, and ruthenium; Metals such as carbon,
(2) A supported heterogeneous catalyst supported on a carrier such as silica, alumina, silica/alumina, diatomaceous earth, etc.
Generally known is a so-called Ziegler type homogeneous catalyst obtained by reacting an organic acid salt such as nickel, cobalt, iron, or chromium or an acetylacetone salt with a reducing agent such as organic aluminum in a solvent. The former supported type heterogeneous catalyst generally has lower activity than the Ziegler type homogeneous catalyst, and requires severe conditions of high temperature and high pressure to carry out the hydrogenation reaction. In addition, since the hydrogenation reaction progresses when the hydrogenated substance comes into contact with the catalyst, when hydrogenating polymers, the viscosity of the reaction system and polymer chain It becomes difficult to contact the catalyst due to steric hindrance. Therefore, in order to efficiently hydrogenate a polymer, a large amount of catalyst is required, which is uneconomical, and the hydrogenation reaction is required at a higher temperature and pressure, which may cause decomposition or gelation of the polymer. As it becomes easier, the energy cost also increases. In addition, when hydrogenating a copolymer of a conjugated diene and a vinyl-substituted hydrocarbon, the aromatic nucleus is also usually hydrogenated, making it difficult to selectively hydrogenate only the unsaturated double bonds of the conjugated diene unit. There is. On the other hand, the latter Ziegler-type homogeneous catalyst usually performs the hydrogenation reaction in a homogeneous system, so it generally has higher activity than supported-type heterogeneous catalysts, requires less catalyst, and performs hydrogenation at lower temperatures and pressures. It has the ability to react. In addition, if hydrogenation conditions are selected, it is possible to hydrogenate the unsaturated double bonds of the conjugated diene units of a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon to a considerable extent, making it possible to hydrogenate industrially. It is also used. However, Ziegler-type homogeneous catalysts generally do not exhibit hydrogenation activity unless the catalyst components are mixed and reduced before use.
Furthermore, the reproducibility is poor, and furthermore, since the reduced catalyst itself is unstable, there are problems such as the need to adjust the catalyst immediately before each hydrogenation reaction. Further, particularly when hydrogenating a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon, hydrogenation selectivity of the unsaturated double bond of the conjugated diene unit with respect to the aromatic nucleus moiety has not yet been sufficiently achieved. For example, under conditions that completely hydrogenate the unsaturated double bonds of a conjugated diene unit, it is inevitable that the aromatic nucleus will be hydrogenated to some extent, and conversely, under conditions that completely suppress the hydrogenation of the aromatic nucleus, The hydrogenation rate of unsaturated double bonds in conjugated diene units no longer increases. Therefore, there is currently a strong desire to develop a catalyst that selectively hydrogenates only the unsaturated double bonds of conjugated diene units. Furthermore, the current Ziegler-type hydrogenation catalyst is expensive and requires a complicated deashing process to remove catalyst residue after hydrogenation. There is a strong desire to develop a highly active hydrogenation catalyst that exhibits activity even when used in an unnecessary amount, or a catalyst that can be deashed extremely easily. In view of this situation, the present inventors have conducted intensive studies on highly selective hydrogenation catalysts that hydrogenate only unsaturated double bonds in conjugated diene units for conjugated diene polymers or copolymers. A catalyst consisting of (cyclopentadienyl) titanium dichloride and an alkyl lithium compound has extremely high activity against the polymer with good reproducibility even when used in small amounts, and in particular has extremely good unsaturated double bonds in conjugated diene units. It was discovered that it has hydrogenation selectivity, and this led to the completion of the present invention. That is, in the present invention, in an inert organic solvent, a polymer obtained by polymerizing or copolymerizing a conjugated diene, (A) bis(cyclopentadienyl) titanium dichloride and (B) a compound of the general formula R--Li ( However, R has 1 to 1 carbon atoms.
Six alkyl groups are shown. ) A polymer characterized in that the unsaturated double bonds of the conjugated diene units in the polymer are hydrogenated by contacting with hydrogen in the presence of a catalyst comprising at least one alkyllithium compound represented by This is a hydrogenation method. The hydrogenation catalyst used in the present invention, which uses a bis(cyclopentadienyl) titanium compound in combination with a reducing organometallic compound, has hydrogenation activity toward unsaturated double bonds in low-molecular-weight organic compounds. Already known. (For example, MF
Sloan et al., J.Am.Chem.Soc., Volume 85, 4014~
4018 pages (1965), Y. Tajima et al., J.org.Chem.
Volume 33, pp. 1689-1690 (1968), etc.). but,
Compared to the Ziegler type hydrogenation catalyst currently used industrially, the hydrogenation activity is low, and in order to increase the hydrogenation rate, the amount of catalyst must be determined and conditions of higher temperature and pressure are required, which is disadvantageous from an industrial perspective. It is regarded as such. Furthermore, there are no known examples of hydrogenation of polymers, especially conjugated diene polymers or copolymers of conjugated dienes and vinyl-substituted aromatic hydrocarbons, and unsaturated Nothing is known about the hydrogenation selectivity between heavy bonds and aromatic core moieties. Based on the current state of the art, the present invention makes it possible to selectively hydrogenate only the unsaturated double bonds of the conjugated diene units of the polymer, and to hydrogenate the polymer with a low amount of catalyst and under mild conditions. What happened is surprising. Although the present invention can be applied to all hydrocarbon polymers having unsaturated double bonds, a preferred embodiment is a conjugated diene polymer obtained by polymerizing or copolymerizing a conjugated diene. Such a conjugated diene polymer includes a copolymer obtained by copolymerizing a conjugated diene homopolymer and a conjugated diene with each other or with at least one conjugated diene and at least one olefin monomer copolymerizable with the conjugated diene. This includes coalescence, etc. The conjugated diene used for producing such a conjugated diene polymer is generally 4
conjugated dienes having ~12 carbon atoms, specific examples include 1,3-butadiene,
Isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,
3-pentadiene, 1,3-hexadiene, 4,
Examples include 5-diethyl-1,3-octadiene and 3-butyl-1,3-octadiene. From the viewpoint of obtaining an elastic body that can be industrially advantageously developed and has excellent physical properties, 1,3-butadiene and isoprene are particularly preferred, and elastic bodies such as butadiene polymer, isoprene polymer, and butadiene/isoprene copolymer are preferred. Particularly preferred for practicing the invention. In such a polymer, the microstructure of the polymer chain is not particularly limited and any structure can be suitably used.
-If the number of vinyl bonds is small, the solubility of the polymer after hydrogenation will be reduced, and the solvent used for uniform hydrogenation will be limited, so a polymer containing about 30% or more of vinyl bonds is more preferable. On the other hand, the method of the present invention is particularly suitable for hydrogenation of a copolymer obtained by copolymerizing at least one conjugated diene and at least one olefin monomer copolymerizable with the conjugated diene. Suitable conjugated dienes used in the production of such copolymers include the above-mentioned conjugated dienes, while olefin monomers include all monomers copolymerizable with conjugated dienes, but especially Vinyl-substituted aromatic hydrocarbons are preferred. That is, in order to fully exhibit the effect of the present invention of selectively hydrogenating only the unsaturated double bonds of the conjugated diene unit, and to obtain industrially useful and valuable elastic bodies and thermoplastic elastic bodies, it is necessary to Of particular interest are copolymers of dienes and vinyl-substituted aromatic hydrocarbons. Specific examples of vinyl-substituted aromatic hydrocarbons used in the production of such copolymers include:
Styrene, t-butylstyrene, α-methylstyrene, p-methylstyrene, divinylbenzene,
Examples include 1,1-diphenylethylene, N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene, and styrene is particularly preferred. As specific examples of copolymers, butadiene/styrene copolymers, isoprene/styrene copolymers, etc. are most preferred since they provide hydrogenated copolymers with high industrial value. In such a copolymer, the vinyl-substituted aromatic hydrocarbon content is preferably 5% to 95% by weight; outside this range, it becomes difficult to obtain the characteristics of a thermoplastic elastomer. In the copolymers according to the method of the present invention, the monomers may be random copolymers, tapering block copolymers, complete block copolymers, or graft copolymers in which the monomers are statistically distributed throughout the polymer chain. included. In these copolymers, the sum (+) of the vinyl-substituted aromatic hydrocarbon polymer block content and the 1,2-vinyl bond content of the conjugated diene unit is 30% or more by weight of the total copolymer. Combination is preferred. If (+) is less than 30% by weight, it becomes difficult to obtain a thermoplastic elastomer or thermoplastic resin with good physical properties. Furthermore, since the hydrogenated copolymer becomes difficult to dissolve in the hydrogenated solvent, the reaction system becomes pudding-like, making recovery of the hydrogenated copolymer from the reaction solution complicated. Furthermore, in order to obtain a better thermoplastic elastomer or thermoplastic resin, the content of the vinyl-substituted aromatic hydrocarbon polymer block in the copolymer is
A block copolymer containing 10% by weight or more and 90% by weight or less is preferred. The vinyl-substituted aromatic hydrocarbon polymer block content was determined according to the method of LM Kolthoff et al., J. Polymer Sci., Vol. 1, p. 429 (1946).
The content is expressed as the block polymer content in the total polymer. The 1,2-vinyl bond content of conjugated diene units in a polymer can be determined by the Hampton method (RRHampton, Anal.Chem., No. 29) using an infrared absorption spectrum.
Vol., p. 923, (1949), the proportion of 1,2-vinyl bonds in the conjugated diene units was calculated and converted to the weight proportion in the total polymer. In the case of butadiene/styrene copolymer, the wavelengths used were cis-1,4 (724 cm -1 ) of butadiene, trans-1,4 (967 cm -1 ), and 1,2-vinyl (911 cm -1 ).
-1 ) and styrene (699cm -1 ), from which the concentration of each component can be determined. The block copolymer is a copolymer having at least one polymer block A mainly composed of a vinyl-substituted aromatic hydrocarbon and at least one polymer block B mainly composed of a conjugated diene.
may contain a small amount of conjugated diene and block B may contain a small amount of vinyl-substituted aromatic hydrocarbon. In addition to the linear type, such block copolymers include
Included are so-called branched, radial or star block copolymers coupled with a coupling agent. Furthermore, the block copolymer preferably used in the present invention has a microstructure of conjugated diene units with 30 to 70% by weight of 1,2-vinyl bonds and 70 to 30% by weight of 1,4-bonds (cis bonds and trans bonds). % by weight is particularly preferred. Block copolymers within this range are not only industrially useful because the olefin portion has good rubber elasticity after the hydrogenation reaction, but also have low solution viscosity after the hydrogenation reaction, making it easy to remove the solvent. can be manufactured economically. The polymer used in the hydrogenation reaction of the present invention generally has a number average molecular weight of about 1,000 to about 1,000,000,
Polymers produced by any known polymerization method, such as anionic polymerization, cationic polymerization, coordination polymerization, radical polymerization, solution polymerization, emulsion polymerization, etc., can be used. The hydrogenation catalyst used in the hydrogenation reaction of the polymer according to the present invention includes (A) bis(cyclopentadienyl) titanium dichloride and (B) the general formula R-Li (where R has 1 to 6 carbon atoms). At least one of the alkyllithium compounds represented by
It is a combination of seeds. As the catalyst component (A), cyclopentadienyl titanium compounds other than bis(cyclopentadienyl) titanium dichloride, such as cyclopentadienyl titanium trichloride, bis(cyclopentadienyl) titanium dimethyl, bis(cyclopentadienyl) titanium dichloride, etc. enyl) titanium diethyl, bis(cyclopentadienyl) titanium diphenyl,
Bis(cyclopentadienyl) titanium dicarbonyl, bis(pentamethylcyclopentadienyl) titanium dichloride, bis(cyclopentadienyl) titanium diiodide, etc. may be used alone or in combination with each other to form a polymer. It is possible to selectively hydrogenate unsaturated double bonds in conjugated diene units. Although the present invention does not limit the use of these titanium compounds, in order to achieve the purpose of the present invention of highly selectively hydrogenating the unsaturated double bonds of the conjugated diene units of the polymer, It is necessary to use bis(cyclopentadienyl)titanium dichloride as catalyst component (A). Further, by using bis(cyclopentadienyl) titanium dichloride, another object of exhibiting high hydrogenation activity for polymers can be achieved with a smaller amount than the conventionally known Ziegler-type homogeneous catalyst. On the other hand, the catalyst component (B) is an organometallic compound capable of reducing the bis(cyclopentadienyl)titanium dichloride of the catalyst component (A), such as an organolithium compound, an organoaluminium compound,
The polymer can be hydrogenated by using an organozinc compound, an organomagnesium compound, etc. alone or in combination with each other. However, in order to exhibit higher activity than conventional Ziegler-type polymer hydrogenation catalysts and to selectively hydrogenate unsaturated double bonds in conjugated diene units of polymers, organolithium compounds, especially alkyl lithium The use of compounds is mandatory. That is, by using bis(cyclopentadienyl)titanium dichloride in combination with an alkyllithium compound, the object of the present invention can be suitably achieved, and surprisingly, with the addition of a small amount of catalyst and under mild conditions, Almost quantitatively detects unsaturated double bonds in conjugated diene units of polymers.
Moreover, preferential hydrogenation is possible. As such catalyst component (B), an alkyllithium compound represented by the general formula R--Li (wherein R represents an alkyl group having 1 to 6 carbon atoms) is preferably used, and specific examples include Methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec
-butyllithium, isobutyllithium, n-pentyllithium, n-hexyllithium, etc. These may be used in combination of two or more types, or may be a mutual complex of two or more types. Shows the highest polymer hydrogenation activity,
In order to selectively hydrogenate the unsaturated double bonds of the conjugated diene units of the polymer, n-butyllithium is most preferred. A preferred embodiment of the hydrogenation reaction of the present invention is carried out in a solution of the conjugated diene polymer dissolved in an inert organic solvent. "Inert organic solvent" means a solvent that does not react with any participant in the hydrogenation reaction. Suitable solvents include, for example, n-pentane,
These include aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane, alicyclic hydrocarbons such as cyclohexane and cycloheptane, and ethers such as diethyl ether and tetrahydrofuran, singly or in mixtures. Aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene can also be used as long as aromatic double bonds are not hydrogenated under the selected hydrogenation reaction conditions. More preferably, the conjugated diene polymer used in the present invention is polymerized in the same solvent as the solvent used in the hydrogenation reaction, and the polymerization solution is advantageously used as it is in the hydrogenation reaction. The hydrogenation reaction of the present invention is carried out in a solution in which the conjugated diene polymer is dissolved at a concentration of 1 to 50% by weight, preferably 3 to 25% by weight, based on the solvent. In the hydrogenation reaction of the present invention, the polymer solution is generally maintained at a predetermined temperature, a hydrogenation catalyst is added with or without stirring, and then hydrogen gas is introduced and the pressure is increased to a predetermined pressure. It is carried out by applying pressure. On the other hand, the catalyst is prepared by combining the catalyst component (A) and the catalyst component in advance.
It is preferable to use a mixture of (B) and reduced because it has high activity. Catalyst component (A) and catalyst component
The hydrogenation reaction can be carried out by adding either one of (B) and (B) to the polymer solution separately or simultaneously. Further, each catalyst component may be added to the polymer solution as it is, or may be added as a solution in an inert organic solvent. As the inert organic solvent used when each catalyst component is used as a solution, the above-mentioned various solvents that do not react with any of the participants in the hydrogenation reaction can be used. Preferably, it is the same solvent as used in the hydrogenation reaction. Additionally, each catalyst component must be handled under an inert atmosphere. An inert atmosphere means an atmosphere that does not react with any participants in the hydrogenation reaction, such as helium, neon, argon, and the like.
Air and oxygen are not preferred because they oxidize catalyst components and cause catalyst deactivation. Nitrogen can also be used when handling catalyst component (A) or catalyst component (B) alone, but when both components are mixed or in an environment where both components coexist, such as during a hydrogenation reaction, nitrogen can be used as a catalyst. It is undesirable because it acts as a poison and impairs hydrogenation activity. In particular, when the catalyst components are mixed in advance or when the catalyst components are added to the hydrogenation reactor, it is most suitable to carry out the reaction under a hydrogen atmosphere. Furthermore, using a mixture of catalyst component (A) and catalyst component (B) in advance in an inert organic solvent under a hydrogen atmosphere will maximize hydrogenation activity and allow the hydrogenation reaction of the polymer to proceed uniformly and quickly. This is a preferred embodiment. When catalyst component (A) and catalyst component (B) are mixed in advance and used, it is preferable to prepare the mixture immediately before the hydrogenation reaction, but if stored under an inert atmosphere, the
The polymer can be used for up to a week without changing its substantial hydrogenation activity. The mixing ratio of the catalyst component (A) and the catalyst component (B) is such that the ratio of the number of moles of titanium in the catalyst component (A) to the number of moles of lithium in the catalyst component (B) is in the range of about 1/0.5 to about 1/20. Can be mixed with. If it is less than about 1/0.5, the hydrogenation activity will not be sufficiently expressed, and if it is more than about 1/20, high hydrogenation activity will not be obtained, and the expensive catalyst component (B) that does not substantially contribute to improving the activity will not be obtained. If used in excess, it is not only uneconomical but also undesirable because it tends to cause gelation of the polymer and unnecessary side reactions. A Ti/Li molar ratio of 1/2 to 1/6 is particularly preferred since the hydrogenation activity for the polymer is significantly improved. Of course, the Ti/Li ratio can be appropriately selected depending on the other selected hydrogenation conditions. On the other hand, the amount of catalyst added is sufficient to be 0.05 to 20 mmol of catalyst component (A) per 100 g of polymer. Within this addition amount range, it is possible to preferentially hydrogenate the unsaturated double bonds in the conjugated diene units of the polymer.
Since hydrogenation of aromatic double bonds does not substantially occur, extremely high hydrogenation selectivity is achieved. Although the hydrogenation reaction is possible even when 20 mmol or more is added, using more catalyst than necessary becomes uneconomical and has disadvantages such as complicating deashing and removal of the catalyst after the hydrogenation reaction. The preferred amount of catalyst added to quantitatively hydrogenate the unsaturated double bonds of the conjugated diene units of the polymer under selected conditions is the amount of catalyst component (A) per 100 g of polymer.
It is 0.1-5 mmol. The hydrogenation reaction of the present invention is carried out using elemental hydrogen, more preferably introduced into the polymer solution in gaseous form. More preferably, the hydrogenation reaction is carried out under stirring, so that the introduced hydrogen can be brought into contact with the polymer quickly enough. The hydrogenation reaction is generally 0~
It is carried out in a temperature range of 150°C. At temperatures below 0°C, the activity of the catalyst decreases and the hydrogenation rate slows down, requiring a large amount of catalyst, making it uneconomical. At temperatures above 150°C, polymer decomposition and gelation tend to occur.
Moreover, hydrogenation of the aromatic nucleus portion also tends to occur, resulting in a decrease in hydrogenation selectivity, which is not preferable. More preferably, the temperature is in the range of 20 to 100°C. The pressure of hydrogen used in hydrogenation reaction is 1~100Kg/
cm2 is preferred. Below 1Kg/cm 2 , the hydrogenation rate slows down and practically reaches a plateau, making it difficult to increase the hydrogenation rate, while above 100Kg/cm 2 , the hydrogenation reaction is almost completed at the same time as the pressure is increased, and the This is undesirable because it is meaningless and causes unnecessary side reactions and gelation.
A more preferable hydrogenation pressure is 2 to 30 Kg/cm 2 , but the optimum hydrogen pressure is selected in correlation with the amount of catalyst added, etc., and in reality, as the amount of the preferred catalyst becomes smaller, the hydrogen pressure increases. It is preferable to select the high pressure side for implementation. The hydrogenation reaction time of the present invention is usually several seconds to 50 hours. The hydrogenation reaction time is appropriately selected within the above range by selecting other hydrogenation reaction conditions. The hydrogenation reaction of the present invention may be carried out by any method such as a batch method or a continuous method. The progress of the hydrogenation reaction can be monitored by tracking the amount of hydrogen absorbed. By the method of the present invention, it is possible to obtain a hydrogenated polymer in which 50% or more, preferably 90% or more of the unsaturated double bonds in the conjugated diene units of the polymer are hydrogenated. More preferably, when a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon is hydrogenated, the hydrogenation rate of unsaturated double bonds in the conjugated diene unit is 50% or more, preferably 90% or more, and the aromatic nucleus Partial hydrogenation rate is 10%
The following selectively hydrogenated hydrogenated copolymers can be obtained. If the hydrogenation rate of the conjugated diene unit is less than 50%, the effect of improving weather resistance, oxidation resistance, and heat resistance will not be sufficient. In addition, in the case of a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon, no remarkable effect of improving physical properties is observed even if the aromatic nucleus moiety is hydrogenated, and especially in the case of a block copolymer, the original Excellent workability and moldability deteriorate. Furthermore, hydrogenation of the aromatic nucleus portion consumes a large amount of hydrogen and requires a hydrogenation reaction at high temperature, high pressure, and for a long time, making it difficult to carry out economically. The polymer hydrogenation catalyst according to the present invention has extremely excellent selectivity, and the aromatic nucleus portion is not substantially hydrogenated, so that it is extremely advantageous industrially. The hydrogenation rate of the above polymer can be determined by measuring the ultraviolet absorption spectrum and infrared absorption spectrum when the polymer contains an aromatic nucleus moiety, or by measuring the infrared absorption spectrum when the polymer does not contain an aromatic nucleus moiety. That is, the hydrogenation rate of the aromatic nucleus portion is calculated from the following formula by measuring the content of the aromatic nucleus portion in the polymer from the absorption of the aromatic nucleus portion in the ultraviolet absorption spectrum (for example, 250 mμ in the case of styrene). Hydrogenation rate (%) of the aromatic nucleus portion in the polymer = (1-aromatic nucleus content in the polymer after hydrogenation reaction/aromatic nucleus content in the polymer before hydrogenation reaction) × 100 The hydrogenation rate of the unit can be determined from the infrared absorption spectrum using the Hampton method described above.
It is calculated from the concentration ratio r of the aromatic nucleus (total of trans and vinyl bonds) and the aromatic nucleus in the polymer, and the aromatic nucleus content before and after hydrogenation determined by ultraviolet absorption spectrum. r = conjugated diene unit content in the polymer after hydrogenation reaction (
Unhydrogenated conjugated diene unit content) / Aromatic nucleus content in the polymer after hydrogenation reaction (unhydrogenated aromatic nucleus content) Conjugated diene unit hydrogenation rate in the polymer (%) = (1 - After hydrogenation reaction Conjugated diene unit content in the polymer) / Conjugated diene unit content in the polymer before hydrogenation reaction x 10
0 = [1-r×(aromatic nucleus content after hydrogenation reaction)/(1-
Aromatic nucleus content before hydrogenation reaction)] × 100 Catalyst residues are removed from a polymer solution subjected to a hydrogenation reaction by the method of the present invention, and the hydrogenated polymer is easily isolated from the solution. Can be done. For example, after hydrogenation, a polar solvent such as acetone or alcohol, which is a poor solvent for the hydrogenated polymer, is added to the reaction solution after hydrogenation to precipitate the polymer, or the reaction solution is poured into boiling water with stirring, and then the reaction solution is mixed with the solvent. This can be carried out by a method such as removing the catalyst by distillation. In the process of isolating these hydrogenated polymers, most of the catalyst is also decomposed and removed and removed from the polymer. Therefore, no special operation is required to deash and remove the catalyst, but in order to more effectively remove the catalyst, it is preferable to add an acidic polar solvent or water to the polymer hydrogenation reaction solution. . As described above, according to the present invention, it is possible to hydrogenate a conjugated diene polymer under mild conditions using a highly active catalyst, and in particular, to hydrogenate a conjugated diene unit of a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon. It became possible to hydrogenate extremely selectively the unsaturated double bonds of . The hydrogenated polymer obtained by the method of the present invention is
It is used as an elastomer, thermoplastic elastomer, or thermoplastic resin with excellent weather resistance and oxidation resistance, and it can also be added with additives such as ultraviolet absorbers, oils, fillers, etc., or blended with other elastomers or resins. It is used and is extremely useful industrially. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. Synthesis examples of each polymer used in the Examples are shown in the Reference Examples below. Reference example: 500 ml of cyclohexane in the autoclave of 1 and 2.
g, 100 g of 1,3-butadiene monomer, and 0.05 g of n-butyllithium were added, and polymerization was carried out at 60° C. for 3 hours with stirring to synthesize a butadiene homopolymer. The obtained butadiene polymer has 13 1,2-vinyl bonds.
% and the number average molecular weight measured by GPC is approximately 15
It was ten thousand. Reference Example 2 Polymerization was carried out in the same manner as in Reference Example 1, except that isoprene was used instead of 1,3-butadiene, to obtain an isoprene polymer having 10% of 1,2-vinyl bonds and a number average molecular weight of about 150,000. Reference Example 3 Cyclohexane 400g, 1,3-butadiene monomer 70g, styrene monomer 30g, n-butyllithium 0.03g and tetrahydrofuran 0.9g
were simultaneously added to the autoclave and polymerized at 40°C for 2 hours. The obtained polymer is a completely random copolymer of butadiene/styrene, with 1,2- butadiene units.
It had a vinyl bond content of 50% and a number average molecular weight of 200,000. Reference example 4 400g of cyclohexane, 15g of styrene monomer and 0.11g of n-butyllithium in an autoclave
was added and polymerized at 60°C for 3 hours, then 70g of 1,3-butadiene monomer was added and polymerized at 60°C for 3 hours. Finally, add 15g of styrene monomer and
Polymerization was carried out at ℃ for 3 hours, and the content of bound styrene was 30%, the content of blocked styrene was 29.5%, and the content of 1,2-vinyl bonds in butadiene units was 13% (calculated as 9% in terms of total polymer).
A styrene-butadiene-styrene type block copolymer having a number average molecular weight of about 60,000 (%) was obtained. Reference example 5 The amount of styrene monomer is 40g each (total 80g)
A block copolymer containing a high amount of styrene was synthesized in the same manner as in Reference Example 4 except that the amount of 1,3-butadiene monomer was changed to 20 g. The obtained styrene-butadiene-styrene block copolymer had a bound styrene content of 80%, a blocked styrene content of 78%,
1,2-vinyl bond content of butadiene unit 15%
(3% in terms of total polymer), and the number average molecular weight was about 60,000. Reference Example 6 Cyclohexane was added at 1,200 g/hr, 1,200 g/hr in a Vessel-type reactor with a volume of 1 and a height/diameter of 4 and equipped with a stirrer.
3-butadiene monomer 210 g/hr, n-butyllithium (n-BuLi) 1.33 g/hr, and tetrahydrofuran (THF) [THF/n-BuLi = 30 molar ratio] were continuously fed from the bottom of the reactor, and Styrene monomer was supplied at 90 g/hr from the upper part of the reactor, and polymerization was carried out at a polymerization temperature of 100° C. and an average residence time of 25 minutes, and the polymer solution was continuously taken out from the reactor. The obtained copolymer has a butadiene-styrene type structure, with a bound styrene content of 30%, a blocked styrene content of 10.2%, and 1,2- butadiene units.
The vinyl bond content was 40% (28% in terms of total polymer) and the number average molecular weight was approximately 180,000. Reference example 7 30g of styrene monomer in 500g of cyclohexane
and 0.45 g of n-butyllithium were added and polymerized at 60°C for 3 hours, then 1,3-butadiene monomer was added.
70g and tetrahydrofuran in molar ratio THF/n
- BuLi = 20, polymerized at 40℃ for 2 hours,
Thereafter, a catalytic amount of 1/4 mole of silicon tetrachloride was added and coupling was performed to synthesize a (styrene-butadiene) o Si type block copolymer. The obtained block copolymer had a bound styrene content of 30%, a block styrene content of 30%, a 1,2-vinyl bond content of butadiene units of 50% (35% in terms of the total polymer), and a number average molecular weight of approximately 6. It was ten thousand. Reference example 8 400g of cyclohexane in an autoclave, 1,
3-butadiene monomer 13g, n-butyllithium 0.15g and tetrahydrofuran in molar ratio
Add THF/n-BuLi at a ratio of 40, polymerize at 70°C for 45 minutes, then add 20g of styrene monomer and
Then, 47 g of 1,3-butadiene monomer was added and polymerized for 75 minutes, and finally 20 g of styrene monomer was added and polymerized for 30 minutes to synthesize a butadiene-styrene-butadiene-styrene type block copolymer. This product contains 40% bound styrene, 33% blocked styrene, and 1,2-butadiene units.
It was a block copolymer with a vinyl bond content of 35% (30% in terms of total polymer) and a number average molecular weight of about 60,000. Reference Example 9 Styrene-
An isoprene-styrene type block copolymer was synthesized. The bound styrene content of this product is 30%, the blocked styrene content is 29.5%, the 1,2-vinyl bond content of isoprene units is 10% (7% in terms of total polymer), and the number average molecular weight is approximately 60,000. Ta. Examples 1 to 9 Each polymer solution obtained in Reference Examples 1 and 2 was diluted with toluene, and each polymer solution obtained in Reference Examples 3 to 9 was diluted with cyclohexane to give a polymer concentration of 5.
It was adjusted to % by weight and subjected to hydrogenation reaction. 1000 g of the above polymer solution (polymer amount 50 g) was placed in a sufficiently dry autoclave with a capacity of 2 and equipped with a stirrer, degassed under reduced pressure, replaced with hydrogen, and heated at 50°C with stirring.
was held at Next, bis(cyclopentadienyl) titanium dichloride (Kanto Chemical Co., Ltd.) was used as the catalyst component (A).
benzene solution containing 0.25 g (1.0 mmol)
A catalyst solution (Ti/Li mol) was prepared by mixing 50 ml of a cyclohexane solution containing 0.27 g (4.0 mmol) of n-butyllithium (manufactured by Honjo Chemical Co., Ltd.) as the catalyst component (B) under a hydrogen pressure of 2.0 Kg/cm 2 . The entire amount (ratio = 1/4) was charged into an autoclave, and 5.0 Kg/cm 2 of dry gaseous hydrogen was supplied to carry out a hydrogenation reaction for 2 hours with stirring. In all cases, hydrogen absorption was substantially completed within 30 minutes, and the reaction solution was a homogeneous, low-viscosity solution with a slightly black to gray-black color. The reaction solution was returned to room temperature and pressure, taken out from the autoclave, and a large amount of methanol was added to precipitate the polymer, which was separated and dried to obtain a white hydrogenated polymer. The hydrogenation rate and properties of the obtained hydrogenated polymer are summarized in the table. As shown in the table, in all polymers, the conjugated diene units were quantitatively hydrogenated, and the styrene units were hardly hydrogenated, indicating extremely good activity and selectivity.

【表】 実施例10〜13及び比較例1 参考例4で合成したスチレン―ブタジエン―ス
チレン型ブロツク共重合体をシクロヘキサンで希
釈して重合体濃度10重量%とした重合体溶液1000
g(重合体量100g)を2のオートクレーブに
仕込み50℃に保持した。 次いで、触媒成分(A)としてビス(シクロペンタ
ジエニル)チタニウムジクロライド0.25g(1.0
ミリモル)を含むベンゼン溶液50mlと表に示し
た各種触媒成分(B)を5ミリモル含むシクロヘキサ
ン溶液10mlとを、2.0Kg/cm2の水素圧下で混合した
触媒溶液を全量仕込み、5.0Kg/cm2に水素にて昇圧
後2時間撹拌し、水添反応を行つた。 水添後、実施例1と同様に処理して水添重合体
を得て性状を調べた。 一方、比較例1として触媒成分(B)にトリエチル
アルミニウムを用いた以外は同様に水添反応を行
つた。結果を表に示した。
[Table] Examples 10 to 13 and Comparative Example 1 Polymer solution 1000 in which the styrene-butadiene-styrene block copolymer synthesized in Reference Example 4 was diluted with cyclohexane to give a polymer concentration of 10% by weight.
(polymer amount: 100 g) was charged into an autoclave No. 2 and maintained at 50°C. Next, 0.25 g (1.0 g) of bis(cyclopentadienyl) titanium dichloride was used as the catalyst component (A).
50 ml of a benzene solution containing 5 mmol of the various catalyst components (B) listed in the table and 10 ml of a cyclohexane solution containing 5 mmol of the various catalyst components (B) shown in the table were mixed under a hydrogen pressure of 2.0 Kg/cm 2.The entire amount of the catalyst solution was charged. After increasing the pressure with hydrogen, the mixture was stirred for 2 hours to carry out a hydrogenation reaction. After hydrogenation, the polymer was treated in the same manner as in Example 1 to obtain a hydrogenated polymer, and its properties were examined. On the other hand, as Comparative Example 1, a hydrogenation reaction was carried out in the same manner except that triethylaluminum was used as the catalyst component (B). The results are shown in the table.

【表】 シヨン製)
実施例 14〜20 参考例8で合成したブタジエン―スチレン―ブ
タジエン―スチレン型ブロツク共重合体をシクロ
ヘキサンにて希釈し5重量%とし、この溶液1000
g(重合体量50g)をオートクレーブに仕込み、
実施例1と同様にして表に示した各種条件で水
添した。結果を表に示した。
[Front] Made by Chillon)
Examples 14-20 The butadiene-styrene-butadiene-styrene type block copolymer synthesized in Reference Example 8 was diluted to 5% by weight with cyclohexane, and this solution was diluted to 5% by weight.
(polymer amount 50g) into an autoclave,
Hydrogenation was carried out in the same manner as in Example 1 under various conditions shown in the table. The results are shown in the table.

【表】【table】

【表】 比較例 2 触媒としてニツケル()アセチルアセトナー
トとトリイソブチルアルミニウム〔Ni
(AcAc)2/Al(i―Bu)3〕を用いた以外は、実施
例16と全く同一の方法および条件にて行つた。但
し、触媒添加量は重合体100g当りNi
(AcAc)21.0mmol、Ni/Alモル比=1/4で行
つた。 得られた水添ブロツク共重合体のブタジエン単
位の水添率は76%、スチレン単位の水添率は3%
であつた。 この結果より、本発明の方法は、従来知られて
いるチーグラー型均一系水添触媒に比べて、共役
ジエン単位の不飽和二重結合に対する水添活性が
高く、かつ選択性に優れることが理解できる。 実施例 21 参考例4で合成したスチレン―ブタジエン―ス
チレン型ブロツク共重合体の5重量%シクロヘキ
サン溶液を用い、触媒の添加方法を変えた以外は
全て実施例4と同様に水添反応を行つた。 触媒の添加は次の如く実施した。即ち、n―ブ
チルリチウム0.27gを含むシクロヘキサン溶液10
mlを反応液に加え、次いでビス(シクロペンタジ
エニル)チタニウムジクロライド0.25gを含むベ
ンゼン溶液50ml添加した。反応液は速やかに淡黄
色から淡黒色に変化した。次に、5.0Kg/cm2の水素
を供給し、2時間水添反応を行つた。反応後実施
例4と同様に処理して水添共重合体を得た。 得られた水添共重合体のブタジエン単位の水添
率は96%、スチレン単位の水添率は1%以下であ
り、実質上実施例4と同じ結果となり、触媒成分
(A)と触媒成分(B)とをあらかじめ混合せずに別々に
反応系に添加しても、水添活性及び選択的は殆ん
ど変わらない結果を示した。 実施例 22 水添触媒として、触媒成分(A)と触媒成分(B)とを
混合し2.0Kg/cm2の水素圧下、室温で5日間貯蔵し
たものを用いた以外は、実施例11と全く同じ方
法、条件にて行つた。 得られた水添重合体のブタジエン単位の水添率
は98%、スチレン単位の水添率は1%以下で、実
施例11と同等の結果となり、触媒を貯蔵しても活
性や性能は変らない結果を示した。 実施例 23〜29 参考例3〜9と全く同様にして各種重合体を製
造し、重合体溶液を多量のメタノール中に注いで
各重合体を沈澱させた。生じた沈澱を別し、メ
タノールにて洗浄後、減圧下40℃にて3日間乾燥
し、各種仕上げ重合体を得た。 ついで、各仕上げ重合体100gを精製乾燥した
シクロヘキサンに溶解して重合体濃度10重量%の
溶液に調整し、乾燥した2オートクレーブに仕
込み、系内を水素置換後50℃に保持した。 ついで、触媒成分(A)として、濃度1.0ミリモ
ル/100mlのビス(シクロペンタジエニル)チタ
ニウムジクロライドのトルエン溶涎100mlと触媒
成分(B)として濃度40ミリモル/100mlのn―ブチ
ルリチウムのシクロヘキサン溶液10mlとを40℃、
2.0Kg/cm2の水素下で混合した。(Ti/Liモル比=
1/4)5分間40℃で撹拌後、この触媒溶液全量
を撹拌下オートクレーブ中へ仕込み、5.0Kg/cm2
乾燥した水素ガスを供給し、撹拌下50℃にて2時
間反応を行つた。 反応液を実施例1と同様に処理し、水添重合体
を得た。得られた各水添重合体の水添率を表に
示した。
[Table] Comparative Example 2 Nickel () acetylacetonate and triisobutylaluminum [Ni
(AcAc) 2 /Al(i-Bu) 3 ] was used, but the method and conditions were exactly the same as in Example 16. However, the amount of catalyst added is Ni per 100g of polymer.
(AcAc) 2 1.0 mmol, Ni/Al molar ratio = 1/4. The hydrogenation rate of butadiene units in the obtained hydrogenated block copolymer was 76%, and the hydrogenation rate of styrene units was 3%.
It was hot. From these results, it is understood that the method of the present invention has higher hydrogenation activity toward unsaturated double bonds in conjugated diene units and superior selectivity than the conventionally known Ziegler type homogeneous hydrogenation catalyst. can. Example 21 A hydrogenation reaction was carried out in the same manner as in Example 4, except that a 5% by weight cyclohexane solution of the styrene-butadiene-styrene block copolymer synthesized in Reference Example 4 was used, and the method of adding the catalyst was changed. . Addition of catalyst was carried out as follows. That is, cyclohexane solution containing 0.27 g of n-butyllithium 10
ml was added to the reaction solution, and then 50 ml of a benzene solution containing 0.25 g of bis(cyclopentadienyl)titanium dichloride was added. The reaction solution quickly changed from pale yellow to pale black. Next, 5.0 Kg/cm 2 of hydrogen was supplied to carry out a hydrogenation reaction for 2 hours. After the reaction, the same treatment as in Example 4 was carried out to obtain a hydrogenated copolymer. The hydrogenation rate of butadiene units in the obtained hydrogenated copolymer was 96%, and the hydrogenation rate of styrene units was 1% or less, which were substantially the same results as in Example 4, and the catalyst component
Even when (A) and catalyst component (B) were added separately to the reaction system without being mixed in advance, the results showed that the hydrogenation activity and selectivity were almost unchanged. Example 22 The same procedure as in Example 11 was used, except that the hydrogenation catalyst was a mixture of catalyst component (A) and catalyst component (B) and stored at room temperature for 5 days under a hydrogen pressure of 2.0 Kg/cm 2 . It was carried out using the same method and conditions. The hydrogenation rate of butadiene units in the obtained hydrogenated polymer was 98%, and the hydrogenation rate of styrene units was 1% or less, which was the same result as Example 11, and the activity and performance did not change even when the catalyst was stored. showed no results. Examples 23-29 Various polymers were produced in exactly the same manner as in Reference Examples 3-9, and each polymer was precipitated by pouring the polymer solution into a large amount of methanol. The resulting precipitate was separated, washed with methanol, and dried under reduced pressure at 40°C for 3 days to obtain various finished polymers. Next, 100 g of each finished polymer was dissolved in purified and dried cyclohexane to prepare a solution with a polymer concentration of 10% by weight, and the solution was charged into two dry autoclaves, and the system was purged with hydrogen and maintained at 50°C. Next, 100 ml of a toluene solution of bis(cyclopentadienyl)titanium dichloride with a concentration of 1.0 mmol/100 ml was added as the catalyst component (A), and 10 ml of a cyclohexane solution of n-butyllithium with a concentration of 40 mmol/100 ml as the catalyst component (B). and 40℃,
Mixed under 2.0Kg/cm 2 of hydrogen. (Ti/Li molar ratio =
1/4) After stirring at 40°C for 5 minutes, the entire amount of this catalyst solution was charged into an autoclave with stirring, 5.0 Kg/cm 2 of dry hydrogen gas was supplied, and the reaction was carried out at 50°C for 2 hours with stirring. . The reaction solution was treated in the same manner as in Example 1 to obtain a hydrogenated polymer. The hydrogenation rate of each hydrogenated polymer obtained is shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 共役ジエンを重合または共重合して得られる
重合体を不活性有機溶媒中にて、 (A) ビス(シクロペンタジエニル)チタニウムジ
クロライド および (B) 一般式R―Li(但し、Rは炭素原子数が1〜
6個のアルキル基を示す。)で示されるアルキ
ルリチウム化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、該
重合体中の共役ジエン単位の不飽和二重結合を水
添することを特徴とする重合体の水添方法。 2 重合体が、1,3―ブタジエンおよび/また
はイソプレンの重合体である特許請求の範囲第1
項記載の方法。 3 重合体が、共役ジエンとビニル置換芳香族炭
化水素との共重合体である特許請求の範囲第1項
記載の方法。 4 重合体が、1,3―ブタジエンおよび/また
はイソプレンとスチレンとの共重合体である特許
請求の範囲第3項記載の方法。 5 重合体の共役ジエン単位の不飽和二重結合を
50%以上水添し、かつビニル置換芳香族炭化水素
単位を10%以下に選択的に水添する特許請求の範
囲第3項または第4項記載の方法。 6 触媒成分(B)が、n―ブチルリチウムである特
許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A polymer obtained by polymerizing or copolymerizing a conjugated diene in an inert organic solvent, (A) bis(cyclopentadienyl) titanium dichloride and (B) a compound of the general formula R—Li (However, R has 1 to 1 carbon atoms.
Six alkyl groups are shown. ) A polymer characterized in that the unsaturated double bonds of the conjugated diene units in the polymer are hydrogenated by contacting with hydrogen in the presence of a catalyst comprising at least one alkyllithium compound represented by Hydrogenation method. 2. Claim 1, wherein the polymer is a polymer of 1,3-butadiene and/or isoprene.
The method described in section. 3. The method according to claim 1, wherein the polymer is a copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon. 4. The method according to claim 3, wherein the polymer is a copolymer of 1,3-butadiene and/or isoprene and styrene. 5 The unsaturated double bond of the conjugated diene unit of the polymer
5. The method according to claim 3 or 4, wherein 50% or more of hydrogenation is performed, and vinyl-substituted aromatic hydrocarbon units are selectively hydrogenated to 10% or less. 6. The method according to claim 1, wherein the catalyst component (B) is n-butyllithium.
JP671883A 1983-01-20 1983-01-20 Hydrogenation of polymer Granted JPS59133203A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP671883A JPS59133203A (en) 1983-01-20 1983-01-20 Hydrogenation of polymer
US06/568,692 US4501857A (en) 1983-01-20 1984-01-06 Method for hydrogenation of polymer
GB08400305A GB2134909B (en) 1983-01-20 1984-01-06 Catalytic hydrogenation of conjugated diene polymer
FR8400820A FR2539745B1 (en) 1983-01-20 1984-01-19 PROCESS FOR HYDROGENATION OF A CONJUGATED DIENE POLYMER
DE3448317A DE3448317C2 (en) 1983-01-20 1984-01-20
DE19843401983 DE3401983A1 (en) 1983-01-20 1984-01-20 METHOD FOR SELECTIVE HYDROGENATION OF POLYMERS OR COPOLYMERS OF CONJUGATED SERVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP671883A JPS59133203A (en) 1983-01-20 1983-01-20 Hydrogenation of polymer

Publications (2)

Publication Number Publication Date
JPS59133203A JPS59133203A (en) 1984-07-31
JPS634841B2 true JPS634841B2 (en) 1988-02-01

Family

ID=11646040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP671883A Granted JPS59133203A (en) 1983-01-20 1983-01-20 Hydrogenation of polymer

Country Status (1)

Country Link
JP (1) JPS59133203A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875827B2 (en) 2001-04-11 2005-04-05 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer and process for producing the same
WO2006123670A1 (en) 2005-05-19 2006-11-23 Mitsui Chemicals, Inc. Resin composition for foam and use thereof
WO2008013090A1 (en) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
WO2008041356A1 (en) 2006-10-03 2008-04-10 Techno Polymer Co., Ltd. Thermoplastic resin composition and resin molded article
WO2008062779A1 (en) 2006-11-22 2008-05-29 Techno Polymer Co., Ltd. Resin composition for metal plating, molded article thereof, and metal-plated molded article
WO2008102761A1 (en) 2007-02-20 2008-08-28 Asahi Kasei Chemicals Corporation Impact absorber composition
WO2008123215A1 (en) 2007-03-28 2008-10-16 Asahi Kasei Chemicals Corporation Process for production of modified conjugated diene polymer, compositions comprising the polymer, and tires containing the compositions
US7915349B2 (en) 2005-09-22 2011-03-29 Asahi Kasei Chemicals Corporation Conjugated diene polymer and process for production thereof
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
US8653176B2 (en) 2006-12-26 2014-02-18 Asahi Kasei E-Materials Corporation Thermally conductive material and thermally conductive sheet molded from the thermally conductive material
EP2700658A1 (en) 2010-04-16 2014-02-26 Asahi Kasei Chemicals Corporation Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
WO2014112411A1 (en) 2013-01-16 2014-07-24 旭化成ケミカルズ株式会社 Method for producing polymer
US8816014B2 (en) 2009-10-02 2014-08-26 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
WO2014133097A1 (en) 2013-02-28 2014-09-04 Jsr株式会社 Tire member, hydrogenated conjugated diene polymer and polymer composition
WO2015064646A1 (en) 2013-10-31 2015-05-07 Jsr株式会社 Crosslinked rubber, member for tires, vibration-proofing member, member for belts, and rubber composition
WO2015108139A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015108150A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015111674A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Adhesive composition and adhesive tape
WO2015111675A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer and adhesive composition
WO2015111669A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer composition and adhesive composition
WO2018199267A1 (en) 2017-04-28 2018-11-01 旭化成株式会社 Modified conjugated diene polymer, polymer composition, and rubber composition
US10179850B2 (en) 2010-03-08 2019-01-15 Asahi Kasei Chemicals Corporation Foamable composition, process for producing the same and foam
WO2019082728A1 (en) 2017-10-25 2019-05-02 Jsr株式会社 Polymer composition and tire
DE112006000818B4 (en) 2005-04-07 2019-10-10 Asahi Kasei Chemicals Corporation Hydrogenation product of a block copolymer, composition and use
DE102019119630A1 (en) 2018-07-20 2020-01-23 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, stopper and container
WO2020158678A1 (en) 2019-01-30 2020-08-06 Jsr株式会社 Rubber composition, crosslinked body and tire
WO2021054271A1 (en) 2019-09-20 2021-03-25 三井化学株式会社 Display device
US10961327B2 (en) 2015-09-14 2021-03-30 Jsr Corporation Method for producing hydrogenated conjugated diene-based polymer, hydrogenated conjugated diene-based polymer, polymer composition, cross-linked polymer, and tire
WO2021187273A1 (en) 2020-03-17 2021-09-23 Jsr株式会社 Binder composition for all-solid-state secondary batteries, slurry for all-solid-state secondary batteries, solid electrolyte sheet for all-solid-state secondary batteries, method for producing said solid electrolyte sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing said all-solid-state secondary battery
WO2021187270A1 (en) 2020-03-17 2021-09-23 Jsr株式会社 Binder for all-solid secondary battery, binder composition for all-solid secondary battery, slurry for all-solid secondary battery, solid electrolyte sheet for all-solid secondary battery and production method thereof, and all-solid secondary battery and production method thereof
EP3992238A1 (en) 2020-10-30 2022-05-04 JSR Corporation Polymer composition, crosslinked product, and tire
WO2022114178A1 (en) 2020-11-27 2022-06-02 Jsr株式会社 Polymer composition, cross-linked product, and tire
WO2022124151A1 (en) 2020-12-07 2022-06-16 株式会社Eneosマテリアル Polymer composition, cross-linked body, and tire
WO2022163389A1 (en) 2021-01-29 2022-08-04 株式会社Eneosマテリアル Binder for all-solid-state secondary batteries, binder composition for all-solid-state secondary batteries, slurry for all-solid-state secondary batteries, solid electrolyte sheet for all-solid-state secondary batteries and method for producing same, and all-solid-state secondary battery and method for producing same
WO2022163387A1 (en) 2021-01-29 2022-08-04 株式会社Eneosマテリアル Binder for all-solid-state secondary battery, binder composition for all-solid-state secondary battery, slurry for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, method for producing same, all-solid-state secondary battery, and method for producing same
WO2022176316A1 (en) 2021-02-22 2022-08-25 テクノUmg株式会社 Thermoplastic resin composition for foam molding, and foam molded article thereof
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
WO2022195972A1 (en) 2021-03-17 2022-09-22 テクノUmg株式会社 Thermoplastic composition and molded product thereof
WO2022196643A1 (en) 2021-03-15 2022-09-22 株式会社Eneosマテリアル Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2023013772A1 (en) 2021-08-06 2023-02-09 三井化学株式会社 Thermoplastic elastomer composition and molded article comprising same
WO2023112381A1 (en) 2021-12-13 2023-06-22 テクノUmg株式会社 Thermoplastic resin composition for foam molding, and foam molded article thereof

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017660A (en) * 1987-08-04 1991-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Selectively, partially hydrogenated polymer and rubber composition and impact resistant styrenic resin containing the same
ES2053363B1 (en) * 1991-12-05 1995-02-16 Repsol Quimica Sa OLEPHINE HYDROGENATION PROCEDURE.
JP3020807B2 (en) * 1994-07-22 2000-03-15 三菱化学株式会社 Airbag storage cover
JPH09324113A (en) * 1996-06-07 1997-12-16 Polyplastics Co Thermoplastic polyester resin composition
JP4024437B2 (en) 1999-03-24 2007-12-19 ポリプラスチックス株式会社 Insert molded product
JP2000336259A (en) 1999-03-24 2000-12-05 Polyplastics Co Flame-retarded polyester resin composition
ES2257353T3 (en) 2000-04-21 2006-08-01 Jsr Corporation COMPOSITION OF THERMOPLASTIC RESIN.
ATE396207T1 (en) 2001-03-26 2008-06-15 Jsr Corp HYDROGENATED MODIFIED POLYMER, METHOD FOR PRODUCING THEREOF AND COMPOSITION CONTAINING SAME
DE60231012D1 (en) 2001-09-04 2009-03-12 Jsr Corp Resin composition and golf ball
JP2004013054A (en) 2002-06-11 2004-01-15 Sumitomo Chem Co Ltd High heat resistant label
JP2006199930A (en) 2004-12-24 2006-08-03 Advanced Plastics Compounds Co Thermoplastic elastomer and molded product thereof
US20090270525A1 (en) 2005-12-05 2009-10-29 Jsr Corporation Thermoplastic elastomer composition, foam product, and process for production of the composition or foam product
US20090030138A1 (en) 2006-02-02 2009-01-29 Jsr Corporation Hydrogenated diene polymer composition and molded rubber article
JP4921849B2 (en) * 2006-05-09 2012-04-25 台橡股▲ふん▼有限公司 Method for hydrogenating conjugated diene polymers
TR201905133T4 (en) 2007-03-28 2019-05-21 Jsr Corp Modified hydrogenated diene polymer composition.
US20090152754A1 (en) 2007-12-12 2009-06-18 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition for foam injection molding, foam body, and process for producing foam body
US20090155537A1 (en) 2007-12-12 2009-06-18 Sumitomo Chemical Company, Limited Process for producing thermoplastic elastomer composition foam body, and thermoplastic elastomer composition for foam injection molding
US8394892B2 (en) 2009-09-14 2013-03-12 Sumitomo Chemical Company, Ltd. High performance thermoplastic elastomer composition
TWI504621B (en) 2009-12-25 2015-10-21 Jsr Corp Composition and heat storage material for heat storage material
JP2011184503A (en) 2010-03-05 2011-09-22 Sumitomo Chemical Co Ltd Thermoplastic elastomer composition
EP2648253A4 (en) 2010-11-29 2017-04-19 JSR Corporation Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
KR102124874B1 (en) 2013-02-14 2020-06-19 제이에스알 가부시끼가이샤 Method for producing hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer and polymer composition
EP3088469B1 (en) 2013-12-27 2018-10-10 Asahi Kasei Kabushiki Kaisha Flame-retardant resin composition and connection structure for solar power generation module
CN105906929B (en) 2015-02-19 2020-07-17 住友化学株式会社 Thermoplastic elastomer composition
TW201714952A (en) 2015-09-02 2017-05-01 Jsr Corp Composition and molded object
JP6716942B2 (en) 2016-02-18 2020-07-01 住友ゴム工業株式会社 Pneumatic tire and method for manufacturing pneumatic tire
JP6805502B2 (en) 2016-02-18 2020-12-23 住友ゴム工業株式会社 Pneumatic tires
EP3425003B1 (en) 2016-03-03 2020-05-27 MCPP Innovation LLC Elastomer composition and medical container stopper formed by molding same
WO2017159589A1 (en) 2016-03-18 2017-09-21 日本ゼオン株式会社 Method for manufacturing organic electronic device sealing body
JP6862787B2 (en) 2016-11-22 2021-04-21 住友ゴム工業株式会社 Pneumatic tires
WO2018110590A1 (en) 2016-12-14 2018-06-21 Mcppイノベーション合同会社 Thermoplastic elastomer composition, extrusion-molded article, and medical tube
JP7196404B2 (en) 2017-03-17 2022-12-27 Mcppイノベーション合同会社 Thermoplastic elastomer for adhesive lamination of carbon fiber reinforced plastics
EP3388142A1 (en) 2017-04-11 2018-10-17 Asahi Kasei Kabushiki Kaisha Separation membrane module with specific housing material
JP6953841B2 (en) 2017-07-05 2021-10-27 住友ゴム工業株式会社 Pneumatic tires
JP6417064B1 (en) 2018-04-09 2018-10-31 住友ゴム工業株式会社 Rubber composition for tire and tire
WO2020021883A1 (en) 2018-07-24 2020-01-30 日本ゼオン株式会社 Block copolymer, production method therefor, hydrogenated block copolymer, polymer composition, and molded object
WO2020031904A1 (en) 2018-08-06 2020-02-13 住友ゴム工業株式会社 Pneumatic tire
JP7253897B2 (en) 2018-11-12 2023-04-07 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2020079336A (en) 2018-11-12 2020-05-28 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP7159799B2 (en) 2018-11-12 2022-10-25 住友ゴム工業株式会社 pneumatic tire
JP7224149B2 (en) 2018-11-12 2023-02-17 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP7224150B2 (en) 2018-11-12 2023-02-17 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP2020125442A (en) 2019-01-31 2020-08-20 Mcppイノベーション合同会社 Thermoplastic elastomer composition, and joining member and method for manufacturing the same
CN113329891B (en) 2019-02-05 2024-02-09 住友橡胶工业株式会社 Rubber composition and tire
EP3978270A4 (en) 2019-06-26 2023-07-05 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US20220289890A1 (en) 2019-09-30 2022-09-15 Zeon Corporation Hydrogenated block copolymer composition, method for producing same, and film
JP2021123711A (en) 2020-02-05 2021-08-30 Jsr株式会社 Polymer composition, crosslinked polymer, and tire
WO2022064869A1 (en) 2020-09-23 2022-03-31 Mcppイノベーション合同会社 Thermoplastic elastomer composition and composite molded object
JPWO2022085492A1 (en) 2020-10-19 2022-04-28
JPWO2022149479A1 (en) 2021-01-07 2022-07-14
KR20240028359A (en) 2021-06-30 2024-03-05 엠씨피피 이노베이션 고도가이샤 Airbag storage cover and manufacturing method thereof, thermoplastic elastomer composition, molded body, and composite molded body
JP2024074035A (en) 2022-11-18 2024-05-30 住友ゴム工業株式会社 tire

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875827B2 (en) 2001-04-11 2005-04-05 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer and process for producing the same
DE112006000818B4 (en) 2005-04-07 2019-10-10 Asahi Kasei Chemicals Corporation Hydrogenation product of a block copolymer, composition and use
WO2006123670A1 (en) 2005-05-19 2006-11-23 Mitsui Chemicals, Inc. Resin composition for foam and use thereof
US7915349B2 (en) 2005-09-22 2011-03-29 Asahi Kasei Chemicals Corporation Conjugated diene polymer and process for production thereof
WO2008013090A1 (en) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
US8106130B2 (en) 2006-07-24 2012-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and process for producing thereof
WO2008041356A1 (en) 2006-10-03 2008-04-10 Techno Polymer Co., Ltd. Thermoplastic resin composition and resin molded article
WO2008062779A1 (en) 2006-11-22 2008-05-29 Techno Polymer Co., Ltd. Resin composition for metal plating, molded article thereof, and metal-plated molded article
US8653176B2 (en) 2006-12-26 2014-02-18 Asahi Kasei E-Materials Corporation Thermally conductive material and thermally conductive sheet molded from the thermally conductive material
WO2008102761A1 (en) 2007-02-20 2008-08-28 Asahi Kasei Chemicals Corporation Impact absorber composition
US8541504B2 (en) 2007-02-20 2013-09-24 Asahi Kasei Chemicals Corporation Impact absorber composition
WO2008123215A1 (en) 2007-03-28 2008-10-16 Asahi Kasei Chemicals Corporation Process for production of modified conjugated diene polymer, compositions comprising the polymer, and tires containing the compositions
US8278395B2 (en) 2007-03-28 2012-10-02 Asahi Kasei Chemicals Corporation Process for manufacturing modified conjugated diene polymer, composition comprising the polymer, and tire comprising the composition
US8816014B2 (en) 2009-10-02 2014-08-26 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
US10179850B2 (en) 2010-03-08 2019-01-15 Asahi Kasei Chemicals Corporation Foamable composition, process for producing the same and foam
US9644046B2 (en) 2010-04-16 2017-05-09 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
US9193807B2 (en) 2010-04-16 2015-11-24 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
EP2700658A1 (en) 2010-04-16 2014-02-26 Asahi Kasei Chemicals Corporation Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof
US9096748B2 (en) 2010-06-09 2015-08-04 Asahi Kasei Chemicals Corporation Thermoplastic elastomer composition and molded products using the same
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
WO2014112411A1 (en) 2013-01-16 2014-07-24 旭化成ケミカルズ株式会社 Method for producing polymer
WO2014133097A1 (en) 2013-02-28 2014-09-04 Jsr株式会社 Tire member, hydrogenated conjugated diene polymer and polymer composition
US10144820B2 (en) 2013-10-31 2018-12-04 Jsr Corporation Crosslinked rubber, member for tires, vibration-proofing member, member for belts, and rubber composition
WO2015064646A1 (en) 2013-10-31 2015-05-07 Jsr株式会社 Crosslinked rubber, member for tires, vibration-proofing member, member for belts, and rubber composition
US9683095B2 (en) 2013-10-31 2017-06-20 Jsr Corporation Crosslinked rubber, member for tires, vibration-proofing member, member for belts, and rubber composition
WO2015108139A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015108150A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015111674A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Adhesive composition and adhesive tape
WO2015111669A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer composition and adhesive composition
WO2015111675A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer and adhesive composition
US10961327B2 (en) 2015-09-14 2021-03-30 Jsr Corporation Method for producing hydrogenated conjugated diene-based polymer, hydrogenated conjugated diene-based polymer, polymer composition, cross-linked polymer, and tire
WO2018199267A1 (en) 2017-04-28 2018-11-01 旭化成株式会社 Modified conjugated diene polymer, polymer composition, and rubber composition
WO2019082728A1 (en) 2017-10-25 2019-05-02 Jsr株式会社 Polymer composition and tire
DE102019119630A1 (en) 2018-07-20 2020-01-23 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, stopper and container
DE102019119630B4 (en) 2018-07-20 2024-02-29 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, its use, stoppers and containers
WO2020158678A1 (en) 2019-01-30 2020-08-06 Jsr株式会社 Rubber composition, crosslinked body and tire
WO2021054271A1 (en) 2019-09-20 2021-03-25 三井化学株式会社 Display device
WO2021187273A1 (en) 2020-03-17 2021-09-23 Jsr株式会社 Binder composition for all-solid-state secondary batteries, slurry for all-solid-state secondary batteries, solid electrolyte sheet for all-solid-state secondary batteries, method for producing said solid electrolyte sheet for all-solid-state secondary batteries, all-solid-state secondary battery, and method for producing said all-solid-state secondary battery
WO2021187270A1 (en) 2020-03-17 2021-09-23 Jsr株式会社 Binder for all-solid secondary battery, binder composition for all-solid secondary battery, slurry for all-solid secondary battery, solid electrolyte sheet for all-solid secondary battery and production method thereof, and all-solid secondary battery and production method thereof
EP3992238A1 (en) 2020-10-30 2022-05-04 JSR Corporation Polymer composition, crosslinked product, and tire
WO2022114178A1 (en) 2020-11-27 2022-06-02 Jsr株式会社 Polymer composition, cross-linked product, and tire
WO2022124151A1 (en) 2020-12-07 2022-06-16 株式会社Eneosマテリアル Polymer composition, cross-linked body, and tire
WO2022163387A1 (en) 2021-01-29 2022-08-04 株式会社Eneosマテリアル Binder for all-solid-state secondary battery, binder composition for all-solid-state secondary battery, slurry for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, method for producing same, all-solid-state secondary battery, and method for producing same
WO2022163389A1 (en) 2021-01-29 2022-08-04 株式会社Eneosマテリアル Binder for all-solid-state secondary batteries, binder composition for all-solid-state secondary batteries, slurry for all-solid-state secondary batteries, solid electrolyte sheet for all-solid-state secondary batteries and method for producing same, and all-solid-state secondary battery and method for producing same
WO2022176316A1 (en) 2021-02-22 2022-08-25 テクノUmg株式会社 Thermoplastic resin composition for foam molding, and foam molded article thereof
EP4056613A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block polymer, polymer composition, and adhesive
EP4056612A1 (en) 2021-03-12 2022-09-14 JSR Corporation Block copolymer and adhesive
WO2022196643A1 (en) 2021-03-15 2022-09-22 株式会社Eneosマテリアル Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2022195972A1 (en) 2021-03-17 2022-09-22 テクノUmg株式会社 Thermoplastic composition and molded product thereof
WO2023013772A1 (en) 2021-08-06 2023-02-09 三井化学株式会社 Thermoplastic elastomer composition and molded article comprising same
WO2023112381A1 (en) 2021-12-13 2023-06-22 テクノUmg株式会社 Thermoplastic resin composition for foam molding, and foam molded article thereof

Also Published As

Publication number Publication date
JPS59133203A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
JPS634841B2 (en)
JP2718059B2 (en) Polymer hydrogenation method and catalyst
JP3166137B2 (en) Method for hydrogenating olefinically unsaturated polymer and hydrogenation catalyst
JP2783791B2 (en) Method for selective hydrogenation of conjugated diene polymers
JPH0137970B2 (en)
JP3326772B2 (en) Method for hydrogenating olefinically unsaturated polymer and hydrogenation catalyst
JP3484155B2 (en) Process for selective hydrogenation of polymers containing conjugated dienes
JPS635401B2 (en)
KR100201228B1 (en) Process for hydrogenating living polymers
JP3227678B2 (en) Method for hydrogenating olefinically unsaturated polymer and hydrogenation catalyst
JPH0153851B2 (en)
JPH029041B2 (en)
JPH0116401B2 (en)
JPH029043B2 (en)
JPH05286870A (en) Olefin hydrogenation procedure
US5910566A (en) Living polymer hydrogenation catalyst and process for hydrogenating polymers with the catalyst
JPH029042B2 (en)
JPS635402B2 (en)
JPH0496904A (en) Hydrogenation of olefinic compound
JPH02311504A (en) Hydrogenation of polymer
JP2903471B1 (en) Method for hydrogenating conjugated diene polymers
JP3454922B2 (en) Hydrogenation method for isoprene polymer
JP2609534B2 (en) Method for hydrogenating olefinically unsaturated polymers
JP3651931B2 (en) Hydrogenation of alkyl-substituted conjugated diene polymers
JP3282166B2 (en) Method for hydrogenating olefinically unsaturated polymer and hydrogenation catalyst