JPH0153851B2 - - Google Patents

Info

Publication number
JPH0153851B2
JPH0153851B2 JP59153034A JP15303484A JPH0153851B2 JP H0153851 B2 JPH0153851 B2 JP H0153851B2 JP 59153034 A JP59153034 A JP 59153034A JP 15303484 A JP15303484 A JP 15303484A JP H0153851 B2 JPH0153851 B2 JP H0153851B2
Authority
JP
Japan
Prior art keywords
hydrogenation
catalyst
unsaturated double
hydrogen
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59153034A
Other languages
Japanese (ja)
Other versions
JPS6133132A (en
Inventor
Tetsuo Masubuchi
Yasushi Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59153034A priority Critical patent/JPS6133132A/en
Publication of JPS6133132A publication Critical patent/JPS6133132A/en
Publication of JPH0153851B2 publication Critical patent/JPH0153851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、オレフイン性不飽和二重結合含有化
合物のオレフイン性不飽和二重結合を選択的に水
添することができる水添方法に関する。 〔従来の技術〕 オレフイン性不飽和二重結合を有する化合物の
水添触媒としては、一般に不均一系触媒と均一系
触媒が知られている。前者の不均一系触媒は、広
く工業的に用いられているが均一系触媒と比べる
と一般に活性が低く、所望の水添反応を行うため
には多量の触媒を要し、高温高圧下で行われるの
で不経済となる。一方、後者の均一系触媒は、通
常均一系で水添反応が進行するので不均一系と比
べると活性が高く触媒使用が少なくて済み、より
低温、低圧で水添できる特徴があるが、反面、触
媒調整が煩雑で触媒自体の安定性も十分とはいえ
ず、再現性にも劣り好ましくない副反応を併発し
やすい欠点を有している。従つて高活性で取扱い
の容易な水添触媒の開発が強く望まれているのが
現状である。 一方、オレフイン性不飽和二重結合を含有する
重合体は、不飽和二重結合が加硫等に有利に利用
される反面、かかる二重結合は耐候性、耐酸化性
等の安定性に劣る欠点を有している。これらの安
定性に劣る欠点は、重合体を水添して重合体鎖中
の不飽和二重結合をなくすことにより著しく改善
される。しかし、重合体を水添する場合には低分
子化合物を水添する場合に比べて、反応系の粘度
や重合体鎖の立体障害等の影響を受けて水添しに
くくなる。さらに水添終了後、触媒を物理的に除
去することが極めて難しく、実質上完全に分離す
ることができない、等の欠点がある。従つて経済
的に有利に重合体を水添するためには、脱灰の不
要な程度の使用量で活性を示す高活性水添触媒、
あるいは極めて容易に脱灰できる触媒の開発が強
く望まれている。 〔本発明が解決しようとする問題点〕 本発明は安定で取扱い易く、水添反応時には極
めて少ない使用量で活性を示す高活性水添触媒を
発見すること、特に重合体の水添に用い脱灰の不
要な程度の使用量で活性を示す高活性水添触媒を
発見し、耐候性、耐酸化性、耐オゾン性に優れた
重合体の水添物を得る方法を見出すことをその解
決すべき問題点としているものである。 〔問題点を解決するための手段及び作用〕 本発明は、チタノセンジアリール化合物とアル
キルリチウムからなる水添触媒が、温和な条件下
で極めて高いオレフイン性不飽和二重結合の水添
活性を示し、またオレフイン性不飽和二重結合を
含有する重合体の不飽和二重結合を、脱灰の不要
な程度の使用量、温和な条件下にて選択的に水添
し得るという驚くべき事実に基なされたものであ
る。 即ち、本発明は、オレフイン性不飽和二重結合
含有化合物を不活性有機溶媒中にて水添する方法
において、 (A) 下記(a)で示されるチタノセンジアリール化合
(但し、R1〜R6は水素あるいは炭素数1〜4
のアルキル炭化水素基を示し、R1〜R3および
R4〜R6のうち1つ以上は水素である。) および (B) 一般式R−Li(但し、Rは炭素原子数が1〜
6個のアルキル基を示す。)で示されるアルキ
ルリチウム化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、核
化合物中のオレフイン性不飽和二重結合を水添す
ることを特徴とするオレフインの水添方法に関す
る。 本発明に係る一般式(a)で示した如きチタノセン
ジアリール化合物は室温、空気中で安定に取扱
え、単離も容易である事はすでに知られている。
(例えば、L.Summersら、J.Am.Chem.Soc.、第
77巻、3604頁(1955年)、M.D.Rauschら、J.
OrganometallChem.、第10巻、127頁(1967年)
等) また、本発明者らは、かかるチタノセンジアリ
ール化合物が、単独で高い水添活性を有する事を
見出し、すでに特許出願した(特願昭59−
76614)。 本発明者らは、この先願オレフイン水添触媒系
の活性をさらに向上させ、効率的かつ経済的にオ
レフインを水添する方法につき、さらに鋭意検討
した結果、かかるチタノセンジアリール化合物と
アルキルリチウム化合物からなる水添触媒が、条
件を選択するとチタノセンジアリール化合物単独
で用いるよりもさらに高い水添活性を示すことを
見出し、本発明を完成するに至つたものである。 本発明に係るオレフイン性不飽和二重結合水添
触媒成分(A)は一般式(a) で示される。但し、R1〜R6は水素あるいは炭素
数1〜4のアルキル炭化水素基を示し、R1〜R3
およびR4〜R6のうち1つ以上は水素である。ア
ルキル炭素基の炭素数が5以上のもの、および
R1〜R3またはR4〜R6がすべてアルキル基のもの
では立体障害から収率良く合成することが難しく
室温での貯蔵安定性も劣るので好ましくない。ま
た、アルキル炭化水素基がチタンに対しオルトの
位置にある化合物は合成が困難である。係る水添
触媒の具体的な例としては、ジフエニルビス(η
−ジクロペンタジエニル)チタニウム、ジ−m−
トリルビス(η−シクロペンタジエニル)チタニ
ウム、ジ−p−トリルビス(η−シクロペンタジ
エニル)チタニウム、ジ−3、4−キシリルビス
(η−シクロペンタジエニル)チタニウム、ビス
(4−エチルフエニル)ビス(η−シクロペンタ
ジエニル)チタニウム、ビス(4−ブチルフエニ
ル)ビス(η−シクロペンタジエニル)チタニウ
ム等が挙げられる。アルキル炭素基の炭素数が大
きい化合物ほど貯蔵安定性が低下し、一方種種の
有機溶媒に対する溶解性は良好となるので、安定
性と溶解性のバランスからジ−p−トリルビス
(η−シクロペンタジエニル)チタニウムが最も
好ましい。 本発明の水添触媒成分(A)は他のチタノセン化合
物に比べ種々の有機溶媒に対する溶解性が極めて
良好であるという特徴を有し、溶液として用いる
事ができ取扱いが容易であるので工業上極めて有
利である。 一方、触媒成分(B)としては、触媒成分(A)のチタ
ノセンジアリール化合物を還元する能力のある有
機金属化合物、例えば有機リチウム化合物、有機
アルミニウム化合物、有機亜鉛化合物、有機マグ
ネシウム化合物等を単独あるいは相互に組み合わ
せて用いることによつて重合体を水添することが
できる。しかし、高い活性を発現し、オレフイン
性不飽和二重結合を選択的に水添するためには、
有機リチウム化合物、特にアルキルリチウム化合
物の使用が必須である。即ち、チタノセンジアリ
ール化合物にアルキルリチウム化合物を組み合わ
せて用いることによつて本発明の目的は好適に達
成され、驚くべきことに、少量の触媒添加でしか
も温和な条件にて、オレフイン性不飽和二重結合
をほぼ定量的に、しかも優先的に水添することが
可能である。 かかる触媒成分(B)としては、一般式R−Li(但
し、Rは炭素原子数数1〜6個のアルキル基を示
す。)で示されるアルキルリチウム化合物が好ま
しく用いられ、具体的な例としてはメチルリチウ
ム、エチルリチウム、n−プロピルリチウム、イ
ソプロピルリチウム、n−ブチルリチウム、sec
−ブチルリチウム、イソブチルリチウム、n−ペ
ンチルリチウウム、n−ヘキシルリチウム等が挙
げられる。これらは2種以上を相互に混合して使
用してもさしつかえないし、2種以上相互の錯体
であつてもよい。最も高い水添活性を示し、オレ
フイン性不飽和二重結合を選択的に水添するため
にはn−ブチルリチウムが最も好ましい。 本発明の触媒はオレフイン性不飽和二重結合を
有する全ての化合物に適用する事ができる。例え
ば、1−ブテン、1,3−ブタジエン、シクロペ
ンテン、1,3−ペンタジエン、1−ヘキセン、
シクロヘキセン、1−メチルシクロヘキセン、ス
チレン等の水添に好適に用いることができる。 一方、本発明の水添触媒は高い水添活性、選択
性を有するので不飽和二重結合を有する重合体の
水添に特に好適に用いられる。 本発明は不飽和二重結合を有する重合体の全て
に適用することができるが、好ましい実施態様は
共役ジエン重合体、共役ジエンとオレフイン単量
体の共重合体、ノルボルネン重合体、シクロペン
テン重合体等である。特に共役ジエン重合体、共
役ジエンとオレフイン単体の共重合体の水添物
は、弾性体や熱可塑性弾性体として工業的に有用
である。 かかる共役ジエン重合体の製造に用いられる共
役ジエンとしては、一般的には4〜約12個の炭素
原子を有する共役ジエンが挙げられ、具体的な例
としては、1,3−ブタジエン、イソプレン、
2,3−ジメチル−1,3−ブタジエン、1,3
−ペンタジエン、2−メチル−1,3−ペンタジ
エン、1,3−ヘキサジエン、4,5−ジエチル
−1,3−オクタジエン、3−ブチル−1,3−
オクタジエン等が挙げられる。工業的に有利に展
開でき、物性の優れた弾性体を得る上から、1,
3−ブタジエン、イソプレンが特に好ましい。 また、共役ジエンの少なくとも1種と共重合可
能なオレフイン単量体としては、ビニル置換芳香
族炭化水素が特に好ましい。即ち、共役ジエン単
位の不飽和二重結合のみを選択的に水添する本発
明の効果を十分発揮し、工業的に有用で価値の高
い弾性体や熱可塑性体を得るためには、共役ジエ
ンとビニル置換芳香族炭化水素との共重合体が特
に重要である。用いられるビニル置換芳香族炭化
水素の具体例としては、スチレン、t−ブチルス
チレン、α−メチルスチレン、p−メチルスチレ
ン、ジビニルベンゼン、1,1−ジフエニルエチ
レン、N,N−ジメチル−p−アミノエチルスチ
レン、N,N−ジエチル−p−アミノエチルスチ
レン等が挙げられ、特にスチレンが好ましい。具
体的な共重合体の例としては、ブタジエン/スチ
レン共重合体、イソプレン/スチレン共重合体等
が工業的価値の高い水添共重合体を与えるので最
も好適である。 かかる共重合体においては、ブロツク共重合体
が熱可塑性弾性体として工業的に最も有用な水添
重合体を与えるが、未端に少なくとも1個の共役
ジエンを主としたブロツクを有するブロツク共重
合体は、末端に共役ジエンブロツクを有しない物
に比べ、加工性、他のオレフイン重合体との相溶
性、接着性等に優れた水添重合体を与えるので特
に好適に用いられる。 本発明の水添反応の好ましい実施態様は、オレ
フイン性不飽和二重結合を有する化合物又は前記
重合体を不活性有機溶媒に溶解した溶液において
行われる。もち論、シクロヘキセン、シクロオク
テンの如き室温で液体の低分子量化合物の場合は
溶媒に溶解しなくとも水添反応は行なえるが、反
応を均一に温和な条件下で行なうには溶媒に溶解
した溶液において行なうのが好ましい。「不活性
有機溶媒」とは溶媒が水添反応のいかなる関与体
とも反応しないものを意味する。好適な溶媒は、
例えばn−ペンタン、n−ヘキサン、n−ヘプタ
ン、n−オクタンの如き脂肪族炭化水素類、シク
ロヘキセン、シクロヘプタンの如き脂環族炭化水
素類、ジエチルエーテル、テトラヒドロフランの
如きエーテル類の単独もしくは混合物である。ま
た、ベンゼン、トルエン、キシレン、エチルベン
ゼンの如き芳香族炭化水素も、選択された水添反
応条件下で芳香族性二重結合が水添されない時に
限つて使用することができる。 本発明の水添反応は、一般的には上記被水添物
溶液を水素または不活性雰囲気下、所定の温度に
保持し、撹拌下または不撹拌下にて水添触媒を添
加し、次いで水素ガスを導入して所定圧に加圧す
ることによつて実施される。不活性雰囲気とは、
例えばヘリウム、ネオン、アルゴン等の水添反応
のいかなる関与体とも反応しない雰囲気下を意味
する。空気や酸素は触媒成分を酸化したりして触
媒の失活を招くので好ましくない。また窒素は水
添反応時触媒毒として作用し、水添活性を低下さ
せるので好ましくない。特に、水添反応器内は水
素ガス単独の雰囲気である事が最も好適である。 一方、触媒はあらかじめ触媒成分(A)と触媒成分
(B)とを混合したものを用いる高活性を有するので
好ましい。触媒成分(A)と触媒成分(B)とをいずれか
一方を先に別に被水添物溶液中に加えても水添反
応を行なえるが、触媒成分(B)のアルキルリチウム
と反応性のオレフインを水添する場合には副反応
が起こり目的とする水添反応の収率が低下するの
で好ましくない。 触媒成分(B)は、前記不活性雰囲気下で取扱うこ
とが必要である。触媒成分(A)については空気中に
おいても安定であるが、不活性雰囲気下で取扱う
ことが好ましい。 また、各々の触媒成分はそのまま使用してもよ
いが、前記不活性有機溶媒の溶液として使用する
方が扱い易く好適である。溶液として用いる場合
に使用する不活性有機溶媒は、水添反応のいかな
る関与体とも反応しない前記各種溶媒を使用する
ことができる。好ましくは水添反応に用いる溶媒
と同一の溶媒である。 触媒成分をあらかじめ混合する場合や水添反応
器に触媒成分を添加する場合は、水素雰囲気下で
行なうのが最も好適である。触媒成分(A)と触媒成
分(B)とをあらかじめ混合して使用する場合は、−
30℃〜100℃の温度、好ましくは−10℃〜50℃の
温度にて水添反応直前に調製するのが好ましい
が、水素雰囲気下または不活性雰囲気下に貯蔵す
れば、室温でも約1週間以内は実質的な水添活性
は変わずに用いることができる。 高い水添活性及び水添選択性を発現するための
各触媒成分の混合比率は、触媒成分(B)のリチウム
モル数と、触媒成分(A)のチタニウムモル数との比
率(以下Li/Tiモル比)で約20以下の範囲であ
る。Li/Tiモル比=0においても定量的な水添
反応を行なう事はできるが、より高温高圧の条件
を要し、またLi/Tiモル比20を超えると実質的
な活性向上に関与しない高価な触媒成分(B)を過剰
に用いることにより不経済であるばかりでなく、
不必要な副反応を招き易くなり好ましくない。
Li/Tiモル比=0.5〜10の範囲は水添活性を著し
く向上するのに最も好適である。 触媒の添加量は被水添物100g当り0.005〜20ミ
リモルで十分である。この添加量範囲あれば被水
添物のオレフイン性不飽和二重結合を優先的に水
添することが可能で、芳香核二重結合の水添は実
質的に起こらないので極めて高い水添選択性が実
現される。20ミリモルを超える量の添加において
も水添反応は可能であるが、必要以上の触媒使用
は不経済となり、水添反応後の触媒脱灰、除去が
複雑となる等不利となる。また選択された条件下
で重合体の共役ジエン単位の不飽和二重結合を定
量的に水添する好ましい触媒添加量は、重合体
100g当り0.05〜5ミリモルである。 本発明の水添反応は元素状水素を用いて行わ
れ、より好ましくはガス状で被水添物溶液中に導
入される。水添反応は撹拌下で行われるのがより
好ましく、導入された水素を十分迅速に被水添物
と接媒させることができる。水添反応は一般的に
0〜150℃の温度範囲で実施される。0℃未満で
は触媒の活性が低下し、かつ水添速度を遅くなり
多量の触媒を要するので経済的でなく、また150
℃を超える温度では副反応や分解、ゲル化を併発
し易くなり、かつ芳香核部分の水添も起こりやす
くなつて水添選択性が低下するので好ましくな
い。さらに好ましくは20〜120℃の範囲である。 水添反応に使用される水素の圧力は1〜100
Kg/cm2が好適である。1Kg/cm2未満では水添速度
が遅くなつて実質的に頭打ちとなるので水添率を
上げるのが難しくなり、100Kg/cm2を超える圧力
では昇圧と同時に水添反応がほぼ完了し実質的に
意味がなく、不必要な副反応やゲル化を招くので
好ましくない。より好ましい水添水素圧力は2〜
30Kg/cm2であるが、触媒添加量等との相関で最適
水素圧力は選択され、実質的には前記好適触媒量
が少量になるに従つて水素圧力は高圧側を選択し
て実施するのが好ましい。 本発明の水添反応時間は通常数秒ないし50時間
である。他の水添反応条件の選択によつて水添反
応時間は上記範囲内で適宜選択して実施される。 本発明の触媒を用いて水添反応を行つた溶液か
らは、水添された目的を蒸留、沈殿等の化学的ま
たは物理的手段で容易で分離することができる。
特に、本発明の方法により水添反応を行なつた重
合体溶液からは必要に応じて触媒残渣を除去し、
水添された重合体を溶液から容易に単離すること
ができる。例えば、水添後の反応液にアセトンま
たはアルコール等の水添重合体に対する貧溶媒と
なる極性溶媒を加えて重合体を沈殿せして回収す
る方法、反応液を撹拌下熱湯中に投入後、溶媒と
共に蒸留回収する方法、または直接反応液を加熱
して溶媒を留去する方法等で行なうことができ
る。本発明の水添方法は使用する水添触媒量が少
量である特徴を有する。従つて、水添触媒がその
まま重合体中に残在しても得られる水添重合体の
物性に著しい影響を及ぼさず、かつ水添重合体の
単離過程においても触媒の大部分$が分解、除去
され重合体より除かれるので、触媒を脱灰したり
除去したりするための特別な操作は必要とせず、
極めて簡単なプロセスで実施することができる。 〔発明の効果〕 以上のように本発明の方法によりオレフイン性
不飽和二重結合の水添反応が効率的に可能とな
り、特にオレフイン性不飽和二重結合を有する重
合体を高活性な触媒によつて温和な条件で水添す
ること、さらに共役ジエンとビニル置換芳香族炭
化水素との共重合体の共役ジエン単位の不飽和二
重結合を極めて選択的に水添することが可能とな
つた。 また、本発明の方法によつて得られる水添重合
体は、耐候性、耐酸化性の優れた弾性体、熱可塑
性弾体もしくは熱可塑性樹脂として使用され、ま
た紫外線吸収剤、オイル、フイラー等の添加剤を
加えたり、他の弾性体や樹脂とブレンドして使用
され、工業上極めて有用である。 〔実施例〕 以下実施例により本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 参考例 1 撹拌機、滴下漏斗および還流冷却器を備えた1
三つ口フラスコに無水エーテル200mlを加えた。
装置を乾燥ヘリウムで置換し、リチウムワイヤー
小片17.4g(2.5モル)をフラスコ中に切り落し、
エーテル300ml、ブロモベンゼン157g/(1モ
ル)の溶液を室温で少量滴下した後、還流下で
徐々にブロモンゼンのエーテル溶液を全量加え
た。 反応終了後反応溶液をヘリウム雰囲気下にて雰
囲気下にて過し、無色透明なフエニルリチウム
溶液を得た。 乾燥ヘリウムで置換した撹拌機、滴下漏斗を備
えた2三ツ口フラスコに、ジクロロビス(シク
ロペンタジエニル)チタニウム99.6g(0.4モル)
および無水エーテル500mlを加えた。先に合成し
たフエニルのエーテル溶液を室温撹拌下にて約2
時間で滴下した。反応混合物を空気中で別し、
不溶部をジクロロメタンで洗浄後、液および洗
浄液を合わせて減圧下にて溶媒を除去した。残留
物を少量のジクロロメタンに溶解した後、石油エ
ーテルを加えて再結晶を行なつた。得られた結晶
を別し、液は再び濃縮させ上記操作を繰り返
しジフエニルビス(η−シクロペンタジエニル)
チタニウムを得た。収量は120g(収率90%)で
あつた。得られた結晶は橙黄色針状であり、トル
エン、シクロヘキセンに対する溶解性は良好であ
り、融点147℃、元素分析値:C、79.5;H、
6.1;Ti、14.4であつた。 参考例 2 ブロモベンゼンの代りにp−ブロモトルエンを
用いた以外は参考例1と同様に合成し、ジ−p−
トリルビス(η−シクロペンタジエニル)チタニ
ウムを得た(収率87%)。このものは黄色結晶状
であり、トルエン、シクロヘキサに対する溶解性
は良好であり、融点145℃、元素分析値:C、
80.0;H、6.7;Ti、13.3であつた。 参考例 3 ブロモベンゼンの代りに4−ブロモ−o−キシ
レンを用いた以外は参考例1と同様に合成し、ジ
−3,4−キシリルビス(η−シクロペンタジエ
ニル)チタニウムを得た(収率83%)。このもの
は黄色結晶状であり、トルエン、シクロヘキサン
に対する溶解性は良好であり融点155℃、元素分
析値:C、80.6;H、7.2;Ti、12.2であつた。 参考例 4 ブロモベンゼンの代りにp−ブロモエチルベン
ゼンを用いた以外は参考例1と同様に合成し、ビ
ス(4−エチルフエニル)ビス(η−シクロペン
タジエニル)チタニウムを得た(収率80%)。こ
のものは黄色結晶であり、トルエン、シクロヘキ
サンに対する溶解性は良好であり、融点154℃、
元素分析値;C、80.4;H、7.3;Ti、12.3であつ
た。 参考例 5 2のオートクレーブ中にシクロヘキサン500
g、1,3−ブタジエンモノマー100g、n−ブ
チルリチウム0.05gを加え、撹拌下60℃にて3時
間重合しブタジエン単独重合体を合成した。得ら
れたブタジエン重合体は1,2−ビニル結合を13
%含有し、GPCで測定した重量平均分子量は約
15万であつた。 参考例 6 1,3−ブタジエンの代りにイソプレンを用い
た以外は参考例1と同様に重合し、1,2−ビニ
ル結合10%、重量平均分子量約15万のイソプレン
重合体を得た。 参考例 7 シクロヘキサン400g、1,3−ブタジエンモ
ノマー70g、スチレンモノマー30g、n−ブチル
リチウム0.03gおよびテトラヒドロフラン0.9g
を同時にオートクレーブに加え、40℃で2時間重
合した。 得られた重合体はブタジエン/スチレンの完全
ランダム共重合体で、ブタジエン単位の1,2−
ビニル結合含有率50%、重量平均分子量20万を有
するものであつた。 参考例 8 オートクレープ中にシクロヘキサン400gを、
スチレンモノマー15gとn−ブチルリチウム0.11
gを加え、60℃で3時間重合し、次いで1,3−
ブタジエンモノマーを70g加えて60℃で3時間重
合した。最後にスチレンモノマー15gを添加し、
60℃で3時間重合し、結合スチレン含有量30%、
ブロツクスチレン含有量29.5%、ブタジエン単位
の1,2−ビニル結合含有量13%(全重合体換算
9%)の重平均分子量が約6万であるスチレン−
ブタジエン−スチレン型ブロツク共重合体を得
た。 参考例 9 参考例8において、さらにテトラヒドロフラン
をn−ブチルリチウムに対して35倍モル加えた以
外は全く同じ方法で、結合スチレン含量30%、ブ
ロツクスチレン含量24%、ブタジエン単位の1,
2−ビニル結合含有量39%(全重合体換算23%)
のスチレン−ブタジエン−スチレン型ブロツク共
重合体の合成した。 参考例 10 オートクレーブ中にシクロヘキサン2000g、
1,3−ブタジエンモノマー65g、n−ブチルリ
チウム0.75gおよびテトラヒドロフランをモル比
でn−BuLi/THF=1/40の割合で加え、70℃
で45分重合し、次いで、スチレンモノマー100g
を加えて30分、次いで、ブタジエンモノマー235
gを加えて75分、そして最後にスチレンモノマー
100gを加えて30分重合し、ブタジエン−スチレ
ン−ブタジエン−スチレン型ブロツク共重合体を
合成した。 このものは結合スチレン含有量40%、ブロツク
スチレン含有量33%、ブタジエン単位の1,2−
ビニル結合含有量35%(全重合体換算30%)、重
量平均分子量約6万のブロツク共重合体であつ
た。 実施例 1〜4 1−ヘキセン、シクロヘキセンをシクロヘキサ
ンで希釈し、濃度15%に調整して水添反応に供し
た。 十分に乾燥した容量2の撹拌器付オートクレ
ーブに、上記オレフイン化合物溶液1000gを仕込
み、減圧脱気した後水素置換し、撹拌下60℃に保
持した。 次いで触媒成分(A)として合考例1〜4で得られ
た化合物を各々4ミリモル含むシクロヘキサン溶
液100mlと触媒成分(B)としてn−ブチルリチウム
(本荘ケミカル(株)製)8ミリモルを含むシクロヘ
キサン溶液20mlとを0℃、2.0Kg/cm2の水素圧下
で混合した触媒溶液(Li/Tiモル比=2)全量
をオートクレーブ中へ仕込み、5.0Kg/cm2の乾燥
したガス状水素を供給し撹拌下2時間水添反応を
行なつた。 反応液を常温常圧下に戻した後、ガスクロマト
グラフイー分析により水添率を求めた。 各水添触媒を用いた1−ヘキセン、シクロヘキ
センの水添結果を表にまとめた。 表に示した如く、いずれの水添触媒を用いて
もオレフイン性不飽和二重結合はほぼ定量的に水
添され、極めて良好な水添活性を示した。
[Industrial Application Field] The present invention relates to a hydrogenation method capable of selectively hydrogenating olefinically unsaturated double bonds in a compound containing olefinically unsaturated double bonds. [Prior Art] Heterogeneous catalysts and homogeneous catalysts are generally known as hydrogenation catalysts for compounds having olefinic unsaturated double bonds. The former type of heterogeneous catalyst is widely used industrially, but it generally has lower activity than homogeneous catalysts, requires a large amount of catalyst to carry out the desired hydrogenation reaction, and cannot be carried out at high temperature and pressure. This makes it uneconomical. On the other hand, the latter type of homogeneous catalyst usually progresses the hydrogenation reaction in a homogeneous system, so compared to a heterogeneous system, it has higher activity and requires less catalyst use, and can perform hydrogenation at lower temperatures and pressures. However, catalyst preparation is complicated, the stability of the catalyst itself is not sufficient, the reproducibility is poor, and undesirable side reactions are likely to occur. Therefore, there is currently a strong desire to develop a hydrogenation catalyst that is highly active and easy to handle. On the other hand, in polymers containing olefinic unsaturated double bonds, while the unsaturated double bonds are advantageously used for vulcanization, etc., such double bonds have poor stability such as weather resistance and oxidation resistance. It has its drawbacks. These disadvantages of poor stability can be significantly improved by hydrogenating the polymer to eliminate unsaturated double bonds in the polymer chain. However, when hydrogenating a polymer, compared to when hydrogenating a low-molecular compound, it becomes difficult to hydrogenate due to the effects of the viscosity of the reaction system, steric hindrance of the polymer chain, etc. Furthermore, there are drawbacks such as the fact that it is extremely difficult to physically remove the catalyst after the hydrogenation is completed, and it is virtually impossible to separate it completely. Therefore, in order to hydrogenate polymers economically, it is necessary to use a highly active hydrogenation catalyst that exhibits activity in an amount that does not require deashing.
Alternatively, there is a strong desire to develop a catalyst that can be extremely easily deashed. [Problems to be solved by the present invention] The purpose of the present invention is to discover a highly active hydrogenation catalyst that is stable, easy to handle, and exhibits activity in an extremely small amount used in hydrogenation reactions. The solution to this problem is to discover a highly active hydrogenation catalyst that exhibits activity even when the amount of ash used is unnecessary, and to find a way to obtain hydrogenated polymers with excellent weather resistance, oxidation resistance, and ozone resistance. This is an issue that should be addressed. [Means and effects for solving the problems] The present invention provides a hydrogenation catalyst consisting of a titanocene diaryl compound and an alkyl lithium that exhibits extremely high hydrogenation activity of olefinic unsaturated double bonds under mild conditions, It is also based on the surprising fact that unsaturated double bonds in polymers containing olefinic unsaturated double bonds can be selectively hydrogenated under mild conditions and in a small amount that does not require deashing. It has been done. That is, the present invention provides a method for hydrogenating an olefinically unsaturated double bond-containing compound in an inert organic solvent, in which: (A) a titanocene diaryl compound represented by (a) below; (However, R 1 to R 6 are hydrogen or carbon atoms 1 to 4.
represents an alkyl hydrocarbon group, R 1 to R 3 and
One or more of R 4 to R 6 is hydrogen. ) and (B) general formula R-Li (wherein R has 1 to 1 carbon atoms)
Six alkyl groups are shown. ) Relating to a method for hydrogenating olefins, which comprises hydrogenating an olefinically unsaturated double bond in a core compound by contacting it with hydrogen in the presence of a catalyst comprising at least one alkyllithium compound represented by . It is already known that the titanocene diaryl compound as represented by the general formula (a) according to the present invention can be stably handled in air at room temperature and can be easily isolated.
(For example, L. Summers et al., J. Am. Chem. Soc., Vol.
77, p. 3604 (1955), MDRausch et al., J.
OrganometallChem., vol. 10, p. 127 (1967)
In addition, the present inventors discovered that such titanocene diaryl compounds alone have high hydrogenation activity, and have already filed a patent application (Japanese Patent Application No.
76614). The present inventors further improved the activity of this prior application's olefin hydrogenation catalyst system and, as a result of further intensive studies on a method for efficiently and economically hydrogenating olefins, discovered that The inventors have discovered that a hydrogenation catalyst exhibits even higher hydrogenation activity under selected conditions than when a titanocene diaryl compound is used alone, leading to the completion of the present invention. The olefinic unsaturated double bond hydrogenation catalyst component (A) according to the present invention has the general formula (a) It is indicated by. However, R 1 to R 6 represent hydrogen or an alkyl hydrocarbon group having 1 to 4 carbon atoms, and R 1 to R 3
and one or more of R 4 to R 6 is hydrogen. those in which the alkyl carbon group has 5 or more carbon atoms, and
If R 1 to R 3 or R 4 to R 6 are all alkyl groups, it is difficult to synthesize in good yield due to steric hindrance and the storage stability at room temperature is also poor, which is not preferable. Furthermore, it is difficult to synthesize a compound in which the alkyl hydrocarbon group is ortho to titanium. A specific example of such a hydrogenation catalyst is diphenylbis(η
-diclopentadienyl) titanium, di-m-
Tolylbis(η-cyclopentadienyl) titanium, di-p-tolylbis(η-cyclopentadienyl) titanium, di-3,4-xylylbis(η-cyclopentadienyl) titanium, bis(4-ethylphenyl)bis (η-cyclopentadienyl) titanium, bis(4-butylphenyl)bis(η-cyclopentadienyl) titanium, and the like. Compounds with a larger number of carbon atoms in the alkyl carbon group have lower storage stability, while better solubility in certain types of organic solvents. (enyl) titanium is most preferred. The hydrogenation catalyst component (A) of the present invention has an extremely good solubility in various organic solvents compared to other titanocene compounds, and can be used as a solution and is easy to handle, making it extremely useful in industry. It's advantageous. On the other hand, as the catalyst component (B), an organometallic compound capable of reducing the titanocene diaryl compound of the catalyst component (A), such as an organolithium compound, an organoaluminium compound, an organozinc compound, an organomagnesium compound, etc., may be used singly or together. The polymer can be hydrogenated by using it in combination with. However, in order to express high activity and selectively hydrogenate olefinic unsaturated double bonds,
The use of organolithium compounds, especially alkyllithium compounds, is essential. That is, the object of the present invention can be suitably achieved by using a titanocene diaryl compound in combination with an alkyl lithium compound, and surprisingly, olefinic unsaturated double It is possible to hydrogenate bonds almost quantitatively and preferentially. As such catalyst component (B), an alkyllithium compound represented by the general formula R-Li (wherein R represents an alkyl group having 1 to 6 carbon atoms) is preferably used, and specific examples include is methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec
-butyllithium, isobutyllithium, n-pentyllithium, n-hexyllithium, and the like. These may be used in combination of two or more types, or may be a mutual complex of two or more types. In order to exhibit the highest hydrogenation activity and selectively hydrogenate olefinically unsaturated double bonds, n-butyllithium is most preferred. The catalyst of the present invention can be applied to all compounds having olefinically unsaturated double bonds. For example, 1-butene, 1,3-butadiene, cyclopentene, 1,3-pentadiene, 1-hexene,
It can be suitably used for hydrogenating cyclohexene, 1-methylcyclohexene, styrene, and the like. On the other hand, since the hydrogenation catalyst of the present invention has high hydrogenation activity and selectivity, it is particularly suitable for hydrogenation of polymers having unsaturated double bonds. Although the present invention can be applied to all polymers having unsaturated double bonds, preferred embodiments include conjugated diene polymers, copolymers of conjugated dienes and olefin monomers, norbornene polymers, and cyclopentene polymers. etc. In particular, conjugated diene polymers and hydrogenated copolymers of conjugated dienes and simple olefins are industrially useful as elastic bodies and thermoplastic elastomers. Conjugated dienes used in the production of such conjugated diene polymers generally include conjugated dienes having from 4 to about 12 carbon atoms, and specific examples include 1,3-butadiene, isoprene,
2,3-dimethyl-1,3-butadiene, 1,3
-Pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-
Examples include octadiene. From the viewpoint of obtaining an elastic body that can be industrially advantageously developed and has excellent physical properties, 1.
3-butadiene and isoprene are particularly preferred. Furthermore, as the olefin monomer copolymerizable with at least one conjugated diene, vinyl-substituted aromatic hydrocarbons are particularly preferred. That is, in order to fully exhibit the effect of the present invention of selectively hydrogenating only the unsaturated double bonds of the conjugated diene unit, and to obtain industrially useful and valuable elastomers and thermoplastics, it is necessary to Of particular interest are copolymers of vinyl-substituted aromatic hydrocarbons and vinyl-substituted aromatic hydrocarbons. Specific examples of vinyl-substituted aromatic hydrocarbons used include styrene, t-butylstyrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N,N-dimethyl-p- Examples include aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene, and styrene is particularly preferred. As specific examples of copolymers, butadiene/styrene copolymers, isoprene/styrene copolymers, etc. are most preferred since they provide hydrogenated copolymers with high industrial value. Among such copolymers, a block copolymer provides a hydrogenated polymer that is industrially most useful as a thermoplastic elastomer, but a block copolymer having at least one block mainly consisting of a conjugated diene is preferred. Coalescence is particularly preferably used because it yields a hydrogenated polymer that is superior in processability, compatibility with other olefin polymers, adhesive properties, etc., as compared to products that do not have a conjugated diene block at the end. A preferred embodiment of the hydrogenation reaction of the present invention is carried out in a solution in which a compound having an olefinically unsaturated double bond or the above polymer is dissolved in an inert organic solvent. Of course, in the case of low molecular weight compounds that are liquid at room temperature, such as cyclohexene and cyclooctene, the hydrogenation reaction can be carried out without dissolving them in a solvent, but in order to carry out the reaction uniformly and under mild conditions, a solution dissolved in a solvent is required. It is preferable to carry out at "Inert organic solvent" means a solvent that does not react with any participant in the hydrogenation reaction. A suitable solvent is
For example, aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, and n-octane, alicyclic hydrocarbons such as cyclohexene and cycloheptane, and ethers such as diethyl ether and tetrahydrofuran may be used alone or in mixtures. be. Aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene can also be used as long as aromatic double bonds are not hydrogenated under the selected hydrogenation reaction conditions. In the hydrogenation reaction of the present invention, the hydrogenation product solution is generally maintained at a predetermined temperature under hydrogen or an inert atmosphere, a hydrogenation catalyst is added with or without stirring, and then hydrogen is added. This is carried out by introducing gas and pressurizing it to a predetermined pressure. What is an inert atmosphere?
For example, it means an atmosphere that does not react with any member of the hydrogenation reaction, such as helium, neon, or argon. Air and oxygen are not preferred because they oxidize catalyst components and cause catalyst deactivation. Further, nitrogen is not preferred because it acts as a catalyst poison during the hydrogenation reaction and reduces the hydrogenation activity. In particular, it is most preferable that the inside of the hydrogenation reactor be in an atmosphere containing only hydrogen gas. On the other hand, the catalyst is prepared by combining the catalyst component (A) and the catalyst component in advance.
It is preferable to use a mixture with (B) because it has high activity. The hydrogenation reaction can also be carried out by adding either the catalyst component (A) or the catalyst component (B) separately into the hydrogenated product solution first, but the reaction with the alkyl lithium of the catalyst component (B) Hydrogenating olefins is not preferred because side reactions occur and the yield of the desired hydrogenation reaction decreases. It is necessary to handle the catalyst component (B) under the above-mentioned inert atmosphere. Although the catalyst component (A) is stable even in air, it is preferable to handle it under an inert atmosphere. Further, although each catalyst component may be used as it is, it is preferable to use it as a solution of the inert organic solvent because it is easier to handle. As the inert organic solvent used when the solution is used, the various solvents mentioned above that do not react with any of the participants in the hydrogenation reaction can be used. Preferably, it is the same solvent as used in the hydrogenation reaction. When premixing the catalyst components or adding the catalyst components to the hydrogenation reactor, it is most preferable to do so under a hydrogen atmosphere. When using the catalyst component (A) and catalyst component (B) mixed in advance, -
It is preferable to prepare immediately before the hydrogenation reaction at a temperature of 30°C to 100°C, preferably -10°C to 50°C, but if stored under a hydrogen atmosphere or an inert atmosphere, it will last for about one week even at room temperature. Within this range, the hydrogenation activity can be used without changing the substantial hydrogenation activity. The mixing ratio of each catalyst component to exhibit high hydrogenation activity and hydrogenation selectivity is the ratio of the number of moles of lithium in the catalyst component (B) to the number of moles of titanium in the catalyst component (A) (hereinafter referred to as Li/Ti). (molar ratio) is approximately 20 or less. A quantitative hydrogenation reaction can be carried out even when the Li/Ti molar ratio is 0, but it requires higher temperature and higher pressure conditions, and if the Li/Ti molar ratio exceeds 20, it is expensive and does not substantially improve the activity. Not only is it uneconomical to use an excessive amount of catalyst component (B), but also
This is not preferable because it tends to cause unnecessary side reactions.
A Li/Ti molar ratio in the range of 0.5 to 10 is most suitable for significantly improving hydrogenation activity. A sufficient amount of the catalyst to be added is 0.005 to 20 mmol per 100 g of hydrogenated material. With this addition amount range, it is possible to preferentially hydrogenate the olefinic unsaturated double bonds of the hydrogenated product, and hydrogenation of aromatic double bonds does not substantially occur, so hydrogenation selection is extremely high. sexuality is realized. The hydrogenation reaction is possible even when the amount exceeds 20 mmol, but using more catalyst than necessary becomes uneconomical and has disadvantages such as complicating deashing and removal of the catalyst after the hydrogenation reaction. In addition, the preferred amount of catalyst added to quantitatively hydrogenate the unsaturated double bonds of the conjugated diene units of the polymer under selected conditions is
It is 0.05 to 5 mmol per 100 g. The hydrogenation reaction of the present invention is carried out using elemental hydrogen, more preferably introduced in gaseous form into the hydrogenate solution. It is more preferable that the hydrogenation reaction is carried out under stirring, so that the introduced hydrogen can be brought into contact with the hydrogenated substance sufficiently quickly. The hydrogenation reaction is generally carried out at a temperature range of 0 to 150°C. Below 0°C, the activity of the catalyst decreases and the hydrogenation rate slows down, requiring a large amount of catalyst, which is not economical.
Temperatures exceeding .degree. C. are not preferred because side reactions, decomposition, and gelation are likely to occur together, and hydrogenation of the aromatic nucleus portion is also likely to occur, resulting in a decrease in hydrogenation selectivity. More preferably, the temperature is in the range of 20 to 120°C. The pressure of hydrogen used in hydrogenation reaction is 1 to 100
Kg/cm 2 is preferred. If the pressure is less than 1 Kg/cm 2 , the hydrogenation rate slows down and practically reaches a plateau, making it difficult to increase the hydrogenation rate. This is not desirable because it has no meaning and causes unnecessary side reactions and gelation. More preferable hydrogenation pressure is 2~
30Kg/cm 2 , but the optimum hydrogen pressure is selected in correlation with the amount of catalyst added, etc., and in practice, the hydrogen pressure should be selected on the high pressure side as the above-mentioned preferred amount of catalyst becomes smaller. is preferred. The hydrogenation reaction time of the present invention is usually several seconds to 50 hours. The hydrogenation reaction time is appropriately selected within the above range by selecting other hydrogenation reaction conditions. From a solution subjected to a hydrogenation reaction using the catalyst of the present invention, the hydrogenated object can be easily separated by chemical or physical means such as distillation or precipitation.
In particular, if necessary, catalyst residues are removed from the polymer solution subjected to the hydrogenation reaction by the method of the present invention.
Hydrogenated polymers can be easily isolated from solution. For example, a method in which a polar solvent such as acetone or alcohol, which is a poor solvent for the hydrogenated polymer, is added to the reaction solution after hydrogenation to precipitate and recover the polymer; This can be carried out by distilling and recovering the solvent together with the solvent, or by directly heating the reaction solution and distilling off the solvent. The hydrogenation method of the present invention is characterized in that the amount of hydrogenation catalyst used is small. Therefore, even if the hydrogenation catalyst remains in the polymer, it does not significantly affect the physical properties of the hydrogenated polymer obtained, and even during the isolation process of the hydrogenated polymer, most of the catalyst is decomposed. , removed and removed from the polymer, no special operations are required to demineralize or remove the catalyst.
It can be implemented in an extremely simple process. [Effects of the Invention] As described above, the method of the present invention makes it possible to efficiently hydrogenate olefinically unsaturated double bonds, and in particular, to use polymers having olefinically unsaturated double bonds as highly active catalysts. Therefore, it has become possible to hydrogenate under mild conditions and to hydrogenate extremely selectively the unsaturated double bonds in the conjugated diene units of the copolymer of a conjugated diene and a vinyl-substituted aromatic hydrocarbon. . In addition, the hydrogenated polymer obtained by the method of the present invention can be used as an elastic body, thermoplastic elastic body, or thermoplastic resin with excellent weather resistance and oxidation resistance, and can also be used as an ultraviolet absorber, oil, filler, etc. It is used with additives or blended with other elastomers or resins, making it extremely useful industrially. [Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. Reference example 1 1 with stirrer, dropping funnel and reflux condenser
200 ml of anhydrous ether was added to a three-necked flask.
The apparatus was replaced with dry helium, and 17.4 g (2.5 moles) of lithium wire was cut into the flask.
A small amount of a solution of 157 g/(1 mol) of bromobenzene in 300 ml of ether was added dropwise at room temperature, and then the entire amount of the ether solution of bromonzene was gradually added under reflux. After the reaction was completed, the reaction solution was passed under a helium atmosphere to obtain a colorless and transparent phenyllithium solution. 99.6 g (0.4 mol) of dichlorobis(cyclopentadienyl)titanium was placed in a two-three-necked flask equipped with a stirrer and a dropping funnel purged with dry helium.
and 500 ml of anhydrous ether were added. The previously synthesized phenyl ether solution was stirred at room temperature for about 2 hours.
It dripped in time. The reaction mixture is separated in air,
After washing the insoluble portion with dichloromethane, the solution and washing solution were combined and the solvent was removed under reduced pressure. After dissolving the residue in a small amount of dichloromethane, petroleum ether was added for recrystallization. Separate the obtained crystals, concentrate the liquid again, and repeat the above procedure to obtain diphenylbis(η-cyclopentadienyl).
Obtained titanium. The yield was 120g (90% yield). The obtained crystals are orange-yellow needle-shaped, have good solubility in toluene and cyclohexene, melting point 147°C, elemental analysis values: C, 79.5; H,
6.1; Ti was 14.4. Reference Example 2 Synthesized in the same manner as Reference Example 1 except that p-bromotoluene was used instead of bromobenzene, and di-p-
Tolylbis(η-cyclopentadienyl)titanium was obtained (yield 87%). This substance is yellow crystalline, has good solubility in toluene and cyclohexa, melting point 145℃, elemental analysis value: C,
80.0; H, 6.7; Ti, 13.3. Reference Example 3 Di-3,4-xylylbis(η-cyclopentadienyl)titanium was synthesized in the same manner as Reference Example 1 except that 4-bromo-o-xylene was used instead of bromobenzene (yield rate 83%). This product was in the form of yellow crystals, had good solubility in toluene and cyclohexane, had a melting point of 155°C, and had elemental analysis values: C, 80.6; H, 7.2; Ti, 12.2. Reference Example 4 Synthesis was carried out in the same manner as in Reference Example 1 except that p-bromoethylbenzene was used instead of bromobenzene to obtain bis(4-ethylphenyl)bis(η-cyclopentadienyl)titanium (yield 80%). ). This substance is a yellow crystal, has good solubility in toluene and cyclohexane, has a melting point of 154℃,
Elemental analysis values: C, 80.4; H, 7.3; Ti, 12.3. Reference example 5 500 ml of cyclohexane in the autoclave of 2
g, 100 g of 1,3-butadiene monomer, and 0.05 g of n-butyllithium were added, and polymerization was carried out at 60° C. for 3 hours with stirring to synthesize a butadiene homopolymer. The obtained butadiene polymer has 13 1,2-vinyl bonds.
% and the weight average molecular weight measured by GPC is approximately
It was 150,000. Reference Example 6 Polymerization was carried out in the same manner as in Reference Example 1, except that isoprene was used instead of 1,3-butadiene, to obtain an isoprene polymer having 10% of 1,2-vinyl bonds and a weight average molecular weight of about 150,000. Reference Example 7 Cyclohexane 400g, 1,3-butadiene monomer 70g, styrene monomer 30g, n-butyllithium 0.03g and tetrahydrofuran 0.9g
were simultaneously added to the autoclave and polymerized at 40°C for 2 hours. The obtained polymer is a completely random copolymer of butadiene/styrene, with 1,2-butadiene units.
It had a vinyl bond content of 50% and a weight average molecular weight of 200,000. Reference example 8 400g of cyclohexane in an autoclave,
15g of styrene monomer and 0.11g of n-butyllithium
g was added, polymerized at 60℃ for 3 hours, and then 1,3-
70g of butadiene monomer was added and polymerized at 60°C for 3 hours. Finally, add 15g of styrene monomer,
Polymerized at 60℃ for 3 hours, bound styrene content 30%,
Styrene with a blocked styrene content of 29.5%, a 1,2-vinyl bond content of butadiene units of 13% (9% in terms of total polymer), and a weight average molecular weight of approximately 60,000.
A butadiene-styrene type block copolymer was obtained. Reference Example 9 In Reference Example 8, except that 35 times the molar amount of tetrahydrofuran was added to n-butyllithium, the same method was used to prepare a compound with a bound styrene content of 30%, a blocked styrene content of 24%, and a butadiene unit of 1,
2-vinyl bond content 39% (23% based on total polymer)
A styrene-butadiene-styrene type block copolymer was synthesized. Reference example 10 2000g of cyclohexane in an autoclave,
Add 65 g of 1,3-butadiene monomer, 0.75 g of n-butyllithium, and tetrahydrofuran at a molar ratio of n-BuLi/THF = 1/40, and heat at 70°C.
Polymerize for 45 minutes, then add 100g of styrene monomer
for 30 minutes, then butadiene monomer 235
g for 75 minutes, and finally styrene monomer.
100 g was added and polymerized for 30 minutes to synthesize a butadiene-styrene-butadiene-styrene type block copolymer. This product contains 40% bound styrene, 33% blocked styrene, and 1,2-butadiene units.
It was a block copolymer with a vinyl bond content of 35% (30% in terms of total polymer) and a weight average molecular weight of about 60,000. Examples 1 to 4 1-hexene and cyclohexene were diluted with cyclohexane, adjusted to a concentration of 15%, and subjected to hydrogenation reaction. 1000 g of the above olefin compound solution was charged into a sufficiently dried autoclave with a capacity of 2 and equipped with a stirrer, degassed under reduced pressure, replaced with hydrogen, and maintained at 60° C. with stirring. Next, 100 ml of a cyclohexane solution containing 4 mmol each of the compounds obtained in Examples 1 to 4 as the catalyst component (A) and cyclohexane containing 8 mmol of n-butyllithium (manufactured by Honjo Chemical Co., Ltd.) as the catalyst component (B) were added. The entire amount of the catalyst solution (Li/Ti molar ratio = 2) mixed with 20 ml of solution at 0°C under a hydrogen pressure of 2.0 Kg/cm 2 was charged into an autoclave, and 5.0 Kg/cm 2 of dry gaseous hydrogen was supplied. The hydrogenation reaction was carried out under stirring for 2 hours. After the reaction solution was returned to normal temperature and pressure, the hydrogenation rate was determined by gas chromatography analysis. The results of hydrogenation of 1-hexene and cyclohexene using each hydrogenation catalyst are summarized in a table. As shown in the table, no matter which hydrogenation catalyst was used, the olefinic unsaturated double bonds were hydrogenated almost quantitatively, showing extremely good hydrogenation activity.

【表】 実施例 5〜10 参考例5〜10で得られた各種重合体を精製乾燥
したシクロヘキサンで希釈し、重合体濃度5重量
%に調整して水添反応に供した。 十分に乾燥した容量2の撹拌器付オートクレ
ーブに、上記各種重合体溶液1000gを仕込み、減
圧脱気後水素置換し、撹拌下90℃に保持した。次
いで参考例2で得られた触媒成分(A)を0.2ミリモ
ル含むシクロヘキサン溶液50mlと触媒成分(B)とし
てn−ブチルリチウム0.8ミリモルを含むシクロ
ヘキサン溶液10mlとを0℃、2.0Kg/cm2の水素圧
下で混合した触媒溶液(Li/Tiモル比=4)全
量をオートクレーブ中で仕込み、5.0Kg/cm2の乾
燥したガス状水素を供給し撹拌下2時間水添反応
を行なつた。反応液を常温常圧に戻してオートク
レーブより取出し、多量のメタノールを加えてポ
リマーを沈殿させ、別乾燥し、白色の水添ポリ
マーを得た。得られた水添重合体の水添率を赤外
線吸収スペクトルより求め(水添率の求め方の詳
細は特願昭58−6718、特願昭58−186983、特願昭
59−76614に記載)表に示した。
[Table] Examples 5 to 10 The various polymers obtained in Reference Examples 5 to 10 were diluted with purified and dried cyclohexane, adjusted to a polymer concentration of 5% by weight, and subjected to a hydrogenation reaction. 1000 g of the above various polymer solutions were charged into a sufficiently dried autoclave with a capacity of 2 and equipped with a stirrer, and after degassing under reduced pressure, the autoclave was replaced with hydrogen and maintained at 90° C. with stirring. Next, 50 ml of a cyclohexane solution containing 0.2 mmol of the catalyst component (A) obtained in Reference Example 2 and 10 ml of a cyclohexane solution containing 0.8 mmol of n-butyllithium as the catalyst component (B) were heated at 0°C with 2.0 Kg/cm 2 of hydrogen. The entire amount of the catalyst solution (Li/Ti molar ratio = 4) mixed under pressure was placed in an autoclave, and 5.0 kg/cm 2 of dry gaseous hydrogen was supplied to carry out a hydrogenation reaction for 2 hours with stirring. The reaction solution was returned to room temperature and pressure, taken out from the autoclave, and a large amount of methanol was added to precipitate the polymer, which was dried separately to obtain a white hydrogenated polymer. The hydrogenation rate of the obtained hydrogenated polymer was determined from the infrared absorption spectrum (details on how to determine the hydrogenation rate can be found in Japanese Patent Application No. 58-6718, Japanese Patent Application No. 186983, Japanese Patent Application No.
59-76614) shown in the table.

【表】 実施例 参考例10で合成したブタジエン−スチレン−ブ
タジエン−スチレン型ブロツク共重合体を精製乾
燥したシクロヘキサンにて希釈し5重量%とし、
この溶液1000gをオートクレーブに仕込み、実施
例5と同様にして表に示した各種条件で水添し
た。結果を表に示した。 また、触媒成分(B)のn−ブチルリチウムを用い
ず、触媒成分(A)のみを水添触媒として使用した以
外は同様に表に示した条件で水添反応を行ない
比較例とした。
[Table] Example The butadiene-styrene-butadiene-styrene block copolymer synthesized in Reference Example 10 was diluted to 5% by weight with purified and dried cyclohexane.
1000 g of this solution was charged into an autoclave and hydrogenated in the same manner as in Example 5 under various conditions shown in the table. The results are shown in the table. In addition, a comparative example was prepared by carrying out a hydrogenation reaction under the same conditions shown in the table except that n-butyllithium as the catalyst component (B) was not used and only the catalyst component (A) was used as the hydrogenation catalyst.

【表】【table】

Claims (1)

【特許請求の範囲】 1 オレフイン性不飽和二重結合含有化合物を不
活性有機溶媒中にて水添する方法において、 (A) 下記(a)で示されるチタノセンジアリール化合
(但し、R1〜R6は水素あるいは炭素数1〜4
のアルキル炭化水素基を示し、R1〜R3および
R4〜R6のうち1つ以上は水素である。) および、 (B) 一般式R−Li(但し、Rは炭素原子数が1〜
6個のアルキル基を示す。)で示されるアルキ
ルリチウム化合物の少なくとも一種 とからなる触媒の存在下に水素と接触させて、該
化合物中のオレフイン性不飽和二重結合を水添す
ることを特徴とするオレフインの水添方法。
[Claims] 1. A method of hydrogenating an olefinic unsaturated double bond-containing compound in an inert organic solvent, comprising: (A) a titanocene diaryl compound represented by (a) below; (However, R 1 to R 6 are hydrogen or carbon atoms 1 to 4.
represents an alkyl hydrocarbon group, R 1 to R 3 and
One or more of R 4 to R 6 is hydrogen. ) and (B) General formula R-Li (wherein R has 1 to 1 carbon atoms)
Six alkyl groups are shown. 1. A method for hydrogenating olefins, which comprises hydrogenating an olefinic unsaturated double bond in the compound by contacting it with hydrogen in the presence of a catalyst comprising at least one of the alkyllithium compounds represented by the formula.
JP59153034A 1984-07-25 1984-07-25 Method for hydrogenating olefin Granted JPS6133132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59153034A JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153034A JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Publications (2)

Publication Number Publication Date
JPS6133132A JPS6133132A (en) 1986-02-17
JPH0153851B2 true JPH0153851B2 (en) 1989-11-15

Family

ID=15553521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153034A Granted JPS6133132A (en) 1984-07-25 1984-07-25 Method for hydrogenating olefin

Country Status (1)

Country Link
JP (1) JPS6133132A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875827B2 (en) 2001-04-11 2005-04-05 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer and process for producing the same
WO2006123670A1 (en) 2005-05-19 2006-11-23 Mitsui Chemicals, Inc. Resin composition for foam and use thereof
US7256238B2 (en) 2001-07-18 2007-08-14 Asahi Kasei Chemicals Corporation Modified block copolymer
WO2008013090A1 (en) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
WO2008102761A1 (en) 2007-02-20 2008-08-28 Asahi Kasei Chemicals Corporation Impact absorber composition
WO2009133930A1 (en) 2008-04-30 2009-11-05 旭化成イーマテリアルズ株式会社 Resin composition and sheet using the same
US7915349B2 (en) 2005-09-22 2011-03-29 Asahi Kasei Chemicals Corporation Conjugated diene polymer and process for production thereof
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof
US8278395B2 (en) 2007-03-28 2012-10-02 Asahi Kasei Chemicals Corporation Process for manufacturing modified conjugated diene polymer, composition comprising the polymer, and tire comprising the composition
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
US8653176B2 (en) 2006-12-26 2014-02-18 Asahi Kasei E-Materials Corporation Thermally conductive material and thermally conductive sheet molded from the thermally conductive material
EP2700658A1 (en) 2010-04-16 2014-02-26 Asahi Kasei Chemicals Corporation Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
US8816014B2 (en) 2009-10-02 2014-08-26 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
WO2015108139A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015108150A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015111669A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer composition and adhesive composition
WO2018199267A1 (en) 2017-04-28 2018-11-01 旭化成株式会社 Modified conjugated diene polymer, polymer composition, and rubber composition
US10179850B2 (en) 2010-03-08 2019-01-15 Asahi Kasei Chemicals Corporation Foamable composition, process for producing the same and foam
DE102019119630A1 (en) 2018-07-20 2020-01-23 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, stopper and container
WO2021002250A1 (en) 2019-07-01 2021-01-07 株式会社ダイセル Cellulose acetate and method for producing cellulose acetate
WO2021054271A1 (en) 2019-09-20 2021-03-25 三井化学株式会社 Display device
WO2021261241A1 (en) 2020-06-22 2021-12-30 旭化成株式会社 Hydrogenated copolymer, resin composition, molded body and adhesive film
WO2023013772A1 (en) 2021-08-06 2023-02-09 三井化学株式会社 Thermoplastic elastomer composition and molded article comprising same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573985Y2 (en) * 1991-02-19 1998-06-04 旭光学工業株式会社 Mounting structure of photometric element
WO1996018660A1 (en) * 1994-12-12 1996-06-20 The Dow Chemical Company Hydrogenation of unsaturated polymers using divalent non-aromatic anionic dienyl-containing group iv metal catalysts
JP4912519B2 (en) * 2000-03-24 2012-04-11 旭化成ケミカルズ株式会社 Efficient method for hydrogenating conjugated diene polymers
EP1245591B1 (en) 2000-06-30 2006-11-22 Asahi Kasei Kabushiki Kaisha Method for hydrogenation of diene polymers and copolymers
DE602005027583D1 (en) 2004-09-07 2011-06-01 Denki Kagaku Kogyo Kk CONDUCTIVE COMPOSITE FILMS
KR101250707B1 (en) 2008-03-25 2013-04-03 아사히 가세이 케미칼즈 가부시키가이샤 Elastomer composition and storage cover for airbag system
WO2010104174A1 (en) 2009-03-12 2010-09-16 旭化成ケミカルズ株式会社 Polyproylene resin composition, molded article thereof, and automobile interior and exterior materials using the same
MY169989A (en) 2012-09-21 2019-06-19 Asahi Kasei Chemicals Corp Catalyst composition for hydrogenation and hydrogenation method using catalyst composition for hydrogenation
MY169940A (en) 2012-09-21 2019-06-18 Asahi Kasei Chemicals Corp Catalyst composition for hydrogenation and method for hydrogenation using the same
EA029016B1 (en) 2012-10-24 2018-01-31 Асахи Касеи Кемикалз Корпорейшн Method for producing catalyst composition for hydrogenation and catalyst composition for hydrogenation
JP6691550B2 (en) 2015-11-27 2020-04-28 旭化成株式会社 Hydrogenation catalyst composition and method for producing the same, hydrogenated polymer and method for producing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875827B2 (en) 2001-04-11 2005-04-05 Asahi Kasei Kabushiki Kaisha Hydrogenated polymer and process for producing the same
US7642317B2 (en) 2001-07-18 2010-01-05 Asahi Kasei Chemicals Corporation Modified block copolymer
US7256238B2 (en) 2001-07-18 2007-08-14 Asahi Kasei Chemicals Corporation Modified block copolymer
US7414093B2 (en) 2001-07-18 2008-08-19 Asahi Kasei Chemicals Corporation Modified block copolymer
US7642318B2 (en) 2001-07-18 2010-01-05 Asahi Kasei Chemicals Corporation Modified block copolymer
WO2006123670A1 (en) 2005-05-19 2006-11-23 Mitsui Chemicals, Inc. Resin composition for foam and use thereof
US8772365B2 (en) 2005-05-19 2014-07-08 Mitsui Chemicals, Inc. Resin composition for foams and uses thereof
US7915349B2 (en) 2005-09-22 2011-03-29 Asahi Kasei Chemicals Corporation Conjugated diene polymer and process for production thereof
US8106130B2 (en) 2006-07-24 2012-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and process for producing thereof
WO2008013090A1 (en) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
US8653176B2 (en) 2006-12-26 2014-02-18 Asahi Kasei E-Materials Corporation Thermally conductive material and thermally conductive sheet molded from the thermally conductive material
WO2008102761A1 (en) 2007-02-20 2008-08-28 Asahi Kasei Chemicals Corporation Impact absorber composition
US8541504B2 (en) 2007-02-20 2013-09-24 Asahi Kasei Chemicals Corporation Impact absorber composition
US8278395B2 (en) 2007-03-28 2012-10-02 Asahi Kasei Chemicals Corporation Process for manufacturing modified conjugated diene polymer, composition comprising the polymer, and tire comprising the composition
WO2009133930A1 (en) 2008-04-30 2009-11-05 旭化成イーマテリアルズ株式会社 Resin composition and sheet using the same
US8816014B2 (en) 2009-10-02 2014-08-26 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
US10179850B2 (en) 2010-03-08 2019-01-15 Asahi Kasei Chemicals Corporation Foamable composition, process for producing the same and foam
EP2700658A1 (en) 2010-04-16 2014-02-26 Asahi Kasei Chemicals Corporation Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and composition of modified conjugated diene polymer
US9193807B2 (en) 2010-04-16 2015-11-24 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
US9644046B2 (en) 2010-04-16 2017-05-09 Asahi Kasei Chemicals Corporation Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof
US9096748B2 (en) 2010-06-09 2015-08-04 Asahi Kasei Chemicals Corporation Thermoplastic elastomer composition and molded products using the same
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
WO2015108139A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015108150A1 (en) 2014-01-17 2015-07-23 旭化成ケミカルズ株式会社 Polymer and asphalt composition
WO2015111669A1 (en) 2014-01-23 2015-07-30 旭化成ケミカルズ株式会社 Block copolymer composition and adhesive composition
WO2018199267A1 (en) 2017-04-28 2018-11-01 旭化成株式会社 Modified conjugated diene polymer, polymer composition, and rubber composition
DE102019119630A1 (en) 2018-07-20 2020-01-23 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, stopper and container
DE102019119630B4 (en) 2018-07-20 2024-02-29 Asahi Kasei Kabushiki Kaisha Thermoplastic elastomer composition, its use, stoppers and containers
WO2021002250A1 (en) 2019-07-01 2021-01-07 株式会社ダイセル Cellulose acetate and method for producing cellulose acetate
WO2021054271A1 (en) 2019-09-20 2021-03-25 三井化学株式会社 Display device
WO2021261241A1 (en) 2020-06-22 2021-12-30 旭化成株式会社 Hydrogenated copolymer, resin composition, molded body and adhesive film
WO2023013772A1 (en) 2021-08-06 2023-02-09 三井化学株式会社 Thermoplastic elastomer composition and molded article comprising same

Also Published As

Publication number Publication date
JPS6133132A (en) 1986-02-17

Similar Documents

Publication Publication Date Title
JPH0153851B2 (en)
JPH0137970B2 (en)
JPS634841B2 (en)
KR100201228B1 (en) Process for hydrogenating living polymers
JP3484155B2 (en) Process for selective hydrogenation of polymers containing conjugated dienes
JPS635401B2 (en)
JPS62207303A (en) Hydrogenation of conjugated diene polymer
JP2587893B2 (en) Olefin hydrogenation
KR100267080B1 (en) Method for hydrogenation of conjugated diene polymer
US6881797B2 (en) Process for hydrogenation of conjugated diene polymer
JPS635402B2 (en)
EP0397026B1 (en) Process for hydrogenation of polymers
JP4265742B2 (en) Hydrogenation method of conjugated diene polymer
JPH0496904A (en) Hydrogenation of olefinic compound
JP2903471B1 (en) Method for hydrogenating conjugated diene polymers
JPS6157524A (en) Hydrogenation of olefin
KR100295599B1 (en) Hydrogenation of conjugated diene polymer
KR100221358B1 (en) New catalyst for hydrogenation of living polymer and hydrogenation process using it
JP3651931B2 (en) Hydrogenation of alkyl-substituted conjugated diene polymers
JPH10259221A (en) Thermoplastic elastomer and its production
JPH0725811B2 (en) Hydrogenation method for olefin compounds
JP3282166B2 (en) Method for hydrogenating olefinically unsaturated polymer and hydrogenation catalyst
KR100295601B1 (en) Process for selective hydrogenation of conjugated diene polymer
KR100356533B1 (en) Method for the selective hydrogenation of the conjugated diene polymer
KR19990074608A (en) Hydrogenation of conjugated diene polymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term