JPS62125900A - Method for cleaning up of sludge deposited in culture farm for fish and shellfishes - Google Patents

Method for cleaning up of sludge deposited in culture farm for fish and shellfishes

Info

Publication number
JPS62125900A
JPS62125900A JP26606585A JP26606585A JPS62125900A JP S62125900 A JPS62125900 A JP S62125900A JP 26606585 A JP26606585 A JP 26606585A JP 26606585 A JP26606585 A JP 26606585A JP S62125900 A JPS62125900 A JP S62125900A
Authority
JP
Japan
Prior art keywords
sludge
tank
sand
wastewater
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26606585A
Other languages
Japanese (ja)
Inventor
Ryoichi Nishida
西田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP26606585A priority Critical patent/JPS62125900A/en
Publication of JPS62125900A publication Critical patent/JPS62125900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To make the cost of a sludge treatment lower than for the conventional method by adopting biochemical oxidation and biochemical denitrification methods, eliminating the need for land treatment of sludge and sand and utilizing activated sludge as auxiliary feed. CONSTITUTION:(1) The sludge 1 of a culture farm is pumped up into a tank 3 and is settled so that the sludge is separated to sand and sludge sewer. (2) The separated sand is cleaned with the supernatant from the following stage (5) in a tank 5 and is then returned to the culture farm. (3) The above-mentioned sludge sewer and the waste water of cleaning the above-mentioned sand are supplied to a denitrification tank 9 and are subjected to biochemical denitrification while part of the waste sludge water of the following stage (4) and part of the activated sludge of the following stage (5) are circulated to the tank 9 and are stirred. (4) The sludge sewer of the tank 9 is supplied to an aeration tank 10 and is subjected to the biochemical oxidation to form the waste sludge water. (5) The waste sludge water of the tank 10 is supplied to a settling tank 13 to settle the activated sludge. Part of the supernatant is supplied to the tank 5 and the balance is returned to the culture farm. Part of the activated sludge is supplied to the tank 9 and the remainder is returned to the culture farm.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は魚貝類の#殖場において、水底に沈積したヘド
ロの浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for purifying sludge deposited on the bottom of water in a fish and shellfish breeding farm.

〔従来技術〕[Prior art]

一般に魚貝類の#殖は、湾やJ内海など比較的海流の少
ない水域や、池などの半閉鎖性または閉鎖性の水域で行
われている。
In general, fish and shellfish breeding is carried out in waters with relatively low ocean currents, such as bays and inland seas, or in semi-enclosed or closed waters such as ponds.

この結果、魚貝類の排泄物や死骸あるいは過剰な投与飼
料が水域の底に沈積して所謂ヘドロを形成し、プランク
トンの異常繁殖を招いたり、さらにはアカジオやアオコ
の発生等の問題を引き起している。
As a result, the excrement and carcasses of fish and shellfish, as well as excess feed, settle on the bottom of the water body, forming so-called sludge, which leads to abnormal growth of plankton and further causes problems such as the occurrence of red algae and blue-green algae. are doing.

このために、魚[IInにとって必須の溶存酸素が低下
し、甚だしい場合には溶存酸素が魚貝類生存の限界値と
いわれる2mg/e以下になる状態も発生している。
For this reason, dissolved oxygen, which is essential for fish [IIn], has decreased, and in severe cases, dissolved oxygen has fallen below 2 mg/e, which is said to be the critical value for the survival of fish and shellfish.

また、ヘドロから有害なアンモニアが発生したり、有害
あるいは鮮度を低下させる大腸菌の増殖などを来たし、
魚貝類の養殖上から憂慮すべき問題となりつつある。
In addition, harmful ammonia is generated from the sludge, and E. coli bacteria grows which is harmful and reduces freshness.
This is becoming a worrying problem from the perspective of fish and shellfish aquaculture.

ところで、かかるヘドロの浄化方法としては、(al浚
渫法および(bl酸素源、たとえば空気をヘドロ中に吹
き込む方法が知られている。
By the way, as methods for purifying such sludge, the (al dredging method) and the method of blowing an oxygen source such as air into the sludge are known.

しかしながら、(alの方法は下記のような欠点があり
、現在に至るまで実施された例は少なく多くは計画に留
まっている。
However, the method of (Al) has the following drawbacks, and until now only a few examples have been implemented, and most of the methods remain as plans.

イ、大規模な浚渫設備を必要とする。b) Large-scale dredging equipment is required.

口、大量の浚渫ヘドロの処分方法が問題になる。The problem is how to dispose of the large amount of dredged sludge.

ハ、浚渫ヘドロを埋立で処分するとしても、二次公害の
発生を防止するために、大がかりな汚水浄化設備を必要
とする。
C. Even if dredged sludge is disposed of in a landfill, large-scale sewage purification equipment is required to prevent secondary pollution.

二、浚渫ヘドロ中の固形分の大部分は砂であり、この砂
の資源化が困難である。
Second, most of the solid content in dredged sludge is sand, and it is difficult to turn this sand into a resource.

また、(b)の方法は未だ研究段階として検討されてい
るにすぎず、下記のような欠点がある。
Furthermore, the method (b) is still being considered at the research stage and has the following drawbacks.

イ、海底近くで酸素源を吹き込むために、かえってヘド
ロ層を拡散させ、魚貝類の棲息環境を悪化させる恐れが
ある。
B. Injecting an oxygen source close to the ocean floor may actually spread the sludge layer, worsening the habitat for fish and shellfish.

ロ、ヘドロ層に直接、酸素源を吹き込むので酸素の移動
(水中への溶解)効率が低い。
B. Since the oxygen source is blown directly into the sludge layer, the efficiency of oxygen transfer (dissolution into water) is low.

ハ、有害なアンモニアや大腸菌を除去することができな
い。
Ha, harmful ammonia and E. coli cannot be removed.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の方法が有する欠点を解消することを
目的とするものである。
The present invention aims to eliminate the drawbacks of the above-mentioned conventional methods.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の魚貝類養殖場沈積ヘドロの
浄化方法は、下記の工程からなることを特徴とするもで
ある。
The method for purifying sludge deposited at a fish and shellfish farm according to the present invention, which achieves the above object, is characterized by comprising the following steps.

(1)魚貝類の養殖場に沈積したヘドロを汲み上げ、該
ヘドロを沈降させて砂とヘドロ汚水とに分離する。
(1) Pump up the sludge deposited on a fish and shellfish farm, allow the sludge to settle, and separate it into sand and sludge wastewater.

(2)前記分離した砂を下記工程(5)からの上澄液で
洗浄した後に前記#殖場に戻す。
(2) The separated sand is washed with the supernatant liquid from step (5) below and then returned to the # breeding farm.

(3)前記ヘドロ汚水および前記砂の洗浄排水を脱窒槽
に供給すると共に、下記工程(4)において曝気槽で形
成されたヘドロ排水の一部および下記工程(5)におい
て沈′mIWで分離された活性汚泥の一部を該脱窒槽に
循環し、P&拌しながら嫌気的条件下で生物化学的に前
記循環ヘドロ排水にもとずく硝酸または亜硝酸態窒素を
脱窒すると共にヘドロ汚水中の有機物の一部を分解除去
する。
(3) The sludge wastewater and the sand washing wastewater are supplied to the denitrification tank, and a part of the sludge wastewater formed in the aeration tank in the following step (4) and a part of the sludge wastewater formed in the following step (5) are separated by sedimentation water. A part of the activated sludge is circulated to the denitrification tank, and nitrate or nitrite nitrogen based on the recycled sludge wastewater is biochemically denitrified under anaerobic conditions while being pumped and stirred. Decomposes and removes some organic matter.

(4)前記脱窒槽で処理されたヘドロ汚水を曝気槽に供
給し、空気を吹き込んで好気的条件下で生物化学的に該
ヘドロ汚水中の有機物を酸化して分解除去すると共にア
ンモニア態窒素を硝酸または亜硝酸態窒素に酸化しヘド
ロ排水を形成する。
(4) The sludge wastewater treated in the denitrification tank is supplied to the aeration tank, and air is blown into it to biochemically oxidize and decompose organic matter in the sludge wastewater under aerobic conditions, and ammonia nitrogen is removed. is oxidized to nitric acid or nitrite to form sludge wastewater.

(5)前記曝気槽で処理されたヘドロ排水を沈澱槽に供
給し、活性汚泥を沈下せしめ、上澄液の一部を前記砂洗
浄槽に供給し、残余を前記養殖場に戻すとともに、前記
活性汚泥の一部を前記脱窒槽に供給し、残余を前記養殖
場に戻す。
(5) Supplying the sludge wastewater treated in the aeration tank to the settling tank, allowing the activated sludge to settle, supplying a portion of the supernatant liquid to the sand washing tank, and returning the remainder to the aquaculture farm; A portion of the activated sludge is supplied to the denitrification tank and the remainder is returned to the farm.

以下、本発明の態様を図面にもとすき説明する。Embodiments of the present invention will be explained below with reference to the drawings.

まず、本発明においては、魚貝類養殖湯水域の水底に沈
積したヘドロ1を管路aを介して汲み上げる。
First, in the present invention, sludge 1 deposited on the bottom of a fish and shellfish culture hot water area is pumped up through pipe a.

汲み上げは、例えば原泥ポンプ2によって行われ、汲み
上げられたヘドロは専用のパージ船または陸上施設に輸
送される。
Pumping is performed by, for example, a raw sludge pump 2, and the pumped sludge is transported to a dedicated purge ship or land facility.

なお、ヘドロlの汲み上げは、以下に述べるすべての本
発明の操作を含めて、ハツチ式または連続式のいずれの
方法によって行っても良い。
The sludge may be pumped up by either a hatch type or a continuous type, including all operations of the present invention described below.

汲み上げられたヘドロは、砂分離器3に供給され、ヘド
ロを構成する砂が沈降して砂4とへドロl行水7とに分
離される。
The pumped up sludge is supplied to a sand separator 3, where the sand constituting the sludge settles and is separated into sand 4 and sludge water 7.

砂分離器3としては、例えば液体サイクロン等が使用さ
れ、分離された砂4は、砂浄化槽5に送られ、この砂浄
化M5には後述する沈澱槽13から管路り、iを経て上
澄液14が供給されて砂4が洗浄される。
As the sand separator 3, for example, a liquid cyclone is used, and the separated sand 4 is sent to a sand purification tank 5, and a supernatant is sent to this sand purification M5 from a sedimentation tank 13, which will be described later, via a pipe and i. A liquid 14 is supplied to wash the sand 4.

洗浄された砂6は、管路すを経て養殖湯水域22に戻さ
れる。
The washed sand 6 is returned to the aquaculture hot water area 22 via a pipe.

砂分離器3で分離されたヘドロ汚水7は管路Cを介して
脱窒槽9に送られ、また砂浄化槽5からの洗浄排水8は
管路dによって脱窒N9に供給される。
The sludge wastewater 7 separated by the sand separator 3 is sent to a denitrification tank 9 via a pipe C, and the cleaning waste water 8 from the sand clarification tank 5 is supplied to a denitrification tank N9 via a pipe d.

一方、後述する曝気槽10で形成され、後述する沈澱槽
13で沈降、濃縮された活性汚泥16の一部も活性汚泥
ポンプ12により管路e、fを介して脱窒槽9に供給さ
れ、また曝気槽10で形成されたヘドロ排水11の一部
も管路gを経て脱窒槽9に供給される。
On the other hand, a part of the activated sludge 16 formed in the aeration tank 10, which will be described later, and settled and concentrated in the settling tank 13, which will be described later, is also supplied to the denitrification tank 9 by the activated sludge pump 12 via pipes e and f. A portion of the sludge waste water 11 formed in the aeration tank 10 is also supplied to the denitrification tank 9 via the pipe g.

脱窒槽9は、嫌気的状態を保つために好ましくは密封形
であり、ヘドロ汚水7を形成する汚泥をI$遊状態に保
つ程度の緩い攪拌、例えば攪拌機15による機械的攪拌
が行われる。
The denitrification tank 9 is preferably of a sealed type in order to maintain an anaerobic state, and the sludge forming the sludge sewage 7 is stirred gently enough to keep it in a free state, for example, mechanically stirred by a stirrer 15.

また、曝気槽10から循環、供給されるヘドロ排水11
の量は、ヘドロ1の組成によっても異なるが、通常では
ヘドロ汚水7の量の4〜6倍量である。
In addition, sludge drainage 11 is circulated and supplied from the aeration tank 10.
Although the amount varies depending on the composition of the sludge 1, it is usually 4 to 6 times the amount of the sludge wastewater 7.

この脱窒槽9内における反応は次式(1)で表され、後
述する曝気槽10から循環、供給されるヘドロ排水11
中の硝酸態または亜硝酸態窒素が説窒菌によって脱窒さ
れて窒素ガスが形成、放出される。
The reaction in this denitrification tank 9 is expressed by the following equation (1), and the sludge wastewater 11 is circulated and supplied from the aeration tank 10, which will be described later.
Nitrate or nitrite nitrogen is denitrified by nitrifying bacteria to form and release nitrogen gas.

この場合に、水素供与体としてヘドロ中の有機物が利用
され、この結果、有機物の一部が分解され、除去される
In this case, the organic matter in the sludge is used as a hydrogen donor, so that some of the organic matter is decomposed and removed.

脱窒におけるpHは通常では7.5〜8.5であるが、
(1)式が示すように水酸イオンが生成するので、特に
pH調整を行う必要はない。
The pH during denitrification is usually 7.5 to 8.5, but
Since hydroxide ions are generated as shown in equation (1), there is no need to particularly adjust the pH.

なお、上記式(1)で形成される細胞物質は、菌体汚泥
そのものである。
Note that the cellular material formed by the above formula (1) is bacterial cell sludge itself.

脱窒槽9で一部の有機物が分解、除去されたヘドロ汚水
7”は、ついで曝気槽10に送られる。
The sludge wastewater 7'' from which some organic matter has been decomposed and removed in the denitrification tank 9 is then sent to the aeration tank 10.

曝気槽10には、送風機17によって空気が供給され、
散気装置18を介して空気がヘドロ汚水7゛中に分散溶
解される。
Air is supplied to the aeration tank 10 by a blower 17,
Air is dispersed and dissolved into the sludge wastewater 7' through the aeration device 18.

曝気槽10における反応は、ヘドロ汚水7°中の有機物
、窒素化合物(有機態および無機!3)の生物化学的酸
化であり、この反応機構は次式(2)〜(4)で示され
るように、生物化学的酸化菌による有機物の酸化分解、
および硝化閑によるアンモニアの硝酸化(硝化)である
The reaction in the aeration tank 10 is the biochemical oxidation of organic matter and nitrogen compounds (organic and inorganic! oxidative decomposition of organic matter by biochemical oxidizing bacteria;
and nitrification (nitrification) of ammonia due to nitrification.

上記式(3)から明らかなように、反応の結果、水素イ
オンが生成するので、反応系のpt+を調整するために
、アルカリ槽19からアルカリが曝気槽10に添加され
る。
As is clear from the above equation (3), hydrogen ions are generated as a result of the reaction, so alkali is added from the alkali tank 19 to the aeration tank 10 in order to adjust the pt+ of the reaction system.

硝酸化(硝化)の好適pHは通常6.8〜7.3である
。pH調整に必要なアルカリ量は、海水のアルカリ度に
も関係し、季節により多少異なる。
The preferred pH for nitrification (nitrification) is usually 6.8 to 7.3. The amount of alkali required for pH adjustment is also related to the alkalinity of seawater and varies somewhat depending on the season.

なお、上記式(2)〜(4)で生成する細胞物質は菌態
汚泥そのもの、すなわち活性汚泥である。
Note that the cellular material produced by the above formulas (2) to (4) is bacterial sludge itself, that is, activated sludge.

曝気槽10で生物化学的酸化された後のヘドロ排水11
は沈澱槽13に供給され、ここで活性汚泥16が沈澱し
、上澄液14が溢流により分離される。
Sludge wastewater 11 after being biochemically oxidized in the aeration tank 10
is supplied to a settling tank 13, where activated sludge 16 is settled and supernatant liquid 14 is separated by overflow.

上澄液14は前記のように、ポンプ21により管路り、
iを介してその一部が砂浄化槽5に送られ、残余は管路
り、jを経て養殖湯水域22に戻される。
As mentioned above, the supernatant liquid 14 is piped by the pump 21,
A part of the water is sent to the sand septic tank 5 via i, and the remainder is returned to the aquaculture hot water area 22 via pipe j.

この上澄液14は溶存酸素に冨んだ水として、#殖上有
益である。
This supernatant liquid 14 is beneficial for growth as water rich in dissolved oxygen.

また、沈澱槽13の底部から取り出された活性汚泥16
の一部は、前記のように活性汚泥ポンプR2によって管
路e、fを介して脱窒槽9に送られ、残余の活性汚泥は
管路e、kを経て養殖湯水域22に戻される。
In addition, the activated sludge 16 taken out from the bottom of the settling tank 13
A part of the activated sludge is sent to the denitrification tank 9 via the pipes e and f by the activated sludge pump R2 as described above, and the remaining activated sludge is returned to the aquaculture water area 22 via the pipes e and k.

この活性汚泥は蛋白質を多量に含有しているので、#殖
場の補助飼料として有用である。
Since this activated sludge contains a large amount of protein, it is useful as supplementary feed for breeding farms.

また、活性汚泥は一般に細菌類、原生動物など種々の微
生物の集合体からなり、いわゆるピラミッド型の食物連
鎖系を形成し、大腸菌等の有害細菌は原生動物によって
捕食される。
Furthermore, activated sludge generally consists of an aggregate of various microorganisms such as bacteria and protozoa, forming a so-called pyramid-shaped food chain system, and harmful bacteria such as E. coli are preyed on by the protozoa.

したがって、養殖湯水域22に戻される上澄液14およ
び活性lη泥16は、特に滅菌処理を必要としない。
Therefore, the supernatant liquid 14 and activated lη mud 16 returned to the aquaculture hot water area 22 do not require any particular sterilization treatment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、下記の効果を奏する
ことができる。
As described above, according to the present invention, the following effects can be achieved.

(1)ヘドロを汲み上げて、例えば専用のパージ船や陸
上施設等で処理するので、ヘドロを処理水域に拡散させ
る弊害を生ずることがない。
(1) Since the sludge is pumped up and treated, for example, by a dedicated purge ship or land facility, there is no problem of the sludge spreading into the treated water area.

(2)ヘドロ汚水が生物化学的酸化に供されので、ヘド
ロ水域の酸欠(/8存酸素の欠乏)の主因である有機物
、含窒素化合物を、微生物の作用によって有害物を副生
ずることなく、効果的に酸化分解、除去することができ
る。
(2) Since the sludge wastewater is subjected to biochemical oxidation, the organic matter and nitrogen-containing compounds that are the main cause of oxygen deficiency (/8 oxygen deficiency) in the sludge water area are removed without producing harmful substances by the action of microorganisms. , can be effectively oxidized and decomposed and removed.

(3)また、生物化学的脱窒法が併用されるので、含窒
素化合物を無害な窒素ガスにまで分解することができる
(3) Furthermore, since a biochemical denitrification method is used in combination, nitrogen-containing compounds can be decomposed into harmless nitrogen gas.

(4)反応に関与する微生物は天然に棲息するもので良
く、従って通常の方法で容易に培養することができ、ま
たヘドロを基質として増殖するので、補給の必要がない
(4) The microorganisms involved in the reaction may be naturally occurring, and therefore can be easily cultured by conventional methods, and since they proliferate using sludge as a substrate, there is no need for replenishment.

(5)曝気槽内の活性汚泥に共棲する原生動物によって
、大腸菌等の有害細菌も捕食、除去される。
(5) Harmful bacteria such as E. coli are also captured and removed by protozoa coexisting in the activated sludge in the aeration tank.

(6)反応の結果生成する活性汚泥は、養殖場に戻され
るので、陸上等で処分する必要がない。
(6) Activated sludge produced as a result of the reaction is returned to the farm, so there is no need to dispose of it on land.

また、活性汚泥は蛋白質含有量に冨み、養殖用の補助飼
料として利用(資源化)できる。
In addition, activated sludge is rich in protein content and can be used (resourced) as supplementary feed for aquaculture.

(7)ヘドロ中に多量に含有されている砂は、洗浄後に
養殖場の水域に戻されるので、砂を陸上で処分する必要
がない。
(7) The large amount of sand contained in the sludge is returned to the water area of the farm after washing, so there is no need to dispose of the sand on land.

(8)上記のような生物化学的酸化および脱窒法の採用
ならびに汚泥、砂の陸上処分の不要、活性汚泥の補助飼
料としての利用によってヘドロ処理費用を従来の方法に
比較して大巾に低減することができる。
(8) By adopting the above-mentioned biochemical oxidation and denitrification methods, eliminating the need for terrestrial disposal of sludge and sand, and using activated sludge as supplementary feed, sludge treatment costs are significantly reduced compared to conventional methods. can do.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

上述した本発明の方法に従って、牡蛎養殖場の沈積ヘド
ロの浄化を行った。
According to the method of the present invention described above, sludge deposits in an oyster farm were purified.

試験に供したヘドロの組成は、砂27.0重量%、有機
物380mg / R1全窒素12mg/j! (内ア
ンモニア態窒素5mg/f) 、BOD (生物化学的
酸素要求量)は270mg /βであった。
The composition of the sludge subjected to the test was 27.0% by weight of sand, 380mg of organic matter/12mg/j of R1 total nitrogen! (inner ammonia nitrogen 5 mg/f), BOD (biochemical oxygen demand) was 270 mg/β.

あらかじめ砂を沈降分離したヘドロ汚水を汚水タンクに
貯留し、ポンプにより処理系に供給して連続処理した。
The sludge wastewater, in which the sand had been precipitated and separated, was stored in a wastewater tank and supplied to the treatment system using a pump for continuous treatment.

分離した砂は初期処理水で洗浄し、洗浄排水を汚水タン
クに入れ、ヘドロ汚水と合した。
The separated sand was washed with initially treated water, and the washing wastewater was put into a wastewater tank where it was combined with sludge wastewater.

処理系は、51容脱窒槽、51容曝気槽およ 1び3.
5 I!容沈澱槽(以上の容積はいずれも有効容積)か
ら構成され、温度15.1±1℃、ヘドロ汚水供給量0
.83#/時、曝気槽はBOD汚泥負荷0.4Kg /
Kg ・日、通気速度0.1m/r+?・分、苛性ソー
ダ水溶液添加によりpHを7±0.2に調整、脱窒槽は
ヘドロ排水循環比4倍、窒素容積負荷0.03Kg/m
・日の運転条件とした。
The treatment system includes a 51-volume denitrification tank, a 51-volume aeration tank, and 1 and 3.
5 I! It consists of a volume sedimentation tank (the above volumes are all effective volumes), the temperature is 15.1±1℃, and the amount of sludge sewage supplied is 0.
.. 83#/hour, aeration tank has BOD sludge load 0.4Kg/
Kg/day, ventilation speed 0.1m/r+?・The pH was adjusted to 7±0.2 by adding aqueous caustic soda solution, the denitrification tank had a sludge wastewater circulation ratio 4 times, and the nitrogen volume load was 0.03Kg/m
・The operating conditions were set as day.

以上の運転条件は産業廃水の活性汚泥処理、硝化および
脱窒における一般的条件内にある。
The above operating conditions are within the general conditions in activated sludge treatment, nitrification and denitrification of industrial wastewater.

連続運転におてる処理水(沈澱槽を流出する上澄水)の
BODは25〜35mg/ (1(除去率85〜90%
)、全窒素3〜4mg/j!(除去率65〜75%)で
あった。
The BOD of treated water (supernatant water flowing out of the settling tank) during continuous operation is 25 to 35 mg/(1 (removal rate 85 to 90%)
), total nitrogen 3-4 mg/j! (removal rate 65-75%).

また、約90mg/j2相当分(流入ヘドロ汚水量に対
し)の活性汚泥が生成した。
Additionally, activated sludge equivalent to approximately 90 mg/j2 (based on the amount of inflowing sludge sewage) was generated.

なお、定常運転の試験に先立ち、種汚泥として無機塩濃
度として20,000〜30.000mg/ Eの工場
廃水を処理中の活性汚泥を投入し、ヘドロ汚水を流して
常法に従い菌の馴養を行った。
In addition, prior to the steady operation test, activated sludge from which industrial wastewater with an inorganic salt concentration of 20,000 to 30,000 mg/E was being treated was introduced as seed sludge, and sludge sewage was poured out to allow bacteria to acclimatize according to the usual method. went.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の工程を示す工程図である。 171.ヘドロ、3−砂分離槽、5−砂洗浄槽、9・−
・脱窒槽、1〇−曝気槽、13・−沈澱槽。
The figure is a process diagram showing the steps of the present invention. 171. Sludge, 3-sand separation tank, 5-sand cleaning tank, 9.-
・Denitrification tank, 10-Aeration tank, 13-Settling tank.

Claims (1)

【特許請求の範囲】 下記の工程からなることを特徴とする魚貝類養殖場沈積
ヘドロの浄化方法 (1)魚貝類の養殖場に沈積したヘドロを汲み上げ、該
ヘドロを沈降させて砂とヘドロ汚水とに分離する。 (2)前記分離した砂を下記工程(5)からの上澄液で
洗浄した後に前記養殖場に戻す。 (3)前記ヘドロ汚水および前記砂の洗浄排水を脱窒槽
に供給すると共に、下記工程(4)において曝気槽で形
成されたヘドロ排水の一部および下記工程(5)におい
て沈澱槽で分離された活性汚泥の一部を該脱窒槽に循環
し、攪拌しながら嫌気的条件下で生物化学的に前記循環
ヘドロ排水にもとずく硝酸または亜硝酸態窒素を脱窒す
ると共にヘドロ汚水中の有機物の一部を分解除去する。 (4)前記脱窒槽で処理されたヘドロ汚水を曝気槽に供
給し、空気を吹き込んで好気的条件下で生物化学的に該
ヘドロ汚水中の有機物を酸化して分解除去すると共にア
ンモニア態窒素を硝酸または亜硝酸態窒素に酸化しヘド
ロ排水を形成する。 (5)前記曝気槽で処理されたヘドロ排水を沈澱槽に供
給し、活性汚泥を沈下せしめ、上澄液の一部を前記砂洗
浄槽に供給し、残余を前記養殖場に戻すとともに、前記
活性汚泥の一部を前記脱窒槽に供給し、残余を前記養殖
場に戻す。
[Claims] A method for purifying sludge deposited on a fish and shellfish farm, characterized by comprising the following steps: (1) Pump up the sludge deposited on the fish and shellfish farm, and let the sludge settle to form sand and sludge wastewater. Separate into two parts. (2) The separated sand is washed with the supernatant liquid from step (5) below and then returned to the farm. (3) The sludge wastewater and the sand washing wastewater are supplied to the denitrification tank, and a part of the sludge wastewater formed in the aeration tank in the following step (4) and separated in the settling tank in the following step (5) are A part of the activated sludge is circulated to the denitrification tank, and while stirring, biochemically denitrifies the nitric acid or nitrite nitrogen based on the recycled sludge wastewater under anaerobic conditions, and removes the organic matter in the sludge wastewater. Part of it is disassembled and removed. (4) The sludge wastewater treated in the denitrification tank is supplied to the aeration tank, and air is blown into it to biochemically oxidize and decompose organic matter in the sludge wastewater under aerobic conditions, and ammonia nitrogen is removed. is oxidized to nitric acid or nitrite to form sludge wastewater. (5) Supplying the sludge wastewater treated in the aeration tank to the settling tank, allowing the activated sludge to settle, supplying a portion of the supernatant liquid to the sand washing tank, and returning the remainder to the aquaculture farm; A portion of the activated sludge is supplied to the denitrification tank and the remainder is returned to the farm.
JP26606585A 1985-11-28 1985-11-28 Method for cleaning up of sludge deposited in culture farm for fish and shellfishes Pending JPS62125900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26606585A JPS62125900A (en) 1985-11-28 1985-11-28 Method for cleaning up of sludge deposited in culture farm for fish and shellfishes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26606585A JPS62125900A (en) 1985-11-28 1985-11-28 Method for cleaning up of sludge deposited in culture farm for fish and shellfishes

Publications (1)

Publication Number Publication Date
JPS62125900A true JPS62125900A (en) 1987-06-08

Family

ID=17425880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26606585A Pending JPS62125900A (en) 1985-11-28 1985-11-28 Method for cleaning up of sludge deposited in culture farm for fish and shellfishes

Country Status (1)

Country Link
JP (1) JPS62125900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098253A (en) * 2005-10-04 2007-04-19 Stem:Kk Method for improving bottom material in closed brackish water area, and method for evaluating degree of bottom material improvement
JP2008132416A (en) * 2006-11-28 2008-06-12 Stem:Kk Method for inhibiting blue tide generation due to artificial water bottom depression
JP2010194426A (en) * 2009-02-24 2010-09-09 Ebara Engineering Service Co Ltd Biological treatment method and apparatus utilizing fishes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098253A (en) * 2005-10-04 2007-04-19 Stem:Kk Method for improving bottom material in closed brackish water area, and method for evaluating degree of bottom material improvement
JP2008132416A (en) * 2006-11-28 2008-06-12 Stem:Kk Method for inhibiting blue tide generation due to artificial water bottom depression
JP2010194426A (en) * 2009-02-24 2010-09-09 Ebara Engineering Service Co Ltd Biological treatment method and apparatus utilizing fishes

Similar Documents

Publication Publication Date Title
JP2665789B2 (en) Biological purification method of water containing organic substances and derivatives thereof using action and diffusion of aerobic and anaerobic microorganisms, and apparatus for using the same
JP3183406B2 (en) Methods and reactors for water purification
US4188289A (en) Process for purification of sanitary waters
CA2390978C (en) Wastewater purifying apparatus
NL9101917A (en) METHOD FOR PURIFYING WASTE WATER, AND APPARATUS FOR USING THIS METHOD
US5811009A (en) Method and system for improved biological nitrification of wastewater at low temperature
WO2000077171A1 (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and mehtod of weight loss treatment of activated sludge
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4092454B2 (en) Water treatment method
CN109368945A (en) Sewage from Ships processing and recovery of nitrogen and phosphorus integral system and method based on sea water magnesia source
Sawyer et al. Rising of activated sludge in final settling tanks
JP2003158953A (en) Circulating aquaculture system
JPS62125900A (en) Method for cleaning up of sludge deposited in culture farm for fish and shellfishes
JPS6254075B2 (en)
JP2008000745A (en) Method for purifying water
JP3453129B2 (en) Water purification promoter and water purification method and purification system using this purification promoter
KR100640940B1 (en) Continual system for processing waste water
JP4608900B2 (en) Biological treatment method of organic wastewater
KR100513567B1 (en) Wastewater Purification Apparatus
KR100465524B1 (en) System and Method for wastewater treatment using membrane and Bacillus sp.
WO2002046104A1 (en) High-density adsorbents of bacteria, closed circulatory system containing the same for fish farming and fish fry culture and fishes fed by using this system
JPH0432719B2 (en)
KR100312544B1 (en) Method for highly biologically the tannery waste-water
KR100462578B1 (en) The purification method of an organic waste water with high density
JPS6222678B2 (en)