JP4608900B2 - Biological treatment method of organic wastewater - Google Patents

Biological treatment method of organic wastewater Download PDF

Info

Publication number
JP4608900B2
JP4608900B2 JP2004031012A JP2004031012A JP4608900B2 JP 4608900 B2 JP4608900 B2 JP 4608900B2 JP 2004031012 A JP2004031012 A JP 2004031012A JP 2004031012 A JP2004031012 A JP 2004031012A JP 4608900 B2 JP4608900 B2 JP 4608900B2
Authority
JP
Japan
Prior art keywords
sludge
self
tank
organic matter
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004031012A
Other languages
Japanese (ja)
Other versions
JP2005218995A (en
Inventor
晃士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004031012A priority Critical patent/JP4608900B2/en
Publication of JP2005218995A publication Critical patent/JP2005218995A/en
Application granted granted Critical
Publication of JP4608900B2 publication Critical patent/JP4608900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、下水、各種産業廃水等の有機性廃水中の有機物を低減して廃水を浄化するための生物学的処理方法に関する。   The present invention relates to a biological treatment method for purifying wastewater by reducing organic matter in organic wastewater such as sewage and various industrial wastewater.

下水、各種産業廃水等の有機性廃水中の有機物を効率的に除去する技術として、活性汚泥法に代表される生物処理法がよく用いられる。生物処理法においては、廃水中の有機物の30〜80%程度は酸化分解され、二酸化炭素と水などの無機物となって無害化される。一方、残る20〜70%の有機物は微生物の菌体に合成され、大部分は余剰汚泥として系外へ引き抜かれ、一部は処理水中に懸濁物質(SS)として流出する。   As a technique for efficiently removing organic matter in organic wastewater such as sewage and various industrial wastewater, biological treatment methods represented by the activated sludge method are often used. In the biological treatment method, about 30 to 80% of the organic matter in the wastewater is oxidatively decomposed to become harmless as inorganic matter such as carbon dioxide and water. On the other hand, the remaining 20 to 70% of organic matter is synthesized into microbial cells, most of which is extracted as excess sludge out of the system, and part of it flows out as suspended matter (SS) in the treated water.

余剰汚泥は通常懸濁物質濃度として5〜20g/Lのスラリーであるが、これは必要に応じて更に濃縮された後、高分子凝集剤などによって凝集され、脱水機で脱水されて含水率70〜86%程度の脱水ケーキとし、産業廃棄物として処分される。この脱水操作の前に、好気消化や嫌気消化といったプロセスで汚泥の減量化が図られることもある。また、脱水ケーキは焼却により更に減量された後、処分される場合もある。また、脱水ケーキとした後に堆肥化され、肥料として利用されたり、緑農地還元される場合もある。   The surplus sludge is usually a slurry having a suspended solid concentration of 5 to 20 g / L, which is further concentrated as necessary, then agglomerated by a polymer flocculant, etc., dehydrated by a dehydrator, and water content 70 About -86% dehydrated cake is disposed of as industrial waste. Before this dehydration operation, sludge may be reduced by a process such as aerobic digestion or anaerobic digestion. In addition, the dehydrated cake may be disposed of after being further reduced by incineration. Moreover, after making it into a dehydrated cake, it may be composted and used as a fertilizer or may be returned to green farmland.

また、近年では、余剰汚泥に対してオゾン処理などの改質処理を施し、生分解性を向上させた後に再度曝気槽に返送するか、他の好気消化槽又は嫌気消化槽に送給して更に生物処理し、余剰汚泥を極力無機物にまで分解する工夫もなされている。   In recent years, surplus sludge has been subjected to reforming treatment such as ozone treatment to improve biodegradability and then returned to the aeration tank again, or sent to other aerobic digesters or anaerobic digesters. In addition, it has been devised to further biologically process and decompose surplus sludge into inorganic substances as much as possible.

このように、有機性廃水の生物処理で発生する余剰汚泥の廃棄のためには種々の方法で処理・処分する必要があり、手間とコストがかかるために、極力余剰汚泥を排出しないプロセスが望まれている。   Thus, in order to dispose of surplus sludge generated by biological treatment of organic wastewater, it is necessary to treat and dispose of it by various methods, which requires labor and cost, and therefore a process that does not discharge surplus sludge as much as possible is desired. It is rare.

余剰汚泥の排出量を極力少なくするための別の方法として、脱共役剤の使用が一部で検討されている。この脱共役剤の作用機構は次の通りである。   As another method for reducing the amount of excess sludge discharged as much as possible, the use of uncoupling agents has been partially studied. The mechanism of action of this uncoupler is as follows.

廃水中の有機物を利用して微生物が増殖するためには、菌体を構成する材料としての有機物に加え、これを加工するためのエネルギーが必要である。菌体合成のためのエネルギー源としては、主に有機物を酸化して得られたエネルギーを利用して生成される高エネルギー化合物である、アデノシン三りん酸(ATP)が用いられるとされている。   In order for microorganisms to grow using organic matter in wastewater, in addition to organic matter as a material constituting the cells, energy for processing this is required. As an energy source for cell synthesis, adenosine triphosphate (ATP), which is a high energy compound mainly generated by using energy obtained by oxidizing organic substances, is used.

更に詳細には、有機物が細胞内で酸化されるときのエネルギーにより、細胞内のHが細胞膜の外側に汲み出される。細胞膜は通常Hを殆ど透過しないため、細胞内外においてH濃度勾配及び電位勾配が形成される。このように細胞外に汲み出されたHは細胞膜の内外を貫くATP合成酵素を通じて再び細胞内に取り込まれるが、その際にHが流入する時のエネルギーを利用してATP合成酵素はATPを合成する。 More specifically, the energy when organic matter is oxidized in the cell pumps intracellular H + to the outside of the cell membrane. Since the cell membrane is usually substantially impermeable to H +, H + concentration gradient and the potential gradient is formed in the cell and out. Thus, the H + pumped out of the cell is taken into the cell again through the ATP synthase that penetrates the inside and outside of the cell membrane. At this time, the ATP synthase uses the energy when H + flows into the ATP synthase. Is synthesized.

即ち、有機物が酸化される際の化学的エネルギーは、一度細胞膜内外のH濃度勾配という形に変換された後、ATPという高エネルギー化合物に変換されている。このATPの持つエネルギーを利用して、取り込んだ有機物の一部を変換し、菌体成分を合成して菌体が増殖する結果、余剰菌体が生じて廃棄物となっている。 That is, the chemical energy when the organic matter is oxidized is once converted into a form of H + concentration gradient inside and outside the cell membrane, and then converted into a high energy compound called ATP. A part of the taken-in organic substance is converted using the energy of ATP, the bacterial cell components are synthesized, and the bacterial cell grows. As a result, surplus bacterial cells are generated and become waste.

脱共役剤とは、ATP合成酵素を介さずにHを細胞膜外から細胞膜内に運搬し、H濃度勾配を解消する作用を持つ薬剤である。 The uncoupler, the H + transported from the outside of the cell membrane to the cell membrane without passing through the ATP synthase, an agent that has an action to eliminate the H + concentration gradient.

このため、脱共役剤の存在下では、有機物の酸化は通常通り進行し、Hが細胞外に汲み出されるが、このHの大部分は脱共役剤の作用によりATP合成酵素を経由せずに再び細胞内に戻ってきてしまうため、ATPの生成量が減少する。この結果、菌体合成のための十分量のATPが得にくくなり、菌体の生成量は低減し、余剰汚泥の発生量も少なくなると考えられる。 For this reason, in the presence of the uncoupler, the oxidation of the organic matter proceeds as usual, and H + is pumped out of the cell. Most of this H + is passed through ATP synthase by the action of the uncoupler. The amount of ATP produced is reduced. As a result, it is difficult to obtain a sufficient amount of ATP for cell synthesis, the production amount of the bacterial cells is reduced, and the amount of surplus sludge generated is also reduced.

余剰汚泥の発生量を低減するための工夫としては、前述のように好気消化や嫌気消化、脱水ケーキの焼却、更には汚泥の生分解性向上などが挙げられるが、いずれも大きな敷地面積が必要になり、運転管理が煩雑になる問題がある。更にプロセスによっては、例えば焼却であれば燃焼のための補助燃料や排ガス対策などのためにコストが増加したり、オゾン処理による汚泥の改質法などではオゾン処理のコストが増加するなどの問題もある。   Devices to reduce the amount of excess sludge generated include aerobic digestion and anaerobic digestion, incineration of dehydrated cake, and improvement of biodegradability of sludge as described above. There is a problem that operation management becomes complicated. In addition, depending on the process, for example, incineration increases costs for auxiliary fuel for combustion and exhaust gas countermeasures, and sludge reforming methods by ozone treatment increase the cost of ozone treatment. is there.

このような問題を回避するために、余剰汚泥の発生量そのものを抑制する技術として脱共役剤の利用が望まれているが、未だ実験室レベルの検討に留まっており、実用化には到っていない。   In order to avoid such problems, the use of uncoupling agents is desired as a technique for suppressing the amount of surplus sludge generation itself, but it is still only at the laboratory level and has been put into practical use. Not.

本発明は脱共役剤の持つ問題点を解消し、これを実用化するための技術を提供するものであり、有機物摂取工程中の有機物を脱共役剤の存在下に微生物の作用で好気的に除去することにより、汚泥発生量を効果的に低減する有機性廃水の生物学的処理方法を提供することを目的とする。   The present invention solves the problems of uncoupling agents and provides a technique for putting them into practical use. Organic substances in the organic substance intake process are aerobic by the action of microorganisms in the presence of uncoupling agents. It is an object of the present invention to provide a biological treatment method for organic wastewater that effectively reduces the amount of sludge generated by removing it.

本発明者の検討により、短期間の回分試験では脱共役剤の添加により汚泥発生量の低下が認められるが、連続試験では汚泥発生量の低下が認められず、しかもこの連続試験に用いた汚泥で再び回分試験を行うと、脱共役剤の有無は汚泥発生量に影響を与えないことが明らかとなった。これは、連続試験を行う間に汚泥の性質が変化し、脱共役剤への耐性を獲得したことによるものと考えられた。   According to the study of the present inventor, in the short-term batch test, the sludge generation amount is decreased by the addition of the uncoupling agent, but in the continuous test, the sludge generation amount is not decreased, and the sludge used in this continuous test is also observed. When the batch test was performed again, it was found that the presence or absence of the uncoupler did not affect the amount of sludge generated. This was thought to be due to the fact that the properties of the sludge changed during the continuous test and resistance to the uncoupler was acquired.

そこで、本発明者は、脱共役剤への耐性を獲得した汚泥に対しても、脱共役剤により効果的に汚泥発生量を低減できる方法を提供するべく更に検討した結果、pH5.5付近では後述する「真の収率」が低減すること、しかしこの条件では自己消化速度が低下し、汚泥発生量の顕著な低減は期待できないことを知見し、有機物摂取工程と自己消化工程とを異なるpH条件で行うことにより、真の収率の低減と自己消化による発生汚泥量の低減とが可能であることを見出し、本発明を完成させた。   Therefore, the present inventor further studied to provide a method capable of effectively reducing the amount of sludge generated by the uncoupler even for sludge that has acquired resistance to the uncoupler, and as a result, in the vicinity of pH 5.5. It is found that the “true yield” described later is reduced, but the self-digestion rate is reduced under these conditions, and a significant reduction in sludge generation cannot be expected. It was found that by performing under the conditions, it is possible to reduce the true yield and the amount of generated sludge by self-digestion, thereby completing the present invention.

即ち、本発明は、有機性廃水中の有機物を、脱共役剤の存在下に微生物の作用で好気的に除去する生物学的処理方法において、該廃水中の有機物を微生物の菌体内に摂取させる有機物摂取工程と、有機物を摂取した微生物を自己消化させる自己消化工程とを有し、該自己消化工程を該有機物摂取工程と異なるpH条件下で行う方法であって、該有機物摂取工程をpH5〜6.5の範囲で行い、該自己消化工程をpH7〜9の範囲で行うことを特徴とする。 That is, the present invention relates to a biological treatment method in which organic matter in organic wastewater is removed aerobically by the action of microorganisms in the presence of an uncoupler, and the organic matter in the wastewater is ingested into the microbial cells. And a self-digestion step of self-digesting microorganisms that have ingested organic matter, and the self-digestion step is performed under a pH condition different from that of the organic matter intake step. It is characterized in that it is carried out in the range of ˜6.5 and the self-digestion step is carried out in the range of pH 7-9 .

なお、ここで、「真の収率」とは、細菌が有機物を摂取して菌体成分とするときの収率であり、菌体の自己消化を考慮に入れない収率である。通常、活性汚泥中では5〜30日程度、汚泥が滞留し、その間に自己消化が進行するため、実際の汚泥転換率は真の収率の1/4から1/2程度となる。   Here, the “true yield” is a yield when bacteria ingest organic matter to make a cell component, and is a yield that does not take into account self-digestion of the cell. Normally, sludge stays in activated sludge for about 5 to 30 days, and self-digestion proceeds during that time, so the actual sludge conversion rate is about 1/4 to 1/2 of the true yield.

このような真の収率の概念は、例えば次の文献にある活性汚泥の数学モデルASM No.1〜No.3などにも見られる。
M.Henze, W.Gujer, T.Mino, M.C.M. van Loosdrecht著、"Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No9,2000"、IWA Publishing出版
一方、自己消化速度はpH8.5付近で最大であったが、この条件では真の収率は増加し、やはり汚泥発生量の顕著な低減は期待できないことが分かった。
The concept of such a true yield is, for example, the mathematical model ASM No. of activated sludge in the following literature. 1-No. 3 is also seen.
M. Henze, W. Gujer, T. Mino, MCM van Loosdrecht, "Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No9, 2000", published by IWA Publishing. Although it was the maximum in the vicinity of 5, it was found that the true yield increased under these conditions, and a significant reduction in the amount of sludge generation could not be expected.

そこで、有機物が菌体に摂取される反応は比較的速く起きることから、主にこの反応が生じている時のみ、真の収率を低減するべくpHを5.5付近とし、その後に生ずる自己消化ではpHを8.5付近とすることで自己消化速度を高めることにより、汚泥発生量を低減できると考えられた。実際に本発明者がこのような条件で脱共役剤を適用したところ、明らかに汚泥発生量が低減した。   Therefore, since the reaction of ingesting organic matter into the cell occurs relatively quickly, the pH is set to around 5.5 to reduce the true yield only when this reaction is mainly occurring, and the self that occurs thereafter In digestion, it was considered that the amount of sludge generated can be reduced by increasing the self-digestion rate by adjusting the pH to around 8.5. When the present inventors actually applied the uncoupling agent under such conditions, the amount of sludge generated was clearly reduced.

このように、本発明は、脱共役剤に対して耐性を獲得した汚泥であっても、有機物摂取工程と自己消化工程とでそれぞれ汚泥発生量の低減に適したpHがあることを見出したことによってなされたものである。   Thus, the present invention has found that there is a pH suitable for reducing the amount of sludge generated in the organic matter intake process and the self-digestion process, even if the sludge has acquired resistance to the uncoupler. It was made by.

なお、脱共役剤を投与していない通常の活性汚泥に対しては、真の収率や自己消化速度はpHの影響を殆ど受けない。従って、このようなpHの影響は、脱共役剤を使用した場合に特有の現象であると考えられる。   For normal activated sludge to which no uncoupler is administered, the true yield and autolysis rate are hardly affected by pH. Therefore, such an influence of pH is considered to be a phenomenon peculiar when the uncoupler is used.

このように脱共役剤の存在により、汚泥がpH変化に対して敏感に性質を変えることに関して、詳細なメカニズムは明らかではないが、脱共役剤はその性質上、細胞膜内外のH濃度を均一にする働きがあることは先述の通りであり、脱共役剤が存在しなければ、細胞膜はH非透過性のため、外部のpH変化の影響を受けにくいが、脱共役剤の存在下に外部環境のpHが変動すると、細胞内のpHが変動したり、それに伴って細胞の代謝が何らかの変化を起こすものと考えられる。即ち、このように汚泥の代謝に対する外部pHの影響が大きくなる現象は、脱共役作用をもつ薬剤に共通の作用である可能性が高い。 As described above, the detailed mechanism for changing the property of sludge sensitive to pH change due to the presence of the uncoupler is not clear. However, the uncoupler has a uniform H + concentration inside and outside the cell membrane. As described above, if there is no uncoupling agent, the cell membrane is H + impervious and is not easily affected by external pH changes, but in the presence of the uncoupling agent. It is considered that when the pH of the external environment varies, the intracellular pH varies, and some changes in cell metabolism are accompanied accordingly. That is, the phenomenon in which the influence of the external pH on the sludge metabolism in this way is highly likely to be common to drugs having an uncoupling action.

本発明の有機性廃水の生物学的処理方法によれば、脱共役剤を単純に添加しただけでは汚泥発生量低減効果が極めて低いという問題を改善し、脱共役剤により汚泥発生量の大幅な低減効果を得ることができる。   According to the biological treatment method of the organic wastewater of the present invention, the problem that the sludge generation amount reducing effect is extremely low by simply adding the uncoupler is improved. A reduction effect can be obtained.

本発明の方法は、脱共役剤を用いてpHを制御するのみで設備に大幅な変更を加えたり、新たなプロセスを付け加えて運転操作を煩雑にしたりすることなく、簡易なプロセスで安価に余剰汚泥の問題を解決することができ、廃水処理コスト削減、作業性改善、廃棄物削減に多大な効果を奏する。   The method of the present invention is a simple and inexpensive process that makes it possible to make a large change to the equipment simply by controlling the pH using an uncoupler, or to add a new process and complicate the operation. The problem of sludge can be solved, and it has a great effect on wastewater treatment cost reduction, workability improvement, and waste reduction.

以下に本発明の有機性廃水の生物学的処理方法の好ましい実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of the biological treatment method for organic wastewater according to the present invention will be described in detail.

本発明で用いる脱共役剤としては特に制限はなく、従来公知の脱共役剤いずれにも適用することができる。実用的には、少量の添加量で脱共役効果を発揮する、カルボニルシアニド-m-クロロフェニルヒドラゾンやカルボニルシアニド-p-トリフルオロメトキシフェニルヒドラゾンなどのカルボニルシアニドフェニルヒドラゾン誘導体、2,6-ジ-t-ブチル-4-(2',2'-ジシアノビニル)フェノールなどのフェノール誘導体、3-クロロ-N-(3-クロロ-2,6-ジニトロ-4-(トリフルオロメチル)フェニル)-5-(トリフルオロメチル)-2-ピリジンアミンなどのN-フェニルピリジナミン誘導体、2'-クロロ-2,4-ジニトロ-5',6-ジ(トリフルオロメチル)ジフェニルアミンなどのジアリルアミン誘導体、サリチルアニリド誘導体、2-(トリフルオロメチル)-4,5,6,7-テトラクロロベンズイミダゾールなどのベンズイミダゾール誘導体などが挙げられる。特に、N-フェニルピリジナミン誘導体、なかでも3-クロロ-N-(3-クロロ-2,6-ジニトロ-4-(トリフルオロメチル)フェニル)-5-(トリフルオロメチル)-2-ピリジンアミンやその類似体が、汚泥発生量低減効果が高く、適している。   There is no restriction | limiting in particular as an uncoupling agent used by this invention, It can apply to all conventionally well-known uncoupling agents. Practically, carbonyl cyanide phenylhydrazone derivatives such as carbonylcyanide-m-chlorophenylhydrazone and carbonylcyanide-p-trifluoromethoxyphenylhydrazone, which exhibit an uncoupling effect with a small addition amount, 2,6- Phenolic derivatives such as di-t-butyl-4- (2 ', 2'-dicyanovinyl) phenol, 3-chloro-N- (3-chloro-2,6-dinitro-4- (trifluoromethyl) phenyl) N-phenylpyridinamine derivatives such as -5- (trifluoromethyl) -2-pyridinamine, diallylamine derivatives such as 2'-chloro-2,4-dinitro-5 ', 6-di (trifluoromethyl) diphenylamine , Salicylanilide derivatives, and benzimidazole derivatives such as 2- (trifluoromethyl) -4,5,6,7-tetrachlorobenzimidazole. In particular, N-phenylpyridinamine derivatives, especially 3-chloro-N- (3-chloro-2,6-dinitro-4- (trifluoromethyl) phenyl) -5- (trifluoromethyl) -2-pyridine Amines and their analogs are suitable because they have a high sludge generation reduction effect.

原水(有機性廃水)への脱共役剤の添加量は、用いる脱共役剤の種類や適用条件により大きく異なるが、通常0.01〜100mg/Lの範囲で添加され、特に0.05〜20mg/L、更に望ましくは0.1〜5mg/Lで効果の認められるものが選ばれる。脱共役剤の添加量が多すぎると、薬剤費が嵩む他に、それ自体が廃水のCOD値を上昇させて汚濁物質となったり、特有の臭気を発生させたり、環境、特に水生生物へ悪影響を与える原因となったりするため、好ましくない。一方、脱共役剤の添加量が少なすぎると、得られる汚泥発生量低減効果も少ない場合が多い。   The amount of the uncoupling agent added to the raw water (organic waste water) varies greatly depending on the type of uncoupling agent used and the application conditions, but is usually added in the range of 0.01 to 100 mg / L, particularly 0.05 to 20 mg. / L, more preferably 0.1 to 5 mg / L, which is effective. If the amount of uncoupler added is too high, the cost of the drug will increase, and the COD value of the wastewater itself will increase to become a pollutant, generate a specific odor, and adversely affect the environment, especially aquatic organisms. This is not preferable because it may cause On the other hand, if the amount of uncoupler added is too small, the resulting sludge generation amount reducing effect is often small.

脱共役剤を添加する位置は、生物処理の最も上流側が望ましい。これは、脱共役剤はその性質上、微生物が有機物を摂取・分解する際に最も効果を発揮するものであり、既に生成してしまった菌体を減少させる効果は少ないと考えられるためである。従って、本発明においても、自己消化工程における脱共役剤濃度よりも、有機物摂取工程における脱共役剤濃度の方が比較的重要であり、脱共役剤は有機物摂取工程或いはその上流側で添加することが好ましい。   The position at which the uncoupling agent is added is desirably the most upstream side of the biological treatment. This is because the uncoupling agent is most effective when microorganisms ingest and decompose organic substances because of its nature, and is considered to have little effect on reducing the cells that have already been generated. . Accordingly, also in the present invention, the uncoupler concentration in the organic substance intake process is relatively more important than the uncoupler concentration in the self-digestion process, and the uncoupler should be added in the organic substance intake process or upstream thereof. Is preferred.

なお、一般に生物処理の上流側には調整槽が設置されることが多く、ここで攪拌のために曝気を行うことも多い。調整槽での滞留時間が長いと、調整槽で廃水中の有機物の一部が菌体に転換されることがあり、この場合、後段の生物処理で脱共役剤を添加しても、前述の理由により脱共役剤による汚泥発生量低減効果が低いことがある。従って、このような場合には、調整槽にも脱共役剤の少なくとも一部を添加することが望ましい。   In general, a regulating tank is often installed on the upstream side of biological treatment, and aeration is often performed here for stirring. If the residence time in the adjustment tank is long, a part of the organic matter in the wastewater may be converted into cells in the adjustment tank. In this case, even if the uncoupling agent is added in the subsequent biological treatment, For some reason, the effect of reducing the amount of sludge generated by the uncoupling agent may be low. Therefore, in such a case, it is desirable to add at least a part of the uncoupling agent to the adjustment tank.

本発明においては、このような脱共役剤の存在下での生物処理において、有機物摂取工程とその後段の自己消化工程とを異なるpH条件下に行う。   In the present invention, in the biological treatment in the presence of such an uncoupler, the organic matter intake step and the subsequent autolysis step are performed under different pH conditions.

ここで、有機物摂取工程のpHは5〜6.5の範囲、特に5.5〜6.0の範囲が良い。一方、自己消化工程のpHは7.0〜9.0、特に7.5〜8.6の範囲が良い。 Here, the pH of the organic matter ingesting step is preferably in the range of 5 to 6.5, particularly in the range of 5.5 to 6.0. On the other hand, the pH of the autolysis process is 7 . The range of 0-9.0, especially 7.5-8.6 is good.

有機物摂取工程のpHが上記範囲より低い場合には有機物摂取工程において十分に有機物(溶解性BOD)の摂取が行われず、残留した有機物は後段の自己消化工程で摂取されることになり、十分な効果を得ることができない。pHが高すぎる場合、例えばpH9.5以上でも同様の理由で高い効果を得られない。pHが中性付近の場合には、このような有機物摂取工程における有機物除去率の悪化は生じにくいが、pHが上記範囲を外れると先述のように汚泥が脱共役剤に対して耐性を獲得する効果により、真の収率を低減される効果が薄れ、本発明による汚泥発生量低減効果を十分に得ることができない。また、自己消化工程のpHが上記範囲よりも高くても低くても自己消化速度を高めることができず、本発明による汚泥発生量低減効果を十分に得ることができない。   If the pH of the organic matter intake process is lower than the above range, the organic matter intake (soluble BOD) is not sufficiently taken in the organic matter intake step, and the remaining organic matter will be taken in the subsequent self-digestion step. The effect cannot be obtained. If the pH is too high, for example, even if the pH is 9.5 or higher, a high effect cannot be obtained for the same reason. When the pH is near neutral, deterioration of the organic substance removal rate in the organic substance intake process is unlikely to occur, but when the pH is out of the above range, the sludge acquires resistance to the uncoupler as described above. The effect of reducing the true yield is reduced by the effect, and the sludge generation amount reducing effect according to the present invention cannot be sufficiently obtained. Moreover, even if the pH of the self-digestion step is higher or lower than the above range, the self-digestion rate cannot be increased, and the sludge generation amount reducing effect according to the present invention cannot be sufficiently obtained.

有機物摂取工程及び自己消化工程のpH調整は公知のいずれの方法を用いても良い。pHの調整は、酸又はアルカリのpH調整剤を添加する他、pHを下げる方法として、微生物による酸生成反応や硝化反応を利用しても良く、pHを上げる方法として微生物による有機酸の分解反応や脱窒反応、脱アミノ反応などを利用しても良い。   Any known method may be used for pH adjustment in the organic matter intake process and the self-digestion process. In addition to adding an acid or alkaline pH adjuster, the pH may be adjusted by using an acid generation reaction or nitrification reaction by microorganisms as a method for lowering the pH, or by a decomposition reaction of organic acids by microorganisms as a method for raising the pH. Alternatively, a denitrification reaction or a deamination reaction may be used.

本発明において、微生物が廃水中の有機物を菌体内に摂取する工程である有機物摂取工程では、必要な菌体濃度を保持するために、下流側に設けられるいずれかの工程(自己消化工程、沈殿槽、消化槽など)から汚泥を必要量返送するか、リアクタをケモスタット方式とするか、リアクタ内に微生物の付着した担体を保持するか、下流側から微生物の付着した担体を返送することが好ましく、これらの方式を組み合わせることもできる。   In the present invention, in the organic matter ingestion step, which is a step in which microorganisms ingest organic matter in wastewater, any one of the steps provided on the downstream side (self-digestion step, precipitation) It is preferable to return the required amount of sludge from the tank, digestion tank, etc., to make the reactor a chemostat system, hold the carrier with microorganisms attached in the reactor, or to return the carrier with microorganisms attached from the downstream side. These methods can also be combined.

有機物摂取工程では、流入する溶解性BODの60%以上、より好ましくは80%以上、更に好ましくは90%以上が除去されるように菌体を保持するのが望ましい。この条件を達成するためには、微生物の保持方式、流入する有機物の種類、水温、その他の条件にもよるが、例えば有機物摂取工程で保持しているVSSに対して、VSS当たりの溶解性BOD負荷を0.1〜12kg−BOD/kg−VSS/d、より望ましくは0.5〜6kg−BOD/kg−VSS/d、更に望ましくは1.2〜4.0kg−BOD/kg−VSS/dとするのが良い。   In the organic matter ingesting step, it is desirable to retain the cells so that 60% or more, more preferably 80% or more, and still more preferably 90% or more of the dissolved BOD that flows in is removed. In order to achieve this condition, depending on the retention method of microorganisms, the type of organic matter flowing in, the water temperature, and other conditions, for example, the solubility BOD per VSS for VSS retained in the organic matter intake process The load is 0.1 to 12 kg-BOD / kg-VSS / d, more preferably 0.5 to 6 kg-BOD / kg-VSS / d, and still more preferably 1.2 to 4.0 kg-BOD / kg-VSS / d. It is good to be d.

有機物摂取工程で除去しきれない溶解性BODは、後段の自己消化工程で除去されることになるが、自己消化工程では自己消化速度を最適とするようpHを調整するため、真の収率が比較的高い条件となる。この結果、自己消化工程で除去されたBODの汚泥転換率は、従来法における汚泥転換率に近い値となり、汚泥発生量が増加する。即ち、本発明の効果は主に有機物摂取工程で摂取された溶解性BODより発生する菌体量を低減するものであるため、なるべく多い溶解性BODを有機物摂取工程で汚泥に摂取させることが効果的である。   Soluble BOD that cannot be removed in the organic matter ingestion process will be removed in the subsequent self-digestion process, but in the self-digestion process, the pH is adjusted to optimize the self-digestion rate. This is a relatively high condition. As a result, the sludge conversion rate of the BOD removed in the self-digestion step becomes a value close to the sludge conversion rate in the conventional method, and the sludge generation amount increases. That is, the effect of the present invention is mainly to reduce the amount of microbial cells generated from the soluble BOD ingested in the organic matter ingestion process. Therefore, it is effective to make sludge ingest as much soluble BOD as possible in the organic matter ingestion process. Is.

一方、有機物摂取工程で有機物を摂取した微生物を自己消化させる工程である自己消化工程では、有機物摂取槽から流出してきた菌体を一定時間滞留させ、自己消化を行わせる必要がある。通常は、後述の図1に示されるように、有機物摂取工程からの処理水をほぼ全量受け入れる自己消化槽を設け、自己消化槽の処理水は沈殿、浮上濃縮、膜分離などの手段で固液分離を行い、上澄液のみを処理水として排出し、濃縮された汚泥は有機物摂取槽や自己消化槽に返送する。   On the other hand, in the self-digestion step, which is a step of self-digesting microorganisms that have ingested organic matter in the organic matter ingestion step, it is necessary to cause the cells that have flowed out of the organic matter ingestion tank to stay for a certain period of time to perform self-digestion. Usually, as shown in FIG. 1 to be described later, a self-digestion tank that receives almost all of the treated water from the organic matter intake process is provided, and the treated water in the self-digestion tank is solid-liquid by means such as precipitation, levitation concentration, and membrane separation. After separation, only the supernatant liquid is discharged as treated water, and the concentrated sludge is returned to the organic matter intake tank or self-digestion tank.

このようにして、有機物摂取工程と自己消化工程で保持するVSSの合計量に対して、VSS当たりのBOD負荷を0.05〜1.0kg−BOD/kg−VSS/d、望ましくは0.1〜0.6kg−BOD/kg−VSS/d、更に望ましくは0.15〜0.4kg−BOD/kg−VSS/dとするよう、それぞれの水槽容積、固液分離手段、汚泥返送率などを決定することが好ましい。また、自己消化工程で保持するVSSは、有機物摂取工程と自己消化工程で保持するVSSの合計量に対して、40%以上、望ましくは60%以上、更に望ましくは80%以上とするのがよい。即ち、後述の図4に示されるように、有機物摂取工程で保持する汚泥の割合が増えると、有機物摂取工程における自己消化速度はそれほど速くないために、自己消化される汚泥量が減少し、汚泥発生量が増加する。   Thus, the BOD load per VSS is 0.05 to 1.0 kg-BOD / kg-VSS / d, preferably 0.1 with respect to the total amount of VSS retained in the organic matter intake process and the self-digestion process. ~ 0.6kg-BOD / kg-VSS / d, more preferably 0.15-0.4kg-BOD / kg-VSS / d, the water tank volume, solid-liquid separation means, sludge return rate, etc. It is preferable to determine. In addition, the VSS held in the self-digestion process should be 40% or more, desirably 60% or more, more desirably 80% or more with respect to the total amount of VSS retained in the organic matter intake process and the self-digestion process. . That is, as shown in FIG. 4 to be described later, when the ratio of sludge retained in the organic matter intake process increases, the self-digestion rate in the organic matter intake process is not so fast, so the amount of sludge that is self-digested decreases, The amount generated increases.

有機物摂取工程(有機物摂取槽)で働く微生物は、浮遊状の活性汚泥フロックを主として用いるのが好ましい。常に一定量以上の微生物を保持し、BOD除去率を安定化させるためには、有機物摂取工程において、流動担体、又は固定担体を併用することも有効である。流動担体は後段の自己消化工程(自己消化槽)との間で循環させることもできるが、装置構造がやや複雑になり、担体の移送にもある程度の工夫が必要なため、流動担体は有機物摂取槽内に留めておく方が好ましい。この場合でも、流動担体上で増殖し、剥離した菌体は後段の自己消化槽で自己消化するため、本発明は有効である。   It is preferable to mainly use floating activated sludge floc for the microorganisms that work in the organic matter intake process (organic matter intake tank). In order to always hold a certain amount of microorganisms or more and stabilize the BOD removal rate, it is also effective to use a fluid carrier or a fixed carrier in combination in the organic matter intake process. Although the fluid carrier can be circulated between the subsequent self-digestion process (self-digestion tank), the structure of the device is slightly complicated, and a certain amount of ingenuity is required for transporting the carrier. It is preferable to keep it in the tank. Even in this case, the present invention is effective because the microbial cells that have grown and detached on the fluid carrier are self-digested in the subsequent self-digestion tank.

自己消化槽(自己消化工程)は、有機物摂取槽(有機物摂取工程)で有機物を摂取した微生物を自己消化させることが目的であるから、自己消化槽内に留まるような流動担体や固定担体を併用することはあまり望ましくない。即ち、これらの担体はむしろ自己消化槽内で、有機物摂取槽から流入してきた菌体を確保するためのスペースを占有し、自己消化に利用できる滞留時間を低減させ、わずかではあるが汚泥発生量の増加につながる。   The purpose of the self-digestion tank (self-digestion process) is to self-digest microorganisms that have ingested organic matter in the organic matter intake tank (organic matter intake process). It is less desirable to do. In other words, these carriers rather occupy space in the self-digestion tank to secure the cells flowing in from the organic matter intake tank, reduce the residence time available for self-digestion, and generate a small amount of sludge. Leads to an increase in

一方、自己消化槽内は、脱共役剤を直接添加しなければ、有機物摂取槽で添加された脱共役剤が汚泥へ吸着ないし分解されることなどによって、脱共役剤濃度が低減しており、廃水の浄化が進行しやすい状況にある。即ち、脱共役剤存在下では、若干BOD除去率やCOD除去率が劣る傾向にあるのに対して、自己消化槽内にこうした担体を設ければ、これらの担体は有機物摂取槽で直接脱共役剤の影響を受けることがないため、比較的BOD除去能、COD除去能に優れた生物種が担体表面に優先してくる。更に脱共役剤の種類によっては、脱共役剤そのものの生物分解も期待できる。   On the other hand, in the self-digestion tank, if the uncoupling agent is not added directly, the uncoupling agent added in the organic matter intake tank is adsorbed or decomposed into sludge, etc., and the uncoupling agent concentration is reduced. Wastewater purification is easy to proceed. That is, in the presence of the uncoupling agent, the BOD removal rate and the COD removal rate tend to be slightly inferior, but if such a carrier is provided in the self-digestion tank, these carriers are directly uncoupled in the organic matter intake tank. Since it is not affected by the agent, a biological species having relatively superior BOD removal ability and COD removal ability is given priority over the carrier surface. Furthermore, depending on the type of uncoupler, biodegradation of the uncoupler itself can be expected.

このように、汚泥発生量低減を優先する場合には、自己消化槽内には担体を設置しない方が望ましく、一方で処理水質の向上や、処理水への脱共役剤の流出抑制を図る場合には、担体を設置した方が好ましい場合がある。   In this way, when priority is given to reducing sludge generation, it is desirable not to install a carrier in the self-digestion tank. On the other hand, to improve the quality of treated water and to prevent the uncoupler from flowing into treated water In some cases, it is preferable to install a carrier.

もちろん、設置面積やコストが許せば、自己消化工程及び固液分離工程を経た後、更に流動担体や固定担体を用いて生物処理を行うことにより、処理水BODやCODの更なる低減や、脱共役剤濃度の低減を図ることもできる。   Of course, if the installation area and cost allow, after the self-digestion process and the solid-liquid separation process, further biological treatment using a fluid carrier or a fixed carrier can further reduce the treated water BOD and COD, It is also possible to reduce the concentration of the conjugate agent.

後述の図2に示す如く、自己消化工程は固液分離後の濃縮汚泥に対して設けても良く、この場合には、有機物摂取工程と固液分離工程との間の自己消化工程の容積を小型化したり、省略したりすることが可能である。有機物摂取工程と固液分離工程との間の自己消化工程の小型化ないし省略を行うと、固液分離後の処理水の溶解性BODがやや高い値となったり、固液分離工程前の汚泥のフロック化が不十分になって処理水のSS濃度がやや高い値となったりする場合があるが、処理水質の要求水準が比較的低い場合には適用可能であるし、有機物摂取工程の条件や固液分離手段を工夫することにより処理水質の悪化を最小限に抑えることもできる。   As shown in FIG. 2 described later, the self-digestion process may be provided for the concentrated sludge after the solid-liquid separation. In this case, the volume of the self-digestion process between the organic matter intake process and the solid-liquid separation process is increased. It is possible to reduce the size or to omit it. If the self-digestion process between the organic substance intake process and the solid-liquid separation process is downsized or omitted, the solubility BOD of the treated water after the solid-liquid separation becomes slightly higher, or the sludge before the solid-liquid separation process In some cases, the SS concentration of treated water becomes slightly high due to insufficient flocking, but it can be applied when the required level of treated water quality is relatively low, and the conditions of the organic matter intake process Further, by devising solid-liquid separation means, it is possible to minimize the deterioration of treated water quality.

このように濃縮汚泥に対して自己消化槽を設ける場合、自己消化槽内の汚泥濃度を高濃度化することができるため、水槽容積を小型化し、建設費を低減することができる。また、上述の自己消化に適したpHとするために加えるアルカリ剤も、濃縮汚泥に対して加えた方が少量ですむため、薬剤費を低減することができる。   Thus, when providing a self-digestion tank with respect to concentrated sludge, since the sludge density | concentration in a self-digestion tank can be made high, a water tank volume can be reduced in size and construction cost can be reduced. Moreover, since the amount of the alkaline agent added to adjust the pH suitable for self-digestion described above to the concentrated sludge is small, the chemical cost can be reduced.

本発明において、有機物摂取工程と自己消化工程は必ずしも空間的に隔てる必要はなく、同一水槽内で時間的に切り替えても良い。即ち、有機物摂取工程ではpHを所定範囲内に調整すると共に廃水を流入させ、所定の溶解性BOD除去率が得られた後に自己消化工程に適したpHに調整すればよい。処理条件は上述の条件が適用できる。   In the present invention, the organic matter intake process and the self-digestion process are not necessarily spatially separated, and may be switched in time within the same water tank. That is, in the organic matter intake step, the pH is adjusted within a predetermined range and waste water is allowed to flow, and after a predetermined soluble BOD removal rate is obtained, the pH may be adjusted to a pH suitable for the self-digestion step. The processing conditions described above can be applied.

このような回分式活性汚泥に対して本法を適用する際も、自己消化工程を行う前、あるいは自己消化工程の最中に汚泥を沈降分離し、得られた上澄液を処理水として排出し、槽内に残った濃縮された汚泥に対して自己消化工程を行っても良い。このような操作を行うことで、自己消化工程において添加するアルカリ剤の量を低減することができる。   Even when this method is applied to such batch activated sludge, sludge is settled and separated before the self-digestion process or during the self-digestion process, and the resulting supernatant is discharged as treated water. And you may perform a self-digestion process with respect to the concentrated sludge which remained in the tank. By performing such an operation, the amount of the alkaline agent added in the self-digestion step can be reduced.

本発明においての有機物摂取工程及び自己消化工程は、必ずしも溶存酸素の存在下に行う必要はなく、硝酸塩や亜硝酸塩の存在下に行っても良い。特に、自己消化工程で積極的に硝酸呼吸を生じさせ、脱窒反応を進行させれば、脱窒反応でpHが上昇するために、外部から添加するアルカリ剤の量を低減することができ、経済的である。   In the present invention, the organic matter intake process and the self-digestion process are not necessarily performed in the presence of dissolved oxygen, and may be performed in the presence of nitrate or nitrite. In particular, if the nitric acid respiration is actively generated in the self-digestion process and the denitrification reaction proceeds, the pH increases due to the denitrification reaction, so the amount of the alkali agent added from the outside can be reduced, Economical.

本発明では、主に従属栄養細菌より構成される微生物を利用して有機物分解を行うが、酵母やカビなどを主体として有機物分解を行う方法においても応用することができる。   In the present invention, organic matter decomposition is performed using microorganisms mainly composed of heterotrophic bacteria. However, the present invention can also be applied to a method for organic matter decomposition mainly using yeast or mold.

ところで、余剰汚泥を減らすための他の方法として、前述の如く、余剰汚泥をオゾン処理などにより易生物分解性に改質し、活性汚泥の基質として曝気槽に再投入し、生物分解を行うことで余剰汚泥を分解する手法が知られている。このような方法を用いる際も、改質汚泥を基質として新たに汚泥が増殖するため、本来の余剰汚泥発生量よりも過剰量の汚泥について改質処理を行う必要があり、コスト高の原因となっているが、このような方法に対しても本発明の方法を併用することにより、処理対象の余剰汚泥量そのものを低減するだけでなく、改質汚泥を基質として増殖する汚泥量も抑制することができ、改質に必要な汚泥量を大幅に低減することができる。そして、この結果、安価な建設費、運転費で汚泥の改質処理を行うことができるようになり、比較的安価に汚泥発生量を低減することができる。   By the way, as another method for reducing surplus sludge, as described above, surplus sludge is modified to be readily biodegradable by ozone treatment, etc., and re-introduced into the aeration tank as a substrate for activated sludge to perform biodegradation. A method of decomposing excess sludge is known. Even when such a method is used, since the sludge newly proliferates using the modified sludge as a substrate, it is necessary to perform a reforming treatment on an excessive amount of sludge rather than the original excess sludge generation amount. However, by using the method of the present invention in combination with such a method, not only the amount of excess sludge to be treated itself is reduced, but also the amount of sludge that grows using the modified sludge as a substrate is suppressed. The amount of sludge required for reforming can be greatly reduced. As a result, the sludge reforming process can be performed at a low construction cost and operation cost, and the amount of sludge generated can be reduced relatively inexpensively.

特に、高い汚泥減量率を得る必要のある場合、本発明を採用しても、脱共役剤の作用のみでは所望の汚泥減量率の達成が難しいが、このような場合には、上述のような汚泥改質・基質化法と本発明の方法とを組み合わせることで、安価に高い汚泥減量率を達成することができる。   In particular, when it is necessary to obtain a high sludge reduction rate, even if the present invention is adopted, it is difficult to achieve a desired sludge reduction rate only by the action of the uncoupler, but in such a case, as described above By combining the sludge reforming / substrate conversion method and the method of the present invention, a high sludge reduction rate can be achieved at a low cost.

以下に図面を参照して本発明の有機性廃水の生物学的処理方法の実施の形態をより詳細に説明する。図1,2は本発明の有機性廃水の生物学的処理方法の実施の形態を示す系統図である。   Hereinafter, embodiments of the biological treatment method for organic wastewater according to the present invention will be described in more detail with reference to the drawings. 1 and 2 are system diagrams showing an embodiment of the biological treatment method for organic wastewater according to the present invention.

図1では、有機物摂取槽1の下流側に自己消化槽2を設け、原水を有機物摂取槽1に導入し、有機物摂取槽1の流出水を自己消化槽2に導入する。この自己消化槽2の流出水を沈殿槽3で固液分離し、上澄水を処理水として系外へ排出し、分離汚泥をポンプPで返送汚泥として有機物摂取槽1に返送する。また、自己消化槽2の汚泥を余剰汚泥として必要に応じて系外へ排出する。有機物摂取槽1には脱共役剤が添加される。また、槽内を所定のpHに調整するために、有機物摂取槽1には、HCl等の酸添加手段とpH計1Aが設けられ、自己消化槽2にはNaOH等のアルカリ添加手段とpH計2Aが設けられている。この方法では、原水中の溶解性BODは有機物摂取槽1で活性汚泥に摂取され一部が分解される。有機物摂取槽1の処理水は自己消化槽2に送給され、自己消化により汚泥が減量化される。   In FIG. 1, a self-digestion tank 2 is provided on the downstream side of the organic matter intake tank 1, raw water is introduced into the organic matter intake tank 1, and effluent water from the organic matter intake tank 1 is introduced into the self-digestion tank 2. The outflow water of the self-digestion tank 2 is solid-liquid separated in the sedimentation tank 3, the supernatant water is discharged out of the system as treated water, and the separated sludge is returned to the organic matter intake tank 1 by the pump P as return sludge. Moreover, the sludge of the self-digestion tank 2 is discharged out of the system as excess sludge as necessary. An uncoupling agent is added to the organic matter intake tank 1. Further, in order to adjust the inside of the tank to a predetermined pH, the organic substance intake tank 1 is provided with an acid addition means such as HCl and a pH meter 1A, and the self-digestion tank 2 is provided with an alkali addition means such as NaOH and a pH meter. 2A is provided. In this method, the soluble BOD in the raw water is ingested by the activated sludge in the organic matter intake tank 1 and partly decomposed. The treated water in the organic matter intake tank 1 is fed to the self-digestion tank 2, and sludge is reduced by self-digestion.

図2では、自己消化槽2を沈殿槽3の後段に設け、有機物摂取槽1の流出水を沈殿槽3で固液分離し、上澄水を処理水として系外へ排出すると共に、分離汚泥(濃縮汚泥)の一部を必要に応じて余剰汚泥として系外へ排出し、残部をポンプPにより自己消化槽2に送給する。自己消化槽2の流出汚泥は、一部が必要に応じて余剰汚泥として系外へ排出され、残部がポンプPにより返送汚泥として有機物摂取槽1に返送される。 In FIG. 2, the self-digestion tank 2 is provided in the subsequent stage of the settling tank 3, the effluent water from the organic matter intake tank 1 is solid-liquid separated in the settling tank 3, and the supernatant water is discharged out of the system as treated water and separated sludge ( discharged from the system as excess sludge optionally a part of the concentrated sludge) is fed to the self-digestion tank 2 and the remainder by a pump P 2. Outflow sludge autolysis tank 2, a portion is discharged from the system as excess sludge if necessary, the remainder is returned to the organic matter intake tank 1 as return sludge by the pump P 1.

図2の方法では、原水中の溶解性BODは有機物摂取槽1で微生物に摂取され、一部分解される。その後に固液分離を行い、上澄液は処理水として排出され、汚泥は濃縮されて自己消化槽2へ送られる。自己消化槽2では自己消化に適したpHとするため、pHコントローラと連動しながらアルカリ剤(図ではNaOH水溶液)が投入されるが、汚泥濃度は図1のフローに比べて1.5〜7倍程度に濃縮されており、このためアルカリ剤を1.5〜7分の1に節約することができる。また、自己消化槽2の容積も図1のものに比べて1.5〜7分の1で同等の性能を発揮することができる。あるいは自己消化槽の容積を大きめに取り、例えば図1のフローにある自己消化槽と同等の容積とすれば、その分汚泥の滞留時間が長くなり、自己消化が一層進行し、汚泥発生量がより一層低減することになる。   In the method of FIG. 2, soluble BOD in raw water is ingested by microorganisms in the organic matter intake tank 1 and partially decomposed. Thereafter, solid-liquid separation is performed, the supernatant is discharged as treated water, and the sludge is concentrated and sent to the self-digestion tank 2. In order to obtain a pH suitable for self-digestion in the self-digestion tank 2, an alkali agent (NaOH aqueous solution in the figure) is introduced in conjunction with the pH controller, but the sludge concentration is 1.5-7 compared to the flow of FIG. It is concentrated about twice, so that the alkaline agent can be saved 1.5 to 1/7. Moreover, the volume of the self-digestion tank 2 can also exhibit an equivalent performance in 1.5-7 times compared with the thing of FIG. Alternatively, if the volume of the self-digestion tank is increased, for example, if the volume is the same as that of the self-digestion tank in the flow of FIG. This will be further reduced.

一方、このフローでは、溶解性BODを除去するための反応時間が短くなり、溶解性BOD濃度の高い処理水となることがある。これを防止するためには、有機物摂取槽1のBOD容積負荷やMLVSS濃度を適切に設定及び管理することが有効であるが、溶解性BOD除去率を優先させ過ぎると、有機物摂取槽1が大きくなりすぎるなどで、汚泥発生量低減の効果が充分に発揮できない場合がある。このような場合、有機物摂取槽1を多段に直列に設けることで、有機物摂取槽全体の容積は同等でも、溶解性BOD除去率を高めることができる。   On the other hand, in this flow, the reaction time for removing the soluble BOD is shortened, which may result in treated water having a high soluble BOD concentration. In order to prevent this, it is effective to appropriately set and manage the BOD volume load and MLVSS concentration of the organic matter ingestion tank 1, but if the soluble BOD removal rate is prioritized too much, the organic matter ingestion tank 1 becomes large. In some cases, the effect of reducing the amount of generated sludge cannot be fully exhibited. In such a case, by providing the organic matter intake tanks 1 in series in multiple stages, the soluble BOD removal rate can be increased even if the entire organic matter intake tank has the same volume.

また、このフローでは、発生した菌体が充分にフロックに取り込まれず、処理水に流出して処理水のSS濃度や濁度を高くすることがある。このような場合にも、有機物摂取槽の多段化は有効である場合がある。また、他の方法として、有機や無機の凝集剤を併用したり、処理水を更に凝集沈殿や濾過などで処理することでも対処することができる。   Further, in this flow, the generated bacterial cells may not be sufficiently taken into the floc and may flow out into the treated water to increase the SS concentration and turbidity of the treated water. Even in such a case, the multi-stage organic matter intake tank may be effective. Further, as another method, it can be coped with by using an organic or inorganic flocculant in combination, or further treating the treated water by coagulation precipitation or filtration.

図2の方法では、菌体内に有機物を摂取してあまり時間の経っていない、比較的自己消化しやすい状態の濃縮汚泥が得られる。従って、余剰汚泥の処理法として嫌気消化を用いる場合、自己消化槽に送る前の濃縮汚泥で嫌気消化を行うことにより、自己消化槽における酸素消費量の低減や、嫌気消化におけるメタン発生量の増加と言った効果が期待できる。一方、余剰汚泥に特別な減量処理を行わず脱水する場合には、自己消化を行った後の汚泥を用いた方が、汚泥の腐敗を防止しやすく、脱水工程における臭気防止に効果がある。   In the method of FIG. 2, concentrated sludge that is relatively easy to self-digest, and that has not passed much time after ingesting organic matter into the cells, can be obtained. Therefore, when anaerobic digestion is used as a treatment method for excess sludge, anaerobic digestion is performed with concentrated sludge before being sent to the self-digestion tank, thereby reducing oxygen consumption in the self-digestion tank and increasing methane generation during anaerobic digestion. You can expect the effect. On the other hand, when the excess sludge is dehydrated without performing a special weight reduction treatment, the sludge after self-digestion is easier to prevent the decay of the sludge and is effective in preventing odor in the dehydration process.

図1と図2の方法は同時に併用しても良い。即ち、図1において、沈殿槽から汚泥を返送する途中に、第2の自己消化槽を設けることができる。第2の自己消化槽は、図2における自己消化槽と同様、高濃度に汚泥を保持できるため、少ない容積でも高い効果がある。また、水量が少なくなっているため、アルカリ剤を追加投入して、より自己消化に適した高いpHとしても、比較的アルカリ剤の消費量を少なく抑えることができる。   The methods of FIGS. 1 and 2 may be used simultaneously. That is, in FIG. 1, a second self-digestion tank can be provided in the middle of returning sludge from the settling tank. Since the second self-digestion tank can hold sludge at a high concentration, similar to the self-digestion tank in FIG. 2, it is highly effective even with a small volume. In addition, since the amount of water is small, the consumption of the alkali agent can be relatively reduced even when an additional alkali agent is added to achieve a high pH suitable for self-digestion.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。説明の便宜上まず比較例を挙げる。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. For convenience of explanation, a comparative example is given first.

比較例1:脱共役剤を用いない対照試験
図3に示すように、容量30Lの曝気槽11と容量6Lの沈殿槽12を用いて、活性汚泥の連続試験を行った。曝気槽11は図示しない曝気手段により溶存酸素(DO)が1mg/L以上になるように曝気した。曝気槽11より流出した活性汚泥は沈殿槽12中央の円筒形のフィードウェルに導かれ、重力沈降により固液分離させられる。沈降した汚泥は1〜2rpmで回転するレーキにより沈殿槽12の下部コーンの中心部に集められ、返送汚泥としてポンプPにより曝気槽11に返送される。返送される汚泥の量は流入する原水量と等量とした。
Comparative Example 1: Control Test Using No Uncoupler As shown in FIG. 3, a continuous test of activated sludge was performed using a 30 L aeration tank 11 and a 6 L capacity sedimentation tank 12. The aeration tank 11 was aerated by an aeration means (not shown) so that the dissolved oxygen (DO) was 1 mg / L or more. The activated sludge that has flowed out of the aeration tank 11 is guided to a cylindrical feed well in the center of the precipitation tank 12, and is separated into solid and liquid by gravity sedimentation. The settled sludge is collected at the center of the lower cone of the settling tank 12 by a rake rotating at 1 to 2 rpm, and returned to the aeration tank 11 by the pump P as return sludge. The amount of sludge returned was the same as the amount of raw water flowing in.

原水としては野菜エキス、魚介エキス、液糖、メタノールを主成分とする合成廃水を用い、CODCr濃度は600mg/Lに調整した。この原水を、曝気槽11におけるCODCr容積負荷が1.2kg−CODCr/m/dとなるよう、60L/dayの流量で曝気槽11に通水した。曝気槽11の水温は20℃、pHは6.5〜7.5とした。また、曝気槽11内のMLVSS濃度は4kg/mとなるよう、定期的に汚泥を引き抜いて系外へ排出した。 Vegetable extract as raw water, fish extract, liquid sugar, methanol using a synthetic wastewater consisting mainly of, COD Cr concentration was adjusted to 600 mg / L. This raw water was passed through the aeration tank 11 at a flow rate of 60 L / day so that the COD Cr volumetric load in the aeration tank 11 was 1.2 kg-COD Cr / m 3 / d. The water temperature of the aeration tank 11 was 20 ° C., and the pH was 6.5 to 7.5. Further, sludge was periodically extracted and discharged out of the system so that the MLVSS concentration in the aeration tank 11 was 4 kg / m 3 .

発生汚泥量は、曝気槽及び沈殿槽内のVSSの増加分と、系外へ引き抜いたVSSと、処理水へ流出したVSSの合計とした。一方、系内で処理されたCODCrは、原水中のCODCrから、処理水中の溶解性CODCrを差し引いたものとした。汚泥転換率は、発生汚泥量を系内で処理されたCODCr量で除したものである。 The amount of generated sludge was defined as the total of the VSS increase in the aeration tank and the sedimentation tank, the VSS pulled out of the system, and the VSS flowing out into the treated water. On the other hand, COD Cr treated in the system was obtained by subtracting soluble COD Cr in treated water from COD Cr in raw water. The sludge conversion rate is obtained by dividing the amount of generated sludge by the amount of COD Cr processed in the system.

脱共役剤を添加しないときの汚泥転換率は0.23g−VSS/g−CODであった。   The sludge conversion rate when no uncoupling agent was added was 0.23 g-VSS / g-COD.

比較例2:従来のフローで脱共役剤を添加した試験
図3に示すフローで脱共役剤を連続的に添加し、脱共役剤の効果を調べた。脱共役剤としては、3-クロロ-N-(3-クロロ-2,6-ジニトロ-4-(トリフルオロメチル)フェニル)-5-(トリフルオロメチル)-2-ピリジンアミンを原水に対して3mg/Lとなるよう曝気槽11に添加した。なお、脱共役剤は500mg/Lの濃厚溶液を作成しておき、360mL/dayの流量で添加した。この結果、添加開始後約2週間は汚泥転換率が0.15g−VSS/g−COD付近となり、35%程度の汚泥発生量低減効果があったが、以降は汚泥転換率0.20g−VSS/g-COD付近となり、汚泥発生量低減効果は13%程度となった。
Comparative Example 2: Test with uncoupling agent added in conventional flow The uncoupling agent was continuously added in the flow shown in FIG. 3 to examine the effect of the uncoupling agent. As the uncoupler, 3-chloro-N- (3-chloro-2,6-dinitro-4- (trifluoromethyl) phenyl) -5- (trifluoromethyl) -2-pyridinamine is used against the raw water. It added to the aeration tank 11 so that it might become 3 mg / L. The uncoupler was prepared as a 500 mg / L concentrated solution and added at a flow rate of 360 mL / day. As a result, the sludge conversion rate was about 0.15 g-VSS / g-COD for about 2 weeks after the start of addition, and there was an effect of reducing the sludge generation amount of about 35%, but after that, the sludge conversion rate was 0.20 g-VSS. / G-COD, and the sludge generation reduction effect was about 13%.

比較例3:従来のフローでpHのみ変化させた試験
比較例2において、曝気槽1のpHを5.5〜6.0となるように調整し、汚泥転換率を求めたところ、0.21g−VSS/g-CODとなった。また、pH8.3〜8.7となるように調整し、汚泥転換率を求めたところ、0.19g−VSS/g−CODとなった。即ち、pHを変更しただけでは、汚泥転換率は殆ど変化しないことが分かった。
Comparative Example 3: Test in which only pH was changed by conventional flow In Comparative Example 2, the pH of the aeration tank 1 was adjusted to 5.5 to 6.0 and the sludge conversion rate was determined to be 0.21 g. -VSS / g-COD. Moreover, when it adjusted so that it might become pH 8.3-8.7 and the sludge conversion rate was calculated | required, it was set to 0.19g-VSS / g-COD. That is, it was found that only by changing the pH, the sludge conversion rate hardly changed.

実施例1:本発明の試験
図1に示すように、容量4.5Lの有機物摂取槽1と容量30Lの自己消化槽2と容量6Lの沈殿槽3を用いて、比較例1で処理したものと同様の原水を通水する活性汚泥の連続試験を行った。
Example 1: Test of the Present Invention As shown in FIG. 1, treated in Comparative Example 1 using a 4.5 L organic substance intake tank 1, a 30 L self-digestion tank 2 and a 6 L capacity sedimentation tank 3. A continuous test of activated sludge passing raw water was conducted.

有機物摂取槽1と自己消化槽2の汚泥濃度はほぼ同等と見なすと、有機物摂取槽1は全体の13%の容積であり、自己消化槽2は全体の87%のVSSを保持することになる。   Assuming that the sludge concentrations in the organic matter intake tank 1 and the self digestion tank 2 are almost equal, the organic matter intake tank 1 has a volume of 13% of the whole, and the self digestion tank 2 holds 87% of the VSS. .

有機物摂取槽1と自己消化槽2でpHを変化させるため、それぞれpHコントローラを設置し、有機物摂取槽1では6重量%HCl水溶液、自己消化槽2では8重量%NaOH水溶液を注入することで、有機物摂取槽1のpHは5.6〜5.9、自己消化槽2のpHは7.8〜8.6に調整した。   In order to change pH in the organic matter intake tank 1 and the self-digestion tank 2, a pH controller is installed, respectively. In the organic matter intake tank 1, a 6 wt% HCl aqueous solution is injected, and in the self digestion tank 2, an 8 wt% NaOH aqueous solution is injected. The pH of the organic matter intake tank 1 was adjusted to 5.6 to 5.9, and the pH of the self-digestion tank 2 was adjusted to 7.8 to 8.6.

脱共役剤としては比較例2で用いたものと同様のものを用い、原水に対して3mg/Lとなるよう、有機物摂取槽1に投入した。有機物摂取槽1、及び自己消化槽2ともに、図示しない曝気手段を用いてそれぞれDOが1mg/L以上となるよう曝気を行った。有機物摂取槽1及び自己消化槽2を経た活性汚泥は沈殿槽3中央の円筒形のフィードウェルに導かれ、重力沈降により固液分離させられる。沈降した汚泥は1〜2rpmで回転するレーキにより沈殿槽3の下部コーンの中心部に集められ、返送汚泥としてポンプPにより有機物摂取槽1に返送される。返送される汚泥の量は流入する原水量と等量とした。   The same uncoupling agent as that used in Comparative Example 2 was used, and it was put into the organic matter intake tank 1 so as to be 3 mg / L with respect to the raw water. The organic substance intake tank 1 and the self-digestion tank 2 were aerated by using aeration means (not shown) so that DO becomes 1 mg / L or more. The activated sludge that has passed through the organic matter intake tank 1 and the self-digestion tank 2 is guided to a cylindrical feed well at the center of the precipitation tank 3 and is separated into solid and liquid by gravity sedimentation. The sedimented sludge is collected at the center of the lower cone of the sedimentation tank 3 by a rake rotating at 1 to 2 rpm, and returned to the organic matter intake tank 1 by the pump P as return sludge. The amount of sludge returned was the same as the amount of raw water flowing in.

COD容積負荷は有機物摂取槽1と自己消化槽2の合計34.5Lに対して、1.2kg−COD/m/dayとなるように、原水を69L/dayで通水した。有機物摂取槽1及び自己消化槽2の水温は20℃とした。また、自己消化槽2はMLVSS濃度は4kg/mとなるよう、定期的に汚泥を引き抜いて系外へ排出した。 The raw water was passed at 69 L / day so that the COD volumetric load was 1.2 kg-COD / m 3 / day with respect to 34.5 L in total of the organic matter intake tank 1 and the self-digestion tank 2. The water temperature of the organic matter intake tank 1 and the self-digestion tank 2 was 20 ° C. Further, in the self-digestion tank 2, sludge was periodically extracted and discharged out of the system so that the MLVSS concentration was 4 kg / m 3 .

この結果、汚泥転換率は0.12g−VSS/g−CODが得られ、少なくとも2ヶ月間、この値を継続して得られた。この値は、比較例1に比べると、48%の汚泥発生量低減となる。   As a result, the sludge conversion rate was 0.12 g-VSS / g-COD, and this value was continuously obtained for at least 2 months. This value is a 48% reduction in sludge generation compared to Comparative Example 1.

この結果から、本発明により、脱共役剤を用いて有効に汚泥発生量を低減できることが示された。   From this result, it was shown that sludge generation amount can be effectively reduced by using the uncoupler according to the present invention.

なお、有機物摂取槽の汚泥保持量の割合と溶解性BOD除去率及び汚泥転換率との関係を計算により求めたところ、図4に示す結果が得られた。ここでは有機物摂取槽と自己消化槽のVSS保持量を合計したものに対して、有機物摂取槽で保持するVSS量の比を横軸に取っている。   In addition, when the relationship between the ratio of the sludge retention amount in the organic matter intake tank, the soluble BOD removal rate, and the sludge conversion rate was obtained by calculation, the results shown in FIG. 4 were obtained. Here, the horizontal axis represents the ratio of the amount of VSS held in the organic matter intake tank to the total amount of VSS held in the organic matter intake tank and the self-digestion tank.

有機物摂取槽で摂取されたCODCrは、真の収率0.32g−VSS/g−CODCrで菌体に転換するものとし、自己消化槽で摂取されたCODCrは、真の収率0.49g−VSS/g−CODCrで菌体に転換するものとした。有機物摂取槽における自己消化速度は0.07day−1、自己消化槽における自己消化速度は0.25day−1とした。計算には前述の文献に記載された活性汚泥モデルとその標準のパラメータを用いた。 COD Cr ingested in the organic substance intake tank is assumed to be converted into cells with a true yield of 0.32 g-VSS / g-COD Cr , and COD Cr ingested in the autolysis tank has a true yield of 0. .49 g-VSS / g-COD Cr was converted into cells. The self-digestion rate in the organic substance intake tank was 0.07 day −1 , and the self-digestion rate in the autodigestion tank was 0.25 day −1 . For the calculation, the activated sludge model described in the above-mentioned literature and its standard parameters were used.

有機物摂取槽と自己消化槽との全体に対して、CODCr容積負荷は1.5kg−COD/m/dとし全て溶解性で易分解性のCODCrが流入するものとした。有機物摂取槽におけるCODCr除去速度は8kg−CODCr/m/dとした。 The COD Cr volumetric load was 1.5 kg-COD / m 3 / d with respect to the whole organic matter intake tank and the self-digestion tank, and all soluble and easily degradable COD Cr flowed in. The COD Cr removal rate in the organic substance intake tank was 8 kg-COD Cr / m 3 / d.

この結果から、汚泥転換率を最小にする点は、有機物摂取槽における溶解性BOD除去率がほぼ上限に達する範囲内(図の横軸0.2以上、溶解性BOD除去率≒100%)で、なるべく自己消化槽の割合が大きい方が良く、特に、有機物摂取槽におけるBOD除去率を高く取ることが重要であることが分かる。   From this result, the point of minimizing the sludge conversion rate is within the range where the soluble BOD removal rate in the organic matter intake tank almost reaches the upper limit (0.2 or more horizontal axis in the figure, soluble BOD removal rate ≈ 100%). It can be seen that the ratio of the self-digestion tank is as large as possible, and it is particularly important to increase the BOD removal rate in the organic matter intake tank.

本発明の有機性廃水の生物学的処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of the organic wastewater of this invention. 本発明の有機性廃水の生物学的処理方法の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the biological treatment method of the organic wastewater of this invention. 比較例1〜3で用いた試験装置を示す系統図である。It is a systematic diagram which shows the test apparatus used in Comparative Examples 1-3. 有機物摂取槽の汚泥保持量の割合と溶解性BOD除去率及び汚泥転換率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the sludge retention amount of an organic matter intake tank, soluble BOD removal rate, and sludge conversion rate.

符号の説明Explanation of symbols

1 有機物摂取槽
2 自己消化槽
3 沈殿槽
1 Organic substance intake tank 2 Self-digestion tank 3 Precipitation tank

Claims (2)

有機性廃水中の有機物を、脱共役剤の存在下に微生物の作用で好気的に除去する生物学的処理方法において、
該廃水中の有機物を微生物の菌体内に摂取させる有機物摂取工程と、有機物を摂取した微生物を自己消化させる自己消化工程とを有し、該自己消化工程を該有機物摂取工程と異なるpH条件下で行う方法であって、
該有機物摂取工程をpH5〜6.5の範囲で行い、該自己消化工程をpH7〜9の範囲で行うことを特徴とする有機性廃水の生物学的処理方法。
In a biological treatment method in which organic matter in organic wastewater is removed aerobically by the action of microorganisms in the presence of an uncoupling agent,
An organic substance ingesting step for ingesting organic matter in the wastewater into the microbial cells, and a self-digesting step for self-digesting the microorganism ingesting the organic matter, wherein the self-digestion step is performed under a pH condition different from that of the organic matter ingesting step A way to do ,
A biological treatment method for organic wastewater, characterized in that the organic substance ingesting step is carried out in the range of pH 5 to 6.5, and the self-digestion step is carried out in the range of pH 7 to 9 .
請求項1の方法において、該自己消化工程で保持するVSSは、有機物摂取工程と自己消化工程で保持するVSSの合計に対して80%以上であることを特徴とする有機性廃水の生物学的処理方法。 The biological wastewater according to claim 1, wherein VSS retained in the self-digestion step is 80% or more based on a total of VSS retained in the organic matter intake step and the self-digestion step. Processing method.
JP2004031012A 2004-02-06 2004-02-06 Biological treatment method of organic wastewater Expired - Fee Related JP4608900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031012A JP4608900B2 (en) 2004-02-06 2004-02-06 Biological treatment method of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031012A JP4608900B2 (en) 2004-02-06 2004-02-06 Biological treatment method of organic wastewater

Publications (2)

Publication Number Publication Date
JP2005218995A JP2005218995A (en) 2005-08-18
JP4608900B2 true JP4608900B2 (en) 2011-01-12

Family

ID=34995056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031012A Expired - Fee Related JP4608900B2 (en) 2004-02-06 2004-02-06 Biological treatment method of organic wastewater

Country Status (1)

Country Link
JP (1) JP4608900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780859B2 (en) * 2003-06-20 2010-08-24 Rhodia Operations Uncoupling agents
JP4626286B2 (en) * 2004-12-09 2011-02-02 国立大学法人豊橋技術科学大学 Control method of excess sludge generation
CN1321074C (en) * 2005-12-09 2007-06-13 宁波工程学院 Novel active sludge process with reduced excess sludge
CN107739103A (en) * 2017-10-24 2018-02-27 沈阳建筑大学 A kind of compound uncoupling agent and preparation method thereof
CN108339408B (en) * 2018-04-27 2021-07-20 哈尔滨工业大学 Method for relieving membrane pollution of membrane bioreactor by using decoupling agent TCS and membrane bioreactor capable of relieving membrane pollution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016844A (en) * 2002-06-12 2004-01-22 Hitachi Zosen Corp Drainage treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016844A (en) * 2002-06-12 2004-01-22 Hitachi Zosen Corp Drainage treatment method

Also Published As

Publication number Publication date
JP2005218995A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US20140374344A1 (en) Method for treating wastewater containing ammonia nitrogen
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP2008284427A (en) Apparatus and method for treating waste water
US8323487B2 (en) Waste water treatment apparatus
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
KR20070119090A (en) Method for biological disposal of organic wastewater and biological disposal apparatus
JP4872171B2 (en) Biological denitrification equipment
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP2006272172A (en) Method and apparatus for biologically treating nitrogen-containing water
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP4608900B2 (en) Biological treatment method of organic wastewater
JP2003033790A (en) Denitrification device and method therefor
US7318895B2 (en) Biodestruction of blended residual oxidants
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
KR20180031085A (en) Method and device for biologically treating organic wastewater
KR100465524B1 (en) System and Method for wastewater treatment using membrane and Bacillus sp.
JP4596533B2 (en) Wastewater treatment method
KR100318367B1 (en) Waste water treatment apparatus
JP2006088057A (en) Method for treating ammonia-containing water
JP2540150B2 (en) Biological denitrification equipment
KR101236693B1 (en) Apparatus for sewage and wastewater treatment
JP4490659B2 (en) Sewage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees