JPS62124002A - Production of extra fine metallic wire - Google Patents
Production of extra fine metallic wireInfo
- Publication number
- JPS62124002A JPS62124002A JP25982185A JP25982185A JPS62124002A JP S62124002 A JPS62124002 A JP S62124002A JP 25982185 A JP25982185 A JP 25982185A JP 25982185 A JP25982185 A JP 25982185A JP S62124002 A JPS62124002 A JP S62124002A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- composite
- carbon steel
- low carbon
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ステンレス鋼からなる極細線等の金属極細線
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing ultrafine metal wires such as ultrafine wires made of stainless steel.
[従来の技術]
太さがミクロンオーダの金属細線(ステンレス極細線′
:J)を製造する第1の方法においては、第2図(A)
に示すように(特公昭55−1843号公報) 5.
5amφ程度の線材11を中間焼鈍2とダイスによる伸
線1により0.l+im程度の細線12とし、この細線
12にメッキ31を施し、多数本平行に束ねて、鋼管等
の異種金属の外装材に挿入して東線素材3を作成し、中
間焼鈍5と多段のダイスによる伸線工程4を繰返し行な
った後、外装材を溶解除去(6)し、また、素線に施し
たメッキ層も除去(6)して製造している。この方法に
よれば、例えばO,Immφの素線を7000本束ねて
外径12.6mmφ、厚さ2.3曹■の鋼管に挿入して
1.65■■φまで伸線すると約12g■φの細線が7
000本得られる。[Conventional technology] Fine metal wire with a thickness on the order of microns (stainless steel ultra-fine wire)
:J) In the first method of manufacturing, FIG. 2(A)
As shown in (Special Publication No. 55-1843) 5.
A wire rod 11 with a diameter of about 5 am is made to have a diameter of 0.0 mm by intermediate annealing 2 and wire drawing 1 using a die. A thin wire 12 of about l+im is made, plated 31 is applied to this thin wire 12, and a large number of wires are bundled in parallel and inserted into an exterior material made of different metals such as a steel pipe to create an east wire material 3, which is then subjected to intermediate annealing 5 and a multi-stage die. After repeating the wire drawing step 4, the sheathing material is dissolved and removed (6), and the plating layer applied to the wire is also removed (6). According to this method, for example, if 7,000 wires of O, Immφ are bundled together, inserted into a steel pipe with an outer diameter of 12.6 mmφ and a thickness of 2.3 mm, and drawn to 1.65 mmφ, the wire will weigh approximately 12 g. The thin line of φ is 7
You can get 000 pieces.
[発明が解決しようとする問題点]
しかしながら、上記第1の方法にあっては、5.5mm
φ程度の線材11に対して中間焼鈍2とダイスによる伸
線1を繰返すことによって0.1+s■φ程度の素線を
製造しており、多数の工程を経るため、多くのエネルギ
、労働力および時間を必要とし、製造コストも高くなる
。特に、オーステナイト系ステンレス鋼細線(例えば5
US304)の場合には、冷間加工(伸線)によって、
マルテンサイトが発生し、加工硬化が著しく、そのため
減面量を大きく取るためには、中間焼鈍が必要となる。[Problems to be Solved by the Invention] However, in the first method, 5.5 mm
By repeating intermediate annealing 2 and wire drawing 1 with a die for a wire rod 11 of about φ, a strand of about 0.1+s■φ is manufactured, and because it goes through many processes, it requires a lot of energy, labor, and This requires time and increases manufacturing costs. In particular, fine austenitic stainless steel wire (e.g. 5
US304), by cold working (wire drawing),
Martensite is generated and work hardening is significant, so intermediate annealing is required to achieve a large reduction in area.
金属細線の他の製造方法では、第2図(B)に例示する
ように(特公昭59−28381号公報)、外径200
■φ、内径 170■φの低炭素鋼管(外装材)20に
170ma+φのステンレス棒W410を挿入して、
熱間押出用素材31−1を製造し、これを熱間押出しく
32)により80■虐口の線材圧延用ビレット33とす
る。これを加熱8、圧延9して、8■φの線材11−1
を得る。これをざらに冷間伸線1(必要に応じて焼鈍し
ながら)して2.5mmφの素線11−2を得る。これ
を適当な長さに切って、再び外装材20(外径200I
IIlφ、内径170■φ)に約3280本挿入して、
熱間押出用素材31−2を作る。これを再び80m+s
ロビレット33−2に押出した後、+3■φの線材11
−3に束圧延(9)する、この時、内部の素線は約 1
40 p、 mmφになっている。これを冷間伸線1(
必要に応じて焼鈍し)し、1.13mmφの細線とする
。これを硝酸等の酸に浸清し、外装材の炭素鋼を溶解除
去して、 12gmmφのステンレス極細線を得る。場
合によっては、束伸線用線材11−3を冷間伸線する代
りに再び熱押→線材束圧延を繰返した後、酸による外装
材の溶去を行なう場合もある。In another method for manufacturing thin metal wires, as illustrated in FIG. 2(B) (Japanese Patent Publication No. 59-28381),
■φ, inner diameter 170■φ low carbon steel pipe (exterior material) 20 insert 170ma+φ stainless steel rod W410,
A hot extrusion material 31-1 is produced and hot extruded 32) to form a wire rod rolling billet 33 with a diameter of 80 mm. This was heated 8 and rolled 9 to form a wire rod 11-1 of 8■φ.
get. This is roughly cold wire drawn 1 (with annealing if necessary) to obtain a wire 11-2 having a diameter of 2.5 mm. Cut this to an appropriate length and use the exterior material 20 (outer diameter 200mm) again.
Insert approximately 3280 pieces into IIlφ, inner diameter 170■φ),
A hot extrusion material 31-2 is made. Repeat this for 80m+s
After extruding into Robilet 33-2, +3■φ wire rod 11
-3 bundle rolling (9), at this time the inner wire is about 1
It is 40p, mmφ. This is cold wire drawing 1 (
If necessary, the wire is annealed) to form a thin wire of 1.13 mmφ. This is immersed in an acid such as nitric acid, and the carbon steel of the exterior material is dissolved and removed to obtain an ultrafine stainless steel wire of 12 gmmφ. In some cases, instead of cold drawing the wire rod 11-3 for wire bundle drawing, the process of hot pressing → wire rod bundle rolling may be repeated, and then the sheathing material is dissolved away with acid.
この第2の方・法による場合にも、熱押→線材圧延→伸
線→熱押→線材束圧延→束伸線(または熱押→線材束圧
延)→酸による溶去と非常に多くの工程を経るため、多
くのエネルギ、労力および時間を必要とし、製造コスト
も高くなる。Even in the case of this second method, hot pressing → wire rod rolling → wire drawing → hot pressing → wire rod bundle rolling → bundle drawing (or hot pressing → wire rod bundle rolling) → acid dissolution and a large amount of The process requires a lot of energy, labor and time, and the manufacturing cost is also high.
なお、」二記第2の方法におけるように、管状外装材に
線材を密に挿入した材料をそのまま線材圧延すると、挿
入材間に必ず空隙が生ずるため、圧下と直角方向(いわ
ゆるオーバル方向)に外装材が大きく噛み出して、以後
の圧延続行が不可能となる。この現象は、材料の先後端
において特に著しく、先端で生じた場合は次段の圧延の
入側ガイドに入らず材料進行が不可能となる。第2図(
B)の例では、複合材13−1.13−2を圧延する前
に熱間押出しにより挿入材間の空隙を解消し、先後端の
非定常変形部を切落として、正常な複合ビレットにして
いるので、上記のような問題は軽減されるものと考えら
れる。しかしながら、ビレット端部は、内挿材が露出し
たままであり、ステンレスのような固い変形しにくい材
料が内側にある時は、外側の変形しやすい低炭素鋼材が
特に先後端においてオーバル方向に噛み出しやすく、圧
延の障害になりやすい。In addition, as in the second method described in Section 2, if a material in which wire rods are densely inserted into a tubular sheathing material is rolled as it is, voids will always be created between the inserted materials, so that The exterior material protrudes to a large extent, making it impossible to continue rolling. This phenomenon is particularly noticeable at the leading and trailing ends of the material, and if it occurs at the leading end, it will not enter the entrance guide for the next stage of rolling, making it impossible for the material to advance. Figure 2 (
In example B), before rolling the composite material 13-1.13-2, the void between the inserted materials is eliminated by hot extrusion, and the unsteady deformed parts at the leading and trailing ends are cut off to form a normal composite billet. Therefore, the above problems are expected to be alleviated. However, at the billet end, the insert material remains exposed, and when there is a hard material that does not easily deform, such as stainless steel, on the inside, the easily deformable low carbon steel material on the outside will bite in the oval direction, especially at the leading and trailing ends. It is easy to take out and easily becomes an obstacle to rolling.
本発明は、短い工程により、大量の細線を能率よく製造
可億とすることを目的とする。An object of the present invention is to efficiently manufacture a large amount of thin wire through a short process.
[問題点を解決するための手段]
本発明の第1に係る金属極細線の製造方法は、低炭素鋼
外装材の内部にステンレス鋼の単一棒材からなる内挿材
を挿入した複合ビレットに熱間圧延を施し、外装部が前
記低炭素鋼で内部がステンレス鋼の複合線材を得る工程
に次いで、低炭素鋼外装材の内部に上記複合線材を平行
な束状とした内挿材を挿入した複合材を熱間圧延するこ
とによって線材を得る工程を少なくとも1回以上繰返し
た後、上記線材を酸に浸漬して低炭素鋼を溶去するよう
したものである。[Means for Solving the Problems] The method for manufacturing ultrafine metal wire according to the first aspect of the present invention is a composite billet in which an insert made of a single bar of stainless steel is inserted into a low carbon steel exterior material. After hot rolling to obtain a composite wire rod in which the exterior part is made of the low carbon steel and the inside is stainless steel, an insert material in which the above composite wire rod is made into a parallel bundle is placed inside the low carbon steel exterior material. After repeating the step of hot rolling the inserted composite material to obtain a wire rod at least once, the wire rod is immersed in acid to dissolve the low carbon steel.
本発明の第2に係る金属極細線の製造方法は、低炭素鋼
外装材の内部にステンレス鋼の単一棒材からなる内挿材
を挿入した複合ビレットに熱間圧延を施し、外装部が前
記低炭素鋼で内部がステンレス鋼の複合線材を得る工程
に次いで、低炭素鋼外装材の内部に上記複合線材を平行
な束状とした内挿材を挿入した複合材を熱間圧延するこ
とによって線材を得る工程を少なくとも1回以上繰返し
た後、上記線材を酸に浸漬して低炭素鋼を溶去する金属
極細線の製造方法であって、複合ビレットおよび複合材
の先端部と後端部に中実部材を固着して熱間圧延するよ
うにしたものである。The second method of manufacturing ultra-fine metal wire of the present invention is to hot-roll a composite billet in which an insert made of a single bar of stainless steel is inserted into a low-carbon steel exterior material, so that the exterior part is Next to the step of obtaining a composite wire rod made of low carbon steel and having a stainless steel interior, hot rolling a composite material in which an insert material in which the composite wire rod is in the form of a parallel bundle is inserted into the inside of a low carbon steel exterior material. A method for producing ultrafine metal wires, which comprises repeating the step of obtaining a wire rod at least once or more, and then immersing the wire rod in acid to dissolve away the low carbon steel. A solid member is fixed to the part and hot rolled.
本発明の第3に係る金属極細線の製造方法は、低炭素鋼
外装材の内部にステンレス鋼の単一棒材からなる内挿材
を挿入した複合ビレットに熱間圧延を施し、外装部が前
記低炭素鋼で内部がステンレス鋼の複合線材を得る工程
に次いで、低炭素鋼外装材の内部に上記複合遜材を平行
な束状としだ内挿材を挿入した複合材を熱間圧延するこ
とによって線材を得る工程を少なくとも1回以り繰返し
た後、上記線材を酸に浸漬して低炭素鋼を溶去する金属
極細線の製造方法であって、複合材の内部に生ずる空隙
に充填材料を充填して熱間圧延するようにしたものであ
る。The third method of manufacturing ultra-fine metal wire of the present invention is to hot-roll a composite billet in which an insert made of a single bar of stainless steel is inserted inside a low-carbon steel exterior material, so that the exterior part is Next to the step of obtaining a composite wire rod made of low carbon steel and having a stainless steel interior, the composite material is hot-rolled by forming a parallel bundle of the composite wire material and inserting an interpolation material inside the low carbon steel exterior material. A method for producing ultrafine metal wires, in which the process of obtaining wire rods is repeated at least once, and then the wire rods are immersed in acid to dissolve away the low carbon steel, the method comprising filling voids formed inside the composite material. It is filled with material and hot rolled.
[作用]
本発明の第1に係る金属極細線の製造方法によ机ば、熱
間圧延のみによって極細線を製造することとなり、短い
工程により大量の細線を能率よく製造することが可能と
なる。[Function] According to the method for producing ultra-fine metal wire according to the first aspect of the present invention, the ultra-fine wire is produced only by hot rolling, and it becomes possible to efficiently produce a large amount of thin wire through a short process. .
本発明の第2に係る金属極細線の製造方法によれば、複
合ビレット、複合材の圧延時における先後端の噛み出し
を回避する状態で、熱間圧延のみによって極細線を製造
することとなり、短い工程により大量の細線を能率よく
製造することが可能となる。According to the method for manufacturing ultra-fine metal wire according to the second aspect of the present invention, the ultra-fine wire is manufactured only by hot rolling while avoiding biting of the leading and trailing ends during rolling of the composite billet or composite material. The short process makes it possible to efficiently produce a large amount of thin wire.
本発明の第3に係る金属極細線の製造方法によれば、複
合材の内部に生ずる空隙を除去することにより、複合材
の圧延時における先後端の噛み出しを確実に回避する状
態で、熱間圧延のみによって極細線を製造することとな
り、短い工程により大量の細線を能率よく製造すること
が可能となる。According to the method for manufacturing ultra-fine metal wire according to the third aspect of the present invention, by removing the voids that occur inside the composite material, it is possible to heat Ultra-fine wires are produced only by inter-rolling, making it possible to efficiently produce a large amount of thin wires through a short process.
[実施例] 以下、本発明をより具体的に説明する。[Example] The present invention will be explained in more detail below.
線材の熱間圧延では、直径5m+*φ程度までが能率よ
く製造できる限界であり、これ以下のものは伸線による
のが普通である0ミクロンオーダの細線を熱間圧延で製
造する場合、線材圧延のように、1木毎にロールで直接
圧延することは温度の維持、ロール孔型の調整、張力の
コントロール等の点でほとんど不可能であり、工夫が必
要である。In hot rolling of wire rods, the maximum diameter that can be efficiently manufactured is approximately 5 m + * φ, and wire rods smaller than this are normally produced by wire drawing. As with rolling, it is almost impossible to directly roll each piece of wood with rolls in terms of maintaining temperature, adjusting the roll hole shape, controlling tension, etc., and requires some ingenuity.
fB線の熱間圧延を能率よく可能にする方法として、伸
線における束伸線と同様の考えで、未圧延を行なうのが
よい。線材の熱間圧延設備では、1回の加熱で多数パス
により大きな減面量が得られる。例えば 150+e1
口のビレットから 5.5111+1φの線材を+oo
m/秒の高速で圧延することができる。この場合、減面
率は、
(3,14/4 ) X (5,52/ +502)句
1/950であり、圧延能率は約87tan/時間であ
る。したがって、熱間圧延のみで極細線が製造できれば
。As a method for efficiently hot rolling fB wire, it is preferable to perform unrolling using the same concept as bundle drawing in wire drawing. In hot rolling equipment for wire rods, a large reduction in area can be obtained through multiple passes in one heating process. For example, 150+e1
5.5111+1φ wire from the mouth billet +oo
It can be rolled at a high speed of m/sec. In this case, the area reduction rate is (3,14/4) x (5,52/+502) 1/950, and the rolling efficiency is about 87 tan/hour. Therefore, if ultra-fine wire could be manufactured only by hot rolling.
非常に経済的になる。その具体的方法は、■線材を管材
に多数挿入して未圧延を繰返す。Becomes very economical. The specific method is: 1. Insert a large number of wire rods into the tube and repeat unrolling.
■線材同士の圧着対策を施す。■Take measures against crimping between wires.
■複合材料端の非定常変形を回避する。■Avoid unsteady deformation of composite material edges.
ことからなる。It consists of things.
熱間束圧延は、管状材例えば円管、角管または角材に丸
孔を開けた材料内に、線材を平行に可能な限り密に(空
隙が少なくなるように)挿入したものを加熱し、多スタ
ンドの線材圧延機で圧延する。必要により、この線材を
再び管状材に挿入して未圧延を繰返す。これは第2図(
B)の方法においても説明したとおり従来技術である。Hot bundle rolling involves heating a tubular material such as a circular tube, a square tube, or a square material with round holes in which wire rods are inserted in parallel as closely as possible (so that there are fewer voids). Rolled using a multi-stand wire rod rolling mill. If necessary, this wire rod is inserted into the tubular material again and the unrolling process is repeated. This is shown in Figure 2 (
As explained above, method B) is also a conventional technique.
線材を多数管状材に挿入した複合材を圧延すると、第3
図(A)に示すように、外装材20の端部まで内挿材1
1が露出している場合は、圧延後に先端部に大きな噛み
出し部101(噛み出し量b = b + + b 2
)が生じ、次スタンドの入側ガイドに当って進行しな
くなり、以後の圧延が不可能となる。これは、内挿材間
に空隙があると圧下によって圧延方向に伸びずにつぶれ
るので幅(オーバル)方向に広がり、カリバーからはみ
出してしまうからである。また、空隙が除去されていれ
ば、この傾向は減少するが、特に先後端は自由端である
ため、幅方向への広がりの拘束が少なく、幅方向に噛み
出しが生じやすい、低炭素鋼管にステンレス鋼を内挿し
た場合のように内挿材が外装材に比較して伸びにくい材
料である場合には変形しやすい外装材は抵抗の少ない幅
方向に変形しやすく、上記傾向が助長される。When rolling a composite material in which many wire rods are inserted into a tubular material, the third
As shown in Figure (A), the insert material 1
1 is exposed, a large protrusion 101 (protrusion amount b = b + + b 2
) occurs, and it hits the entrance guide of the next stand and stops progressing, making subsequent rolling impossible. This is because if there is a gap between the inserts, they will not stretch in the rolling direction but will be crushed by rolling, so they will spread in the width (oval) direction and protrude from the caliber. Additionally, if the voids were removed, this tendency would be reduced, but since the leading and trailing ends are free ends, there is less restraint on spreading in the width direction, making it easy for low-carbon steel pipes to bulge out in the width direction. When the inner material is a material that is less stretchable than the outer material, such as when stainless steel is inserted, the easily deformed outer material tends to deform in the width direction, where there is less resistance, and the above tendency is exacerbated. .
この先後端の噛み出しを防止し、安定に圧延を可能にす
るためには、第3図(B)に示すように、材料の両端に
適当な長さの中実材102を溶接すればよい、この中実
材は、それ自身の噛み出しは通常の単一の中実材の圧延
と同様に小さく抑えることができるとともに、複合材の
端部に中実材を溶接することにより、つぶれによる噛み
出しや自由端変形を拘束することができ、複合材端に相
当する溶接部付近の噛み出し変形も小さく抑えることが
できる。なお、複合材端の大きな噛み出し変形を抑制す
るためには、板のふたで塞ぐ程度では効果がなく、中実
材の長さは材料の外径に対して適当な長さを備えるもの
でなければならない。In order to prevent the leading and trailing edges from sticking out and to enable stable rolling, solid members 102 of appropriate lengths may be welded to both ends of the material, as shown in FIG. 3(B). , this solid material can suppress its own protrusion to a small level similar to the rolling of a single solid material, and by welding the solid material to the end of the composite material, Chewing and free end deformation can be restrained, and bite deformation near the welded portion corresponding to the end of the composite material can also be suppressed to a small level. In addition, in order to suppress large bite deformation at the edge of the composite material, it is not effective just to cover it with a plate lid, and the length of the solid material must be appropriate for the outer diameter of the material. There must be.
また、多スタンドで圧延する場合は、少なくとも延伸長
3倍程度になった所で先端の非定常部を切捨て、以後の
圧延が円滑に進むようにするので、切捨部長さをも考慮
しておかなければならい。最初の先端の切断が伸び比入
C1= 3.0の所で長さL C1= 80mmで行な
われるとすると、これは圧延前の素材の長さに換算する
と
LOCI = L(:1/ 入C1= [10
/3.0 = 201層2回目は、さらに3倍に伸
びてから、すなわち、入C2= 3X3 =9.0で
80層票切捨てたとすれば、L、OC2= LC2/入
C2= 80/ 9.0 = 8.9mmしたがって
、合計で、
L OG= (L C1/入C1)÷(LC2/λC
2) = 28.9mmあればよい。In addition, when rolling with multiple stands, the unsteady part at the tip is cut off when the elongation length is at least three times as large, so that subsequent rolling can proceed smoothly, so the length of the cut off part should also be considered. I have to keep it. Assuming that the first tip is cut at a length L C1 = 80 mm at an elongation ratio input C1 = 3.0, this is converted to the length of the material before rolling as LOCI = L (:1/ input C1 = [10
/3.0 = 201 layers The second time, after increasing the number by three times, that is, if we cut down 80 layer votes at input C2 = 3X3 = 9.0, L, OC2 = LC2 / input C2 = 80 / 9 .0 = 8.9mm Therefore, in total, L OG = (LC1/Input C1) ÷ (LC2/λC
2) = 28.9mm is sufficient.
一方、第4図に示す実験結果から定められるように、噛
み出し抑制に必要な中実部の長さLOSは、噛み出し量
を直径の7%程度に抑える(ガイド幅は直径の約7%程
度広く設定)と、LOS/ D Oは、0.09以上必
要である。したがって、2回目の切断後の必要な中実部
の長さL C2Sは、直径をDC2として、
L C2S / D C2= 0.09DC2=DO/
八]汀
ヨiJ L C2S = 0.09 (D O77m)
これは素材長さに換算すると、
L 0C2S= L C2S /λC2= 0.09D
O(入C2)−372となり、結局必要な中実素材の長
さLO’は、LO°= L OG+ L 0G2S
=(LCI/C1/入C1+ (LC2/八C2)+
(Q、09DO)(,1tC2)=/2Do =
189m層φの場合には、L O’ = 28.9+
0.58=28.5腸lとなる。なお、このLOも第4
図からLO/DO≧0.08を満足する必要があるので
、結局LO°と0.0900の大きい方をLOとすれば
よい、後端は切捨てはないので、長さ0.090以上の
中実材で中央部にガス抜き口を設けたものを溶接すれば
よい。On the other hand, as determined from the experimental results shown in Fig. 4, the length LOS of the solid part necessary to suppress the protrusion is to suppress the protrusion amount to approximately 7% of the diameter (the guide width is approximately 7% of the diameter). ) and LOS/DO must be 0.09 or more. Therefore, the required length L C2S of the solid part after the second cutting is, where the diameter is DC2, L C2S / DC2 = 0.09DC2 = DO /
8] Shore iJ L C2S = 0.09 (DO77m)
When converted to material length, L 0C2S= L C2S /λC2= 0.09D
O(input C2)-372, and the length LO' of the solid material required is LO°=L OG+L 0G2S
=(LCI/C1/Input C1+ (LC2/8C2)+
(Q, 09DO) (, 1tC2) = /2Do =
In the case of 189m layer φ, L O' = 28.9+
0.58=28.5 intestinal liters. In addition, this LO is also the 4th
From the figure, it is necessary to satisfy LO/DO≧0.08, so in the end, the larger of LO° and 0.0900 should be the LO.The rear end is not cut off, so if the length is 0.090 or more, All you need to do is weld a piece of real wood with a gas vent in the center.
なお、第5図に示すように外装材20に対する内挿材1
1の充填は、可能な限り空隙が少なくなるように行なう
が、必ず空隙が残る。この空隙には、第6図、第7図に
示すように、内挿線材より細い軟W4線34、または鉄
粉、鋼粉、スケール粉または金属酸化物粉等の粉体35
を充填してもよい。In addition, as shown in FIG. 5, the insert material 1 for the exterior material 20
Filling in step 1 is performed to minimize voids as much as possible, but voids always remain. As shown in FIGS. 6 and 7, this void is filled with a soft W4 wire 34 that is thinner than the interpolation wire, or a powder 35 such as iron powder, steel powder, scale powder, or metal oxide powder.
May be filled with
次に、挿入した線材の密着防止対策であるが、目的とす
るステンレス線同士が圧着しなければよいので、第2図
(B)の例のごとく、ステンレス線を低炭素鋼で被覆し
た線材を用い、熱間圧延中外装の低炭素鋼同士が圧着さ
れても、またステンレス線と低炭素鋼が圧着しても、結
局最後には酸で低炭素鋼を溶去するので問題にはならな
い。低炭素鋼を被覆したステンレス線は、熱間圧延によ
って製造する。すなわち、低炭素鋼の管材(外径189
mmφ内径118■φ)に、ステンレス棒(外径 11
8IfiIlφ)を挿入し、両端部に中実材を溶接した
後、多スタンドで熱間で線材に圧延する0両端中実部の
長さは、前記のLθの決め方と同様にして決めればよい
、また、線材の太さは、可能な限り細い方が有利であり
、例えば通常線材圧延の最小径 5.5m+sΦとする
。これを束圧延用素線とする。Next, as a measure to prevent the inserted wire rods from sticking together, since it is fine as long as the stainless steel wires are not crimped together, we use wire rods in which stainless steel wires are coated with low carbon steel, as shown in the example in Figure 2 (B). Even if the low carbon steel of the exterior is crimped together during hot rolling, or even if the stainless steel wire and the low carbon steel are crimped together, it will not be a problem because the low carbon steel will eventually be dissolved away by the acid. Stainless steel wire coated with low carbon steel is manufactured by hot rolling. That is, low carbon steel pipe material (outer diameter 189
mmφ inner diameter 118■φ), stainless steel rod (outer diameter 11 mmφ)
After inserting the 8IfiIlφ) and welding the solid material to both ends, the length of the solid part at both ends, which is hot rolled into a wire with multiple stands, can be determined in the same manner as the method for determining Lθ described above. Further, it is advantageous for the thickness of the wire to be as thin as possible; for example, the minimum diameter for normal wire rod rolling is 5.5 m+sΦ. This is used as a wire for bundle rolling.
なお、ステンレス線同士の圧着防止方法の別の方法とし
て、ステンレス線材(例えば5.5■腸φ)を通常の方
法で熱間圧延し、スケールが表面に付着したままの線材
を、第1回目の束圧延用素線として使う、この場合は、
空隙をやや多くして、ステンレス線材同士が接触しない
ように、前記第6図、第7図のように、素線より細い軟
鋼線34、あるいは鉄粉、銅粉、スケール粉または他の
金属酸化粉35を空隙に充填する。これらの充填材料は
ステンレス表面のスケールとともに圧着を防止する働き
をする。ステンレス線材のスケールは5.5mmφの線
材で厚さ 5B■程度付着しており、圧延が行なわれる
温度850℃以上では、スケールもステンレスと一緒に
塑性変形するので、空隙に充填した粉体とともに、ステ
ンレス線材同士の圧着防止に対して効果がある。第2回
目の幅圧延においては、ステンレス線の外装は普通鋼で
あるから、素線同士が接触しても差しつかえない。In addition, as another method for preventing crimping between stainless steel wires, stainless steel wire rods (for example, 5.5 mm diameter) are hot-rolled using a normal method, and the wire rods with scale still attached to the surface are rolled for the first time. used as wire for bundle rolling, in this case,
To prevent the stainless steel wires from contacting each other by increasing the voids slightly, as shown in Figs. Fill the void with powder 35. These filling materials work together with scale on the stainless steel surface to prevent crimping. The scale of the stainless steel wire rod is attached to the wire rod with a diameter of 5.5 mm and has a thickness of about 5 B. At rolling temperatures of 850°C or higher, the scale deforms plastically along with the stainless steel, so the scale deforms plastically along with the powder filling the voids. Effective in preventing crimping between stainless steel wires. In the second width rolling, since the exterior of the stainless steel wire is made of ordinary steel, there is no problem even if the strands come into contact with each other.
以北により熱間圧延のみにより、ステンレスの極細線を
製造することが可能となる。From this point onwards, it becomes possible to produce ultra-fine stainless steel wire using only hot rolling.
第1図に実施例を示す。An example is shown in FIG.
外径189+sm$、内径119mmφ(7)低炭素鋼
管2゜に、外径118+smのステンレス棒(StlS
316t) l Oを挿入し、複合ビレッ)31−1を
作る。その両端を内外材ともそろえた後、第8図に示す
ように、中実材(普通鋼)29−1.29−2を溶接す
る。この端部中実材は、圧延先端用としては、圧延工程
での切捨および噛み出し抑制を考慮して長さを前述のよ
うに決める。すなわち、切捨長28.9mm、噛出抑制
長0.09XDO(入C2)−””=0.08X 1
81]X (9) = 0.58wmテあるから、
LO’=28.9+ 0.58= 28.5ms+、一
方、第1パスでの噛み出し限界からL O= 0.09
X D O= 0.09X 189=15.2+m、
したがって、圧延先端の中実材の長さは、29.5
m+*と15.2mmの大きい方を採用すればよ(、3
0mm以上であればよい、ここではやや余裕をみて50
+amとする。また、後端は、上記LO程度でよく、や
や余裕をみて30wmとする。なお、後端用中実材29
−2には略中夫に5■φ程度の貫通孔30を設け、ステ
ンレス棒と外装材の間の空気抜き口とする。Outer diameter 189+sm $, inner diameter 119mmφ (7) Low carbon steel pipe 2°, outer diameter 118+sm stainless steel rod
316t) Insert l O to make a composite billet) 31-1. After aligning both ends of the inner and outer members, solid members (common steel) 29-1 and 29-2 are welded, as shown in FIG. The length of this end solid material for use as a rolling tip is determined as described above in consideration of truncation and suppression of chewing during the rolling process. In other words, truncated length 28.9 mm, bite suppression length 0.09XDO (input C2) - "" = 0.08X 1
81]X (9) = 0.58wmte, so
LO' = 28.9 + 0.58 = 28.5ms +, while from the bite limit in the first pass, LO = 0.09
X D O = 0.09X 189 = 15.2 + m,
Therefore, the length of the solid material at the rolling tip is 29.5
Just use the larger one of m+* and 15.2mm (,3
As long as it is 0mm or more, it is fine.Here, we took a little margin and set it at 50mm.
+am. Further, the rear end may be approximately the above LO, and is set to 30 wm with some margin. In addition, the solid material 29 for the rear end
-2 is provided with a through hole 30 approximately 5 mm in diameter, which serves as an air vent between the stainless steel rod and the exterior material.
このようにして作成した素材を通常の第9図に示すよう
な線材圧延機で熱間圧延する。すなわち、連続加熱炉2
1で約1150”cに加熱した後、粗圧延機群22(例
えば6スタンド)、中間圧延機群23(例えば12スタ
ンド)および仕上圧延機群24(例えばlOスタンド)
により 5.5■φに100Il/秒で圧延した後、水
冷ゾーン25で冷却し、レイングヘッド26でリング状
にしてコンペア上に落し、ステルモア装置27で空冷し
た後、コイル28とする。なお、粗圧延機22の出側と
中間圧延機23の中間で先端を切捨てる。このようにし
て得られた線材11−1は、外径が5.5m+sφ、内
部のステンレスは略円形断面で、直径は3.8■φであ
る。The material thus prepared is hot-rolled using a conventional wire rod rolling mill as shown in FIG. That is, continuous heating furnace 2
1 to about 1150"c, a rough rolling mill group 22 (for example, 6 stands), an intermediate rolling mill group 23 (for example, 12 stands) and a finishing mill group 24 (for example, 1O stand).
After rolling to 5.5 φ at 100 Il/sec, it is cooled in a water-cooling zone 25, formed into a ring shape by a laying head 26, dropped onto a comparer, air-cooled by a Stelmore device 27, and then formed into a coil 28. Note that the tip is cut off between the outlet side of the rough rolling mill 22 and the intermediate rolling mill 23. The wire rod 11-1 thus obtained has an outer diameter of 5.5 m+sφ, an internal stainless steel having a substantially circular cross section, and a diameter of 3.8 φ.
この線材11−1を直線にし、一定長さく例えば10m
)に切断し、これを普通鋼管2oに平行な束となるよう
に挿入する。管は外径 189■φ、内径119mmφ
で、 5.5■φの線材を約400本挿入することがで
きる。この複合材31−2の両端を前述と同様にして、
普通鋼中実材(先端用は長さ50mm、後端用は長さ3
0m5で中央に5■φ貫通孔を設ける)を溶接する。こ
れを前記と同様の線材圧延機で熱間圧延し、 5.5
m+sφの線材とする。このとき内挿素線は、0.17
9 m+sφX 400本テ、素線に含まれるステン
レス線の直径は約0.124mmφとなる。1回の東圧
延で、直径は5.5/ 189=1/30.7になる。This wire rod 11-1 is made straight and has a certain length, for example, 10 m.
) and insert it into the ordinary steel pipe 2o so as to form a parallel bundle. The tube has an outer diameter of 189mmφ and an inner diameter of 119mmφ.
Approximately 400 wire rods with a diameter of 5.5 mm can be inserted. Both ends of this composite material 31-2 are made in the same manner as described above,
Ordinary steel solid material (length 50mm for the tip, length 3 for the rear end)
Weld a 5mmφ through hole in the center with a length of 0m5. This was hot rolled using the same wire rod rolling mill as above, and 5.5
The wire is m+sφ. At this time, the interpolation element line is 0.17
9 m + sφ After one east rolling, the diameter becomes 5.5/189 = 1/30.7.
この線材コイルを再び一定長さく例えば10m)に切断
し、外径 169■φ、内径119■φの佇通鋼管にモ
行状東として約400本挿入し、両端に中実材を溶接し
、線材圧延する。この時の線材の仕上外径をdO,所望
のステンレス線径をdsとすれば、ds= 0.12
4X (do/169)であるから、ds=12gmと
すれば、do= 18.4mφ、ds= 84mと
すればdQ= 8.2mφ、ds= 4gtsとすれ
ばdO= 5.5mΦとなる。なお、上記実施例ではス
テンレス素線径を3.8m■φ、また第1回の型圧延の
線材仕J:径を5゜5mmφとしたが、2回束圧延を行
なう場合は、それぞれの仕上外径をd 01. d
02とし、ステンレス素線径をdsB、所望のステンレ
ス線径ds とする時、
ds = dsBX (d01/ 189 ) X (
d02/189)を満足し、圧延能率が大きくなるよう
にdol、d02を決めればよい。This wire rod coil is again cut into a certain length (for example, 10 m), and approximately 400 pieces are inserted into a Dantsu steel pipe with an outer diameter of 169 mm and an inner diameter of 119 mm, and a solid material is welded to both ends. Roll. If the finished outer diameter of the wire at this time is dO, and the desired stainless steel wire diameter is ds, then ds = 0.12
4X (do/169), so if ds=12gm, do=18.4mφ, if ds=84m, dQ=8.2mφ, and if ds=4gts, dO=5.5mφ. In the above example, the diameter of the stainless steel wire was 3.8 mφ, and the wire material J: diameter of the first die rolling was 5°5 mmφ, but when performing bundle rolling twice, each finishing The outer diameter is d01. d
02, the stainless steel wire diameter is dsB, and the desired stainless steel wire diameter ds is: ds = dsBX (d01/189) X (
d02/189) and determine dol and d02 so as to increase the rolling efficiency.
以上のように、2回束圧延して得られた線材(例では5
.51Φ)を硝酸浴等の酸に浸漬して、外装の低炭素鋼
を溶去すれば、ステンレス極細線が得られる。この実施
例では、 4用菖φの極細線が約400X 400=
180000本得られる0なお、型圧延のために線
材を内挿した複合材31−2または31−3において、
ti材間には必ず空隙を生ずる。最稠密充填に近い本数
を挿入すれば噛み出し等の問題はないが、線材の曲がり
等で充填本数が少なく空隙が大きい場合には、前述のよ
うに素線の115程度の直径の軟鋼線材34を充填する
か、鉄粉、スケール粉等の粉体35を充填してもよい。As mentioned above, the wire rod obtained by bundle rolling twice (in the example, 5
.. 51Φ) is immersed in an acid such as a nitric acid bath to dissolve away the low carbon steel on the exterior, an ultrafine stainless steel wire can be obtained. In this example, the ultra-fine wire of 4 irises φ is approximately 400X 400=
In addition, in the composite material 31-2 or 31-3 in which wire rods were inserted for die rolling,
There are always gaps between the Ti materials. If the number of wires close to the densest packing is inserted, there will be no problems such as sticking out, but if the number of wires packed is small and the gap is large due to bending of the wire, etc., as described above, the soft steel wire 34 with a diameter of about 115 Alternatively, a powder 35 such as iron powder or scale powder may be filled.
以上のように5本発明によれば、熱間束圧延のみの繰返
しで、ミクロンオーダのステンレス極細線を効率よく大
量に生産することが可能となる。As described above, according to the present invention, it is possible to efficiently mass-produce micron-order stainless steel ultrafine wires by repeating only hot bundle rolling.
この結果、第2図CB)に示した従来法に比して、熱間
押出2回、冷間伸線2回を省略して、型圧延2回(1回
増)で、より細い 4gmφ程度(12gmφ程度)ま
での極細線を自由に製造することが可能となる。なお、
複合材の端部に中実材を溶接する工程は、熱間押出や伸
線に比して無視できる程度の工程であり、従来法で、約
90日程度の工期を要すると言われているが1本発明で
は、熱間押出および伸線を2回ずつ省略した結果、約1
/2の40日程度に短縮で5る。しかも、従来法より細
い線が大量に得られる(第2図(B)との比較で太さ1
2gmが4゜4牌■、木a 3280本がIf(000
0木)。As a result, compared to the conventional method shown in Figure 2 CB), two hot extrusions and two cold wire drawings are omitted, and the die rolling is performed twice (increased by one), resulting in a thinner wire of approximately 4 gmφ. It becomes possible to freely manufacture ultrafine wires up to (approximately 12 gmφ). In addition,
The process of welding a solid material to the edge of a composite material is a negligible process compared to hot extrusion or wire drawing, and is said to take about 90 days using conventional methods. In the present invention, as a result of omitting hot extrusion and wire drawing twice, approximately 1
/2 shortened to about 40 days. Moreover, a large amount of thinner lines can be obtained than in the conventional method (compared with Fig. 2 (B), the thickness is 1
2gm is 4゜4 tiles ■, wood a 3280 pieces are If (000
0 tree).
[発明の効果]
以」二のように1本発明の第1に係る金属極細線の製造
方法は、低炭素鋼外装材の内部にステンレス鋼の巾−棒
材からなる内挿材を挿入した複合ビレットに熱間圧延を
施し、外装部が前記低炭素鋼で内部がステンレス鋼の複
合線材を得る工程に次いで、低炭素鋼外装材の内部に上
記複合線材を平行な束状としだ内挿材を挿入した複合材
を熱間圧延することによって線材を得る工程を少なくと
も1回以上繰返した後、上記線材を酸に浸漬して低iノ
’−K mを溶去するようにしたものである。したがっ
て、熱間圧延のみによって極細線を製造することになり
、短い工程により固着の細線を能率よく製造することが
可能となる。[Effects of the Invention] As described in 2 below, the method for producing ultrafine metal wire according to the first aspect of the present invention includes inserting an insert material made of a width-bar material of stainless steel into the interior of a low carbon steel exterior material. Following the step of hot rolling the composite billet to obtain a composite wire rod whose exterior part is made of the above-mentioned low carbon steel and whose interior is made of stainless steel, the above-mentioned composite wire rod is formed into a parallel bundle inside the low carbon steel exterior material and then inserted. After repeating the process of hot rolling the composite material into which the wire rod is inserted at least once, the wire rod is immersed in acid to dissolve away the low i-Km. be. Therefore, the ultra-fine wire is manufactured only by hot rolling, and it becomes possible to efficiently manufacture the fixed fine wire through a short process.
また、本発明の第2に係る金属線の極細線の製造方法は
、低炭素鋼外装材の内部にステンレス鋼の単一棒材から
なる内挿材を挿入した複合ビレットに熱間圧延を施し、
外装部が前記低炭素鋼で内部がステンレス鋼の複合線材
を得る工程に次いで、低炭素鋼外装材の内部に上記複合
線材を平行な束状としだ内挿材を挿入した複合材を熱間
圧延することによって線材を得る工程を少なくとも1回
以上繰返した後、L配線材を酸に浸漬して低炭素鋼を溶
去する金属極細線の製造方法であって、複合どレットお
よび複合材の先端部と後端部に中実部材を固着して熱間
圧延するようにしたものである。したがって、複合ビレ
ット、複合材の圧延時における先後端の噛み出しを回避
する状態で。Further, the second method of manufacturing ultrafine metal wire of the present invention includes hot rolling a composite billet in which an insert made of a single bar of stainless steel is inserted inside a low carbon steel exterior material. ,
Next to the step of obtaining a composite wire whose exterior part is made of the low carbon steel and whose interior is made of stainless steel, the composite wire is made into a parallel bundle inside the low carbon steel exterior material and the composite wire is inserted with a sintered insert, which is heated. A method for producing ultrafine metal wires, in which the process of obtaining a wire rod by rolling is repeated at least once, and then the L wiring material is immersed in acid to dissolve away the low carbon steel, the method comprising: A solid member is fixed to the front end and rear end and hot rolled. Therefore, in order to avoid biting of the leading and trailing edges during rolling of composite billets and composite materials.
熱間圧延のみによって極細線を製造することとなり、短
い工程により大量の細線を能率よく製造することが可能
となる。Ultra-fine wires are produced only by hot rolling, making it possible to efficiently produce a large amount of thin wires through a short process.
また、本発明の第3に係る金属極細線の製造方法は、低
炭素鋼外装材の内部にステンレス鋼の単一線材からなる
内挿材を挿入した複合ビレットに熱間圧延を施し、外装
部が前記低炭素鋼で内部がステンレス鋼の複合線材を得
る工程に次いで、低炭素鋼外装材の内部に上記複合線材
を平行な束状としだ内挿材を挿入した複合材を熱間圧延
することによって線材を得る工程を少なくとも1回以上
繰返した後、上記線材を酸に浸漬して低炭素鋼を溶去す
る金属極細線の製造方法であって、複合材の内部に生ず
る空隙に充填材料を充填して熱間圧延するようにしたも
のである。したがって、複合材の内部に生ずる空隙を除
去することにより、複合材の圧延時における先後端の噛
み出しを回避する状pfH’)で、熱間圧延のみによっ
て極細線を製造することとなり、短い工程により大量の
細線を1@率よく製造することが可能となる。In addition, in the method for producing ultra-fine metal wire according to the third aspect of the present invention, a composite billet in which an insert made of a single wire of stainless steel is inserted inside a low carbon steel exterior material is hot-rolled, and the exterior part is Next to the step of obtaining a composite wire rod made of low carbon steel and stainless steel inside, the composite wire rod is formed into a parallel bundle inside a low carbon steel exterior material, and a composite material is hot-rolled with an insert insert inserted. A method for producing ultrafine metal wires, in which the process of obtaining a wire rod is repeated at least once or more, and then the wire rod is immersed in acid to dissolve away the low carbon steel, the method comprising filling voids formed inside the composite material with filling material. The material is filled with and hot-rolled. Therefore, by removing the voids that occur inside the composite material, ultra-fine wires can be manufactured only by hot rolling, with a shape pfH') that avoids biting of the leading and trailing edges during rolling of the composite material, resulting in a short manufacturing process. This makes it possible to produce a large amount of thin wire at a high rate of 1@.
第1図は本発明の一実施例を模式的に示す製造工程図、
第2図(A)は従来方法を示す製造工程図、第2図(B
)は他の従来方法を示す製造工程図、第3図(A)は従
来法による束圧延状態を示す模式図、第3図(B)は本
発明による東圧延状態を示す模式図、第4図は本発明に
おいて用いられる中実部長さと噛み出し量の関係を示す
線図、第5図は複合材を示す端面図、第6図は複合材の
他の例を示す端面図、第7図は複合材の他の例を示す端
面図、第8図は複合材の両端部に中実部を設けた状態を
示す側面図、第9図は圧延装置の一例を示す模式図であ
る。
10・・・ステンレス丸棒、11・・・ステンレス線材
、20・・・外装材、29−1.29−2・・・中実材
、31−1.31−2・・・熱間押出用素材、34・・
・空隙充填用軟鋼線、35・・・空隙充填用粉体。
代理人 弁理士 塩 川 修 治
第2図(△)
第 3 回
(A)(B)
第 4 回
第 5 図
第 6 図
第 7 図FIG. 1 is a manufacturing process diagram schematically showing an embodiment of the present invention;
Figure 2 (A) is a manufacturing process diagram showing the conventional method, Figure 2 (B)
) is a manufacturing process diagram showing another conventional method, FIG. 3(A) is a schematic diagram showing a bundle rolling state by the conventional method, FIG. 3(B) is a schematic diagram showing an east rolling state by the present invention, and FIG. The figure is a diagram showing the relationship between the solid length and the amount of protrusion used in the present invention, FIG. 5 is an end view showing a composite material, FIG. 6 is an end view showing another example of the composite material, and FIG. 7 8 is an end view showing another example of a composite material, FIG. 8 is a side view showing a state in which solid parts are provided at both ends of the composite material, and FIG. 9 is a schematic diagram showing an example of a rolling apparatus. 10...Stainless steel round bar, 11...Stainless steel wire rod, 20...Exterior material, 29-1.29-2...Solid material, 31-1.31-2...For hot extrusion Material, 34...
- Mild steel wire for void filling, 35... powder for void filling. Agent Patent Attorney Osamu Shiokawa Figure 2 (△) 3rd session (A) (B) 4th session Figure 5 Figure 6 Figure 7
Claims (3)
からなる内挿材を挿入した複合ビレットに熱間圧延を施
し、外装部が前記低炭素鋼で内部がステンレス鋼の複合
線材を得る工程に次いで、低炭素鋼外装材の内部に上記
複合線材を平行な束状とした内挿材を挿入した複合材を
熱間圧延することによって線材を得る工程を少なくとも
1回以上繰返した後、上記線材を酸に浸漬して低炭素鋼
を溶去する金属極細線の製造方法。(1) A composite billet in which an insert made of a single bar of stainless steel is inserted inside a low-carbon steel exterior material is hot-rolled, and the composite wire is made of the low-carbon steel in the exterior part and stainless steel in the interior. Next, the step of obtaining a wire rod by hot rolling a composite material in which an insert material made of parallel bundles of the above composite wire rods was inserted into the inside of a low carbon steel exterior material was repeated at least once. A method for producing ultrafine metal wires, in which the wire rod is then immersed in acid to dissolve away the low carbon steel.
からなる内挿材を挿入した複合ビレットに熱間圧延を施
し、外装部が前記低炭素鋼で内部がステンレス鋼の複合
線材を得る工程に次いで、低炭素鋼外装材の内部に上記
複合線材を平行な束状とした内挿材を挿入した複合材を
熱間圧延することによって線材を得る工程を少なくとも
1回以上繰返した後、上記線材を酸に浸漬して低炭素鋼
を溶去する金属極細線の製造方法であって、複合ビレッ
トおよび複合材の先端部と後端部に中実部材を固着して
熱間圧延する金属極細線の製造方法。(2) A composite billet in which an insert made of a single bar of stainless steel is inserted inside a low-carbon steel exterior material is hot-rolled, and the composite wire is made of the low-carbon steel in the exterior part and stainless steel in the interior. Next, the step of obtaining a wire rod by hot rolling a composite material in which an insert material made of parallel bundles of the above composite wire rods was inserted into the inside of a low carbon steel exterior material was repeated at least once. A method for producing ultrafine metal wires in which the wire rod is then immersed in acid to dissolve the low carbon steel, and solid members are fixed to the leading and trailing ends of the composite billet and the composite material and then hot rolled. A method for manufacturing ultrafine metal wire.
からなる内挿材を挿入した複合ビレットに熱間圧延を施
し、外装部が前記低炭素鋼で内部がステンレス鋼の複合
線材を得る工程に次いで、低炭素鋼外装材の内部に上記
複合線材を平行な束状とした内挿材を挿入した複合材を
熱間圧延することによって線材を得る工程を少なくとも
1回以上繰返した後、上記線材を酸に浸漬して低炭素鋼
を溶去する金属極細線の製造方法であって、複合材の内
部に生ずる空隙に充填材料を充填して熱間圧延する金属
極細線の製造方法。(3) A composite billet in which an insert made of a single bar of stainless steel is inserted inside a low-carbon steel exterior material is hot-rolled, and the composite wire is made of the low-carbon steel in the exterior part and stainless steel in the interior. Next, the step of obtaining a wire rod by hot rolling a composite material in which an insert material made of parallel bundles of the above composite wire rods was inserted into the inside of a low carbon steel exterior material was repeated at least once. After that, the above-mentioned wire rod is immersed in acid to dissolve away the low carbon steel, and the method for manufacturing ultra-fine metal wire comprises filling the voids formed inside the composite material with a filler material and hot rolling it. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25982185A JPS62124002A (en) | 1985-11-21 | 1985-11-21 | Production of extra fine metallic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25982185A JPS62124002A (en) | 1985-11-21 | 1985-11-21 | Production of extra fine metallic wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62124002A true JPS62124002A (en) | 1987-06-05 |
Family
ID=17339460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25982185A Pending JPS62124002A (en) | 1985-11-21 | 1985-11-21 | Production of extra fine metallic wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62124002A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187212A (en) * | 1989-01-11 | 1990-07-23 | Sumitomo Metal Ind Ltd | Manufacture of extra-fine titanic wire |
-
1985
- 1985-11-21 JP JP25982185A patent/JPS62124002A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187212A (en) * | 1989-01-11 | 1990-07-23 | Sumitomo Metal Ind Ltd | Manufacture of extra-fine titanic wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0447820B1 (en) | Method of making a composite metal wire | |
WO1990000456A1 (en) | Process for manufacturing steel strip with a thickness of less than 10 mm | |
JPS62124002A (en) | Production of extra fine metallic wire | |
EP1463591B1 (en) | Method and rolling stand for producing rods, bar stock or seamless tubes | |
DE69826807T2 (en) | Process for producing metal pipes of weldable ductile metals | |
AT393361B (en) | Method and device for producing thin wires, rods, tubes and profiles from steels and alloys with low dimensional change, in particular from hardenable steels. | |
US2086135A (en) | Method of making a metal-clad rod | |
JP2000190020A (en) | Manufacture of plate and bar and manufacture of welded groove tube | |
JPH02211901A (en) | Production of extremely fine titanium wire | |
US6598287B1 (en) | Apparatus and method for sizing a galvanized tube | |
JPH0342126B2 (en) | ||
DE69306862T2 (en) | Manufacture of mineral insulated electrical cables | |
CH628535A5 (en) | Method for the production of plated extruded products | |
AT501551A1 (en) | METHOD AND APPARATUS FOR PRODUCING STEEL WIRE OF HIGH DUCTILITY FROM HOT-ROLLED ROLLING WIRE | |
RU2561564C1 (en) | Method of producing of bimetallic wire | |
JP2662122B2 (en) | Manufacturing method of circular section material | |
AT256005B (en) | Method for manufacturing bimetal wire | |
JPH0623485A (en) | Manufacture of drawing wire rod | |
DE1907107C3 (en) | Process for the production of copper-clad aluminum wires | |
DE2351616A1 (en) | Seamless metal tubes prodn. - is based on hot rolling and stretching of stressed tube blank followed by hot drawing | |
DE2511132C2 (en) | Method of manufacturing an electrical conductor | |
JP2529846B2 (en) | Cavity rolling method for clad wire rod | |
JP2000061525A (en) | Manufacture of metallic fiber | |
DE19714305C2 (en) | Process for the production of metal-coated strands, in particular glass fiber cables | |
JPS594202B2 (en) | Golden-throated beetle |