JPH02211901A - Production of extremely fine titanium wire - Google Patents

Production of extremely fine titanium wire

Info

Publication number
JPH02211901A
JPH02211901A JP3424489A JP3424489A JPH02211901A JP H02211901 A JPH02211901 A JP H02211901A JP 3424489 A JP3424489 A JP 3424489A JP 3424489 A JP3424489 A JP 3424489A JP H02211901 A JPH02211901 A JP H02211901A
Authority
JP
Japan
Prior art keywords
wire
carbon steel
wire rod
low
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3424489A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Heiji Hagita
萩田 兵治
Akihiko Takatsu
高津 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3424489A priority Critical patent/JPH02211901A/en
Publication of JPH02211901A publication Critical patent/JPH02211901A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Abstract

PURPOSE:To easily and inexpensively produce the extremely fine Ti wire having good quality by coating the outer periphery of Ti wire rods with a low-carbon steel strip, heating the wire rods at a specific temp., subjecting the wire rods to hot rolling at a specific temp. and then cooling the wire rods at a specific cooling rate. CONSTITUTION:The assembly of the coated wire rod formed by sticking a power mixture composed of mica and glass onto the surface of the Ti wire rods, then coating the outer periphery thereof with the low-carbon steel strip is used as an inside layer and the outside layer part is formed of the low-carbon steel. This billet is heated to <=1000 deg.C and is in succession subjected to the hot rolling at <=950 deg.C; thereafter, the wire rod is cooled at >=1 deg.C/sec cooling rate to obtain the wire rod in which plural pieces of the extremely fine Ti wire are included in obtd. The low-carbon steel part of this wire rod is thereafter dissolved away by using an acid. The extremely fine Ti wire having the good quality is easily obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化学反応用フィルター、複合材料用繊維、電磁
波シールド材等に使用されるチタン(以下(以下’Ti
 Jと記す)極細線を低コストで製造する方法に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to titanium (hereinafter referred to as 'Ti
The present invention relates to a method for producing ultrafine wire (denoted as J) at low cost.

(従来の技術) 従来、Ti極細線の製造方法としては、熱間圧延によっ
て製造された例えば外径φ5.5 mmのTi線材を、
特開昭62−185893号公報に示すようにTi線材
表面にNiメツキを施し、それを潤滑皮膜として用いて
、冷間伸線機により伸線して製造していた。すなわち、
極細線にするためには、何度も酸洗→焼鈍→酸洗→Ni
メツキ→伸線の工程をくり返す必要がある。従ってこの
方法によれば伸線工程が多く必要であるため、コスト高
を招いていた。又、Niメツキのかわりに酸化スケール
をTi表面に生成させて、これを潤滑剤として伸線する
方法もあるが、この方法も、何度も酸洗→焼鈍→伸線の
工程をくり返す必要がありコスト高であった。
(Prior Art) Conventionally, as a method for producing ultrafine Ti wire, a Ti wire with an outer diameter of 5.5 mm, for example, produced by hot rolling is
As shown in Japanese Unexamined Patent Publication No. 62-185893, Ni plating was applied to the surface of a Ti wire, and this was used as a lubricating film, and the wire was drawn using a cold wire drawing machine. That is,
To make ultra-fine wire, pickling → annealing → pickling → Ni
It is necessary to repeat the process of plating → wire drawing. Therefore, this method requires many wire drawing steps, leading to high costs. Another method is to generate oxide scale on the Ti surface instead of Ni plating and use this as a lubricant for wire drawing, but this method also requires the process of pickling, annealing, and wire drawing to be repeated many times. However, the cost was high.

さらに熱間線材圧延を用いて、金属ファイバーを製造す
る方法として、■特開昭51−17163号公報、■特
開昭61−137623号公報がある。
Furthermore, methods for manufacturing metal fibers using hot wire rolling are disclosed in 1) Japanese Patent Application Laid-Open No. 17163/1982 and 2) Japanese Patent Application Laid-Open No. 137623/1982.

■の方法は、「外層が普通鋼で内部がファイバー用金属
素材から成る熱間押出し用ビレットを製作し、熱間押出
により線材圧延用ビレットとなし、該ビレットを熱間線
材圧延し、内部がファイバー用金属素材で、外層部が普
通鋼からなる複合線材を得、該複合線材の集合体を内層
とし、外層を普通鋼として更に1回以上の熱間押出しと
熱間線材圧延を行うことを特徴とする多数本のファイバ
ー用金属細線を内包する線材の製造方法」として開示さ
れ、束ね圧延法とされている。線材を冷間伸線後酸洗し
ファイバーとするこの方法は、冷間伸線のみで極細線と
する方法に比べて、製造コストは低いと思われる。
Method (2) is to produce a billet for hot extrusion with an outer layer of ordinary steel and an inner layer of metal material for fiber, hot extrusion to form a billet for wire rod rolling, hot rolling of the billet, and an inner layer of Obtaining a composite wire with a metal material for fibers, the outer layer of which is made of common steel, and then hot extruding and hot wire rolling one or more times using the aggregate of the composite wire as the inner layer and the outer layer of common steel. It is disclosed as ``A method for manufacturing a wire containing a large number of thin metal wires for fibers'' and is described as a bundling rolling method. This method of cold-drawing a wire and then pickling it to produce fibers is thought to have lower manufacturing costs than the method of producing ultra-fine wires only by cold-drawing.

また■の方法は、[ステンレス長繊維を得るにあたり、
ステンレス線状材を炭素量0.008 wt%以下の極
低炭素鋼帯で被覆して複合線状材を得しめ、この複合線
状材の多数本をステンレス線状材よりも炭素含有量の少
ない炭素鋼管に挿入して熱間圧延し、冷間伸線と焼鈍処
理を繰り返して細線化し、化学的に上記両次素鋼を除去
することを特徴とするステンレス繊維の製造方法」とし
て開示され、複合線材を得るのに極低炭素鋼帯を金属線
材外周部に巻くことを特徴としている。
In addition, method ■ [In obtaining stainless steel long fibers,
A composite wire material is obtained by coating a stainless steel wire material with an ultra-low carbon steel strip with a carbon content of 0.008 wt% or less. A method for manufacturing stainless steel fiber, which comprises inserting the fiber into a thin carbon steel pipe, hot rolling it, repeating cold drawing and annealing to thin the fiber, and chemically removing the above-mentioned double-dimensional raw steel. , is characterized by wrapping an ultra-low carbon steel strip around the outer periphery of the metal wire to obtain a composite wire.

上述の特開昭51−17163号公報、特開昭61−1
37623号公報の方法でステンレス極細線を製造する
場合は、通常の鉄の熱間圧延条件で問題なく圧延でき、
かつ、製造された、内部にステンレス極細線を含んだ線
材を、鉄のみ溶解する酸(硝酸)を用いて酸洗すること
により、ステンレス極細線が得られる。
The above-mentioned Japanese Patent Application Laid-open No. 51-17163, Japanese Patent Application Laid-open No. 61-1
When manufacturing ultrafine stainless steel wire using the method disclosed in Publication No. 37623, it can be rolled under normal iron hot rolling conditions without any problems.
Further, by pickling the manufactured wire containing the stainless steel wire inside with an acid (nitric acid) that dissolves only iron, the stainless steel wire can be obtained.

(発明が解決しようとする課題) しかしながら、Ti線の場合は、TiとFeで容易に低
融点の化合物(溶融点1070°C)を作るため通常の
熱間圧延温度(1100°C以上)ではFe−Ti化合
物がTi線全全面できてしまう。またこのFe−Ti化
合物は硝酸に溶け、Ti極細線が得られない。さらに高
い温度に加熱圧延、巻き取りを行うと、FeがTi中に
拡散し、同じ(Fe−Ti化合物をつくり、この化合物
が酸にとけるので、所定径のTi極細線は得られないと
いう問題がある。
(Problem to be solved by the invention) However, in the case of Ti wire, Ti and Fe easily form a low melting point compound (melting point 1070°C), so it cannot be used at normal hot rolling temperatures (1100°C or higher). A Fe-Ti compound is formed on the entire surface of the Ti wire. Moreover, this Fe-Ti compound dissolves in nitric acid, making it impossible to obtain ultrafine Ti wires. When hot rolling and winding are carried out at a higher temperature, Fe diffuses into the Ti, creating the same (Fe-Ti compound), and this compound dissolves in acid, making it impossible to obtain Ti ultrafine wires of a predetermined diameter. There is.

本発明は上記問題点に鑑みて成されたものであり、Ti
極細線を低コストで製造できる方法を提供することを目
的としている。
The present invention has been made in view of the above-mentioned problems.
The purpose is to provide a method for manufacturing ultrafine wires at low cost.

(課題を解決するための手段) 本発明者らは上記観点から、Ti−Fe化合物を生成し
にくい複合線材の製造方法及び熱間圧延条件を求めるべ
く種々検討した結果、以下に示す知見を得た。
(Means for Solving the Problems) From the above viewpoint, the present inventors conducted various studies to find a manufacturing method and hot rolling conditions for a composite wire rod that does not easily generate Ti-Fe compounds, and as a result, they obtained the knowledge shown below. Ta.

(1)外径φ1〜3fflIn前後のTi冷間伸線材は
、通常外径φ5.5卿の熱間圧延材を用いて伸線し製造
するので、潤滑、伸線が1〜2回で済むため、比較的低
コストである。従ってこの線材を用いて極細線を作る。
(1) Ti cold-drawn wire rods with an outer diameter of around φ1 to 3fflIn are normally manufactured by drawing using hot-rolled wire rods with an outer diameter of φ5.5 mm, so lubrication and wire drawing can be performed only once or twice. Therefore, the cost is relatively low. Therefore, this wire material is used to make ultra-fine wires.

(2)  Ti伸線材を低炭素鋼帯で巻けば、低コスト
で隔離材となるが、TiとFeの相互拡散を防止するこ
とはできない。そこでTi伸線材の表面に雲母とガラス
を成分とする拡散防止剤を付着させた後、低炭素鋼帯で
外周を巻けば、熱延時における銅帯とTi線との大きな
拡散防止効果がある。
(2) Wrapping Ti wire drawn material with a low carbon steel strip can be used as a low-cost separator, but it cannot prevent the mutual diffusion of Ti and Fe. Therefore, if a diffusion preventive agent containing mica and glass is attached to the surface of the Ti wire drawn material and then the outer periphery is wrapped with a low carbon steel strip, there is a great effect of preventing diffusion between the copper strip and the Ti wire during hot rolling.

尚、この際冷間伸線用酸化スケールの併用が望ましい。At this time, it is desirable to use oxidized scale for cold wire drawing in combination.

(3)上記複合線を埋設した複合ビレットを加熱温度が
1000°C以下、圧延温度が950°C以下、圧延後
の冷却速度を1℃/秒以上の条件で熱延することで、R
e−Ti化合物層を圧延後外径の10%以内に抑えるこ
とができる。
(3) R
The e-Ti compound layer can be kept within 10% of the outer diameter after rolling.

(4)熱延又はさらに伸線した後、酸洗すれば極細線が
得られる。
(4) After hot rolling or further wire drawing, an ultrafine wire can be obtained by pickling.

本発明は上記知見に基づいて成されたものであり、第1
の本発明の要旨は、Ti線材の表面に雲母とガラスを成
分とする混合粉末を付着させた後その外周を低炭素鋼帯
で被覆した複合線材の集合体を内層とし、外層部を低炭
素鋼としたビレットを、1000°C以下で加熱し、つ
づいて950°C以下で熱間線材圧延を行った後、l’
c/秒以上の冷却速度で冷却して内部に複数本のTi極
細線を内包した線材を得、その後該線材の低炭素鋼部分
を酸を用いて溶解除去することである。
The present invention has been made based on the above findings, and is based on the first
The gist of the present invention is that the inner layer is a composite wire assembly in which a mixed powder containing mica and glass is adhered to the surface of a Ti wire and the outer periphery is covered with a low carbon steel strip, and the outer layer is made of a low carbon steel strip. After heating the steel billet at 1000°C or less and then hot wire rolling at 950°C or less, l'
A wire rod containing a plurality of Ti ultrafine wires is obtained by cooling at a cooling rate of c/sec or higher, and then the low carbon steel portion of the wire rod is dissolved and removed using acid.

また第2の本発明の要旨は、上記第1の本発明の方法に
おいて、熱間線材圧延後の冷却工程と酸による低炭素鋼
部分の溶解除去工程の間に冷間引抜き工程を介在せしめ
たことである。
The gist of the second invention is that, in the method of the first invention, a cold drawing process is interposed between the cooling process after hot wire rolling and the process of dissolving and removing the low carbon steel portion with acid. That's true.

(作  用) 本発明におけるTi線材とは、純Ti等のα相Ti、T
i−6AI−4V等の(α+β)型Ti合金、Ti−3
AITi−3AI−8V−6Cr−4、、Ti−15V
−3Cr−3Sn−3AI等のβ型Ti合金をいう。
(Function) The Ti wire in the present invention refers to α-phase Ti such as pure Ti, T
(α+β) type Ti alloy such as i-6AI-4V, Ti-3
AITi-3AI-8V-6Cr-4, Ti-15V
Refers to β-type Ti alloys such as -3Cr-3Sn-3AI.

本発明方法には上記Ti合金を例えば冷間伸線した外径
がφ3M以下程度の線材を用いるが、冷間伸線方法とし
ては、例えばローラーダイス、穴ダイス等を用いて行う
。そして伸線時の潤滑下地として、酸化スケールをTi
材表面に生成させることが望ましい。スケールが潤滑剤
の役目と、隔離材であるFe0Ti中への拡散を防げる
働きをするからである。
In the method of the present invention, a wire having an outer diameter of about φ3M or less obtained by cold drawing the Ti alloy is used, and the cold drawing method is carried out using, for example, a roller die, a hole die, or the like. The oxide scale is then replaced with Ti as a lubricating base during wire drawing.
It is desirable to generate it on the surface of the material. This is because the scale acts as a lubricant and prevents diffusion into Fe0Ti, which is the separator.

本発明ではこのTi伸線材の表面に非接合性の雲母と潤
滑効果のあるガラスを成分とする粉末を水に解かして付
着乾燥させる。これは熱延時、に雲母とガラスが融解し
てTi線材の表面をカバーし、Tiと外周の低炭素鋼帯
との拡散を可及的に防止し、Fe−Ti化合物を生成し
にくくするためである。なおガラスの成分は特に限定し
ないが、水及び酸に可溶性で950°C以下の融点をも
つことが必要である。例えばSiO2、B、0.を主成
分とし、800℃の融点をもつガラス等を採用すればよ
い。
In the present invention, a powder containing non-bonding mica and glass having a lubricating effect is dissolved in water and attached to the surface of the Ti wire drawing material and dried. This is because during hot rolling, mica and glass melt and cover the surface of the Ti wire, preventing diffusion of Ti and the outer low carbon steel strip as much as possible, and making it difficult to generate Fe-Ti compounds. It is. The components of the glass are not particularly limited, but it must be soluble in water and acid and have a melting point of 950°C or less. For example, SiO2, B, 0. Glass or the like having a melting point of 800° C. may be used.

Ti線材の外周を低炭素鋼帯で被覆するのは、Ti線材
同志の融着を防止するためであるが、特開昭61−13
7623号公報では、炭素量0.00ht2以下の極低
炭素鋼を用いることとしている。しかし、Ti線材の場
合、拡散した炭素がTi材表面でTiと結合してTic
となり、Ti材内部にはあまり拡散しないので、本発明
に用いる低炭素鋼帯の炭素は0.1 wt%以下であれ
ばよい。
The reason why the outer periphery of the Ti wire is coated with a low carbon steel strip is to prevent the Ti wires from fusing together.
Publication No. 7623 specifies that ultra-low carbon steel with a carbon content of 0.00ht2 or less is used. However, in the case of Ti wire, the diffused carbon combines with Ti on the surface of the Ti material, resulting in Ti
Therefore, the carbon content of the low carbon steel strip used in the present invention may be 0.1 wt% or less since it does not diffuse much into the Ti material.

Ti線材外周部に低炭素鋼帯を被覆する方法は例えば特
開昭flit−137623号公報に記載の方法を採用
すればよい。但し、この時、本発明ではTi線材表面に
は拡散防止剤である雲母とガラスの混合粉末を付着させ
ている。雲母と水溶性のガラスの混合粉末を用いるのは
、圧延中に雲母にて相互接合を防止し、ガラスによって
潤滑を行うためである。なお、雲母単独、ガラス単独で
は十分な拡散防止及び非接合効果は得られない。また、
使用するガラスは酸に可溶である必要がある。また、雲
母とガラスの混合比率は特に限定されないが、例えばl
:1が望ましい。
For example, the method described in JP-A-137623 may be adopted as a method for coating the outer periphery of the Ti wire with a low carbon steel strip. However, at this time, in the present invention, a mixed powder of mica and glass, which is an anti-diffusion agent, is adhered to the surface of the Ti wire. The reason why a mixed powder of mica and water-soluble glass is used is that the mica prevents mutual bonding during rolling, and the glass provides lubrication. Note that sufficient diffusion prevention and non-bonding effects cannot be obtained with mica or glass alone. Also,
The glass used must be acid soluble. Further, the mixing ratio of mica and glass is not particularly limited, but for example, l
:1 is desirable.

雲母とガラスの混合粉末に加えて酸化スケールを併用さ
せる場合は、Ti合金の種類によっても異なるが、例え
ば600〜750°Cで30分加熱した後、大気炉で空
冷するとよい。この時酸化スケールの厚さは、1〜5μ
m程度生成させることが望ましい。しかして、この複合
線材を所定長さに切断し、外層材としての低炭素鋼管に
密につめ込み、端部を炭素鋼板で溶接によりふたをし、
熱間圧延を行うのである。外層材の炭素鋼の炭素量も上
記と同様の理由により0.1 wt%以下でよい。
When using oxide scale in addition to the mixed powder of mica and glass, it is preferable to heat it at 600 to 750° C. for 30 minutes, for example, and then air cool it in an atmospheric furnace, although it depends on the type of Ti alloy. At this time, the thickness of the oxide scale is 1 to 5μ
It is desirable to generate about m. Then, this composite wire rod is cut to a predetermined length, packed tightly into a low carbon steel pipe as an outer layer material, and the end is capped with a carbon steel plate by welding.
Hot rolling is performed. The carbon content of the carbon steel of the outer layer material may also be 0.1 wt% or less for the same reason as above.

次に熱間圧延条件の限定理由を示す。Next, the reason for limiting the hot rolling conditions will be shown.

加熱温度を1000°C以下としたのは、1000°C
を越える場合には、Fe−Ti化合物層の融点(107
0°C)に近すぎること、及びPe−Ti化合物層が非
常に厚くなるからである。この際の加熱時間はビレット
が均一に加熱されるための最も短い時間が望ましく、2
時間以内である。
The heating temperature was 1000°C or less.
If the melting point of the Fe-Ti compound layer (107
0°C) and the Pe-Ti compound layer becomes very thick. The heating time at this time is preferably the shortest time in order to uniformly heat the billet.
Within hours.

圧延することによって、Ti線の線径は非常に小さくな
る。しかるにFe−Ti化合物層の厚さは、温度と時間
の関数であり、線径が小さくなった分だけ、線径に占め
るFe−Ti化合物層の比率は大きくなり、Ti極細線
が得られなくなる。それゆえ、本発明では圧延温度は9
50°C以下とした。
By rolling, the wire diameter of the Ti wire becomes extremely small. However, the thickness of the Fe-Ti compound layer is a function of temperature and time, and as the wire diameter becomes smaller, the ratio of the Fe-Ti compound layer to the wire diameter increases, making it impossible to obtain ultrafine Ti wires. . Therefore, in the present invention, the rolling temperature is 9
The temperature was 50°C or less.

圧延時間は2〜3分以内が望ましく、例えば880°C
で加熱した後、830°Cで圧延比1OO1圧延時間3
分で2゛C/秒で冷却したところ、Fe−Ti化合物層
の厚さは5μmであった。950°C以上の圧延の場合
は、圧延時間を短く、圧延後の冷却速度を早くしても、
Fe−Ti化合物層を10μm以下に抑えることが難し
い。
The rolling time is preferably within 2 to 3 minutes, for example at 880°C.
After heating at 830°C, rolling ratio 1OO1 rolling time 3
The thickness of the Fe--Ti compound layer was 5 .mu.m when the sample was cooled at 2.degree. C./sec. In the case of rolling at 950°C or higher, even if the rolling time is shortened and the cooling rate after rolling is increased,
It is difficult to suppress the Fe-Ti compound layer to 10 μm or less.

熱間圧延後の冷却速度をI’C/秒以上としたのは、こ
の速度以下ではFeがTi中への拡散速度が早い温度範
囲となっている時間が長くなるので、FeTi化合物層
が厚くなり、表面粗度、寸法精度の良好なTi極細線が
得られないからである。
The reason why the cooling rate after hot rolling is set to I'C/sec or more is that below this rate, the time in which Fe diffuses into Ti at a high rate becomes longer, so the FeTi compound layer becomes thicker. This is because ultrafine Ti wires with good surface roughness and dimensional accuracy cannot be obtained.

上記した熱間圧延によって外径がφ5.5〜10mm程
度の複合熱延線材とする。そしてこの線材を酸を用いて
、隔離材である低炭素鋼と拡散防止剤を溶解し、外径が
φ100〜200μm程度のTi極細線を得ることがで
きる。
A composite hot rolled wire rod having an outer diameter of approximately φ5.5 to 10 mm is obtained by the above-described hot rolling. Then, the low carbon steel as the separator and the diffusion inhibitor are dissolved in this wire using acid to obtain a Ti ultrafine wire with an outer diameter of about 100 to 200 μm.

なお、酸の種類は、硝酸が望ましい。これは鉄のみを溶
解し、Tiは溶解しないからである。硝酸の濃度は20
〜40%が望ましい。20%以下では溶解能力が劣り、
酸洗時間を多く必要とするからである。また40%以上
の場合は溶解反応時、液が沸騰しやすく、安全上問題が
あるからである。処理温度は50°Cを越えると溶解反
応詩法が沸騰しやすく安全上問題があるため、50°C
以下が望ましい。
Note that the type of acid is preferably nitric acid. This is because only iron is dissolved, and Ti is not dissolved. The concentration of nitric acid is 20
~40% is desirable. If it is less than 20%, the dissolution ability is poor;
This is because a long pickling time is required. Moreover, if it is 40% or more, the liquid will easily boil during the dissolution reaction, which poses a safety problem. The treatment temperature is 50°C because dissolution reaction poetry tends to boil if it exceeds 50°C, which poses a safety problem.
The following are desirable.

またさらに細いTi線を得る場合には、熱間圧延複合線
材を冷間伸線する。外径φ1 mm程度迄伸線すれば、
外径φ10μm程度のT1極細線が得られる。
In order to obtain a thinner Ti wire, the hot rolled composite wire is cold drawn. If the wire is drawn to an outer diameter of approximately 1 mm,
A T1 ultrafine wire with an outer diameter of about 10 μm is obtained.

この際、何回か焼鈍を行うが、焼鈍の温度及び時間はF
e−Ti化合物層の拡大を防止するため、700°C以
下、2時間以内が望ましい。
At this time, annealing is performed several times, but the annealing temperature and time are F
In order to prevent the expansion of the e-Ti compound layer, the temperature is preferably 700°C or less and 2 hours or less.

(実施例1) ローラーダイスにて冷間伸線を行った外径φ2、Omm
の純Ti線A及びその線材の表面に雲母50%、ガラス
50%を成分とする混合粉末の拡散防止剤(例えばホワ
イトルブ8A(商品名))を水に溶かして塗布し、乾燥
した線材Bを用い、それらの外周を厚さ0.4 mm、
幅11 mmのリムド鋼帯を用いて単頭伸線機により、
連続的に被覆加工を施し、外径φ3.5価の複合線材と
した。なお、純Ti線Aは比較例である。
(Example 1) Outer diameter φ2, Omm after cold drawing with roller die
Pure Ti wire A and wire material B were coated with a diffusion preventive agent (for example, White Lube 8A (trade name)), which is a powder mixture containing 50% mica and 50% glass, dissolved in water and dried. , and their outer periphery is 0.4 mm thick.
Using a single-head wire drawing machine using a rimmed steel strip with a width of 11 mm,
A coating process was performed continuously to obtain a composite wire with an outer diameter of φ3.5. Note that pure Ti wire A is a comparative example.

純Ti線の化学成分、リムド鋼帯の化学成分を下記表1
.2に示す。
The chemical composition of pure Ti wire and rimmed steel strip is shown in Table 1 below.
.. Shown in 2.

複合線材を矯正した後、3mに切断した。つづいて、外
径φ135胴、内径φ50mmの低炭素銅管に140本
つめ、端面を低炭素鋼板でふたをし、熱間圧延ビレット
を2木製作した。表3に低炭素鋼管の化学成分を示す。
After straightening the composite wire, it was cut into 3 m pieces. Next, 140 low-carbon copper tubes with an outer diameter of 135 mm and an inner diameter of 50 mm were packed, the ends were capped with low-carbon steel plates, and two hot-rolled billets were made. Table 3 shows the chemical composition of low carbon steel pipes.

ついで、共に900°Cで2時間加熱後、850°Cで
熱延し、外径φ9.5世の線材A“、Boとなし、85
0〜500°C間を3℃/秒で風冷し冷却した。外径φ
9.5 mmの線材の横断面のミクロ組織よりAo、B
′複合線材中のTi線材の径は約140μmでありPe
−Ti化合物層の厚さは比較例A゛では7μm、本発明
例B′では3.0μmであり、表面に拡散防止剤を塗布
した本発明例のB材を用いるとこで、化合物層をきわめ
て薄くすることができる。
Then, after heating at 900°C for 2 hours, they were hot rolled at 850°C, and wire rods A" and Bo with an outer diameter of φ9.5, 85
It was cooled by air cooling between 0 and 500°C at a rate of 3°C/second. Outer diameter φ
From the microstructure of the cross section of a 9.5 mm wire, Ao and B
'The diameter of the Ti wire in the composite wire is approximately 140 μm, and the diameter of the Ti wire in the composite wire is approximately 140 μm.
-The thickness of the Ti compound layer was 7 μm in Comparative Example A′ and 3.0 μm in Inventive Example B′, and by using Material B of Inventive Example whose surface was coated with a diffusion inhibitor, the compound layer was extremely thick. Can be made thinner.

尚、A’ 、B’複合線材を処理温度45°C140%
硝酸で酸洗することで、Aoからは約120μm、B 
からは約130 μmの純Ti線が得られた。
In addition, A' and B' composite wires were processed at a temperature of 45°C and 140%.
By pickling with nitric acid, about 120 μm from Ao and B
A pure Ti line of about 130 μm was obtained.

表1 (単位ニーt%) 表2 (単位:wt%) 表3 (単位ニwt%) (実施例2) 実施例1のA゛複合線材を、外径φ4 mm迄冷間伸線
した後680°Cで1時間の焼鈍処理を施し、更に外径
φ2M迄冷間伸線した後、680°Cで1時間の焼鈍処
理を施し、更に外径φ1胴迄冷間伸線した。次いで、実
施例1と同一条件の酸洗条件で酸洗し、外径φ14μm
の純Ti極細線140本を得た。
Table 1 (unit: t%) Table 2 (unit: wt%) Table 3 (unit: wt%) (Example 2) After cold drawing the A゛ composite wire of Example 1 to an outer diameter of φ4 mm After annealing at 680°C for 1 hour and further cold drawing to an outer diameter of φ2M, annealing at 680°C for 1 hour and further cold drawing to an outer diameter of φ1. Next, pickling was carried out under the same pickling conditions as in Example 1, and the outer diameter was 14 μm.
140 pure Ti ultrafine wires were obtained.

拡散防止剤とFe−Ti拡散層は酸洗で除去される。The diffusion inhibitor and Fe-Ti diffusion layer are removed by pickling.

(実施例3) 実施例1のB′純Ti線を用いた熱間圧延ビレットを熱
間圧延条件を種々変化させて、外径φ9.5胴の線材に
圧延した際のFe−Ti化合物層の厚さを測定した結果
を表4に示す。
(Example 3) Fe-Ti compound layer when the hot-rolled billet using the B' pure Ti wire of Example 1 was rolled into a wire rod with an outer diameter of φ9.5 by varying the hot rolling conditions. Table 4 shows the results of measuring the thickness.

加熱時間は2時間、圧延時間はNo、 1〜7の場合は
2〜3分、No、 8の場合は10分とした。表4に示
すごとく、本発明例では、Fe−Ti化合物層の厚さは
薄く、良好なTi極細線をつくることができたが、比較
例では、Fe−Ti化合物層が厚く、Ti極細線の表面
粗度が悪く、かつ、歩留りも悪かった。
The heating time was 2 hours, the rolling time was 2 to 3 minutes for Nos. 1 to 7, and 10 minutes for Nos. 8. As shown in Table 4, in the inventive example, the thickness of the Fe-Ti compound layer was thin and it was possible to make a good Ti ultra-fine wire, but in the comparative example, the Fe-Ti compound layer was thick and the Ti ultra-fine wire was able to be made. The surface roughness was poor, and the yield was also poor.

表4 の良好なTi極細線が容易、かつ安価に製造できるとい
うすぐれた効果が得られる。従って、化学用フィルター
、複合材料用繊維等への応用が回れる。
An excellent effect is obtained in that the excellent Ti ultrafine wire shown in Table 4 can be manufactured easily and at low cost. Therefore, it can be applied to chemical filters, fibers for composite materials, etc.

なお、以上の説明ではTi線材として冷間伸線を使用し
たものについて説明しているが、これのみならず冷間、
熱間、外径切削によってφ1〜3g前後のTi線材を製
造したものを採用してもよい。
In addition, in the above explanation, a Ti wire using cold drawing is explained, but not only this but also cold drawing,
A Ti wire rod having a diameter of approximately 1 to 3 g may be manufactured by hot cutting of the outer diameter.

(発明の効果)(Effect of the invention)

Claims (2)

【特許請求の範囲】[Claims] (1)チタン線材の表面に雲母とガラスを成分とする混
合粉末を付着させた後その外周を低炭素鋼帯で被覆した
複合線材の集合体を内層とし、外層部を低炭素鋼とした
ビレットを、1000℃以下で加熱し、つづいて950
℃以下で熱間線材圧延を行った後、1℃/秒以上の冷却
速度で冷却して内部に複数本のチタン極細線を内包した
線材を得、その後該線材の低炭素鋼部分を酸を用いて溶
解除去することを特徴とするチタン極細線の製造方法。
(1) A billet whose inner layer is an aggregate of composite wires made by adhering a mixed powder containing mica and glass to the surface of a titanium wire rod and then covering the outer periphery with a low carbon steel strip, and the outer layer is made of low carbon steel. was heated to 1000℃ or less, and then heated to 950℃.
After hot-rolling the wire rod at a temperature of 1°C or lower, the wire rod is cooled at a cooling rate of 1°C/sec or higher to obtain a wire rod containing multiple ultrafine titanium wires, and then the low carbon steel portion of the wire rod is heated with acid. 1. A method for producing ultrafine titanium wire, which comprises dissolving and removing the titanium wire.
(2)請求項1記載の方法において、熱間線材圧延後の
冷却工程と酸による低炭素鋼部分の溶解除去工程の間に
冷間引抜き工程を介在せしめたことを特徴とするチタン
極細線の製造方法。
(2) In the method according to claim 1, a cold drawing step is interposed between the cooling step after hot wire rolling and the step of dissolving and removing the low carbon steel portion with acid. Production method.
JP3424489A 1989-02-14 1989-02-14 Production of extremely fine titanium wire Pending JPH02211901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3424489A JPH02211901A (en) 1989-02-14 1989-02-14 Production of extremely fine titanium wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3424489A JPH02211901A (en) 1989-02-14 1989-02-14 Production of extremely fine titanium wire

Publications (1)

Publication Number Publication Date
JPH02211901A true JPH02211901A (en) 1990-08-23

Family

ID=12408751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3424489A Pending JPH02211901A (en) 1989-02-14 1989-02-14 Production of extremely fine titanium wire

Country Status (1)

Country Link
JP (1) JPH02211901A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899365A3 (en) * 1997-09-01 1999-07-28 Bridgestone Metalpha Corporation Titanium fiber and method of producing the same
CN102974610A (en) * 2012-12-06 2013-03-20 武钢集团昆明钢铁股份有限公司 Production method of industrial pure titanium wire rod
CN103480685A (en) * 2013-09-13 2014-01-01 贵州顶效经济开发区沈兴实业有限责任公司 Processing method of TC18 titanium alloy wires
CN105033249A (en) * 2015-06-17 2015-11-11 宝鸡市三立有色金属有限责任公司 Preparation method of titanium and titanium alloy wires or powder for 3D printing
CN109127726A (en) * 2018-08-22 2019-01-04 佛山职业技术学院 A kind of preparation method of technical pure titanium plate
CN112935008A (en) * 2021-01-25 2021-06-11 陕西鼎益科技有限公司 Novel hot rolling process for special high-temperature alloy wire
CN113523013A (en) * 2021-08-19 2021-10-22 索罗曼(常州)合金新材料有限公司 Production process of thick-wire-diameter titanium alloy wire
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899365A3 (en) * 1997-09-01 1999-07-28 Bridgestone Metalpha Corporation Titanium fiber and method of producing the same
CN102974610A (en) * 2012-12-06 2013-03-20 武钢集团昆明钢铁股份有限公司 Production method of industrial pure titanium wire rod
CN103480685A (en) * 2013-09-13 2014-01-01 贵州顶效经济开发区沈兴实业有限责任公司 Processing method of TC18 titanium alloy wires
CN103480685B (en) * 2013-09-13 2016-05-11 贵州顶效经济开发区沈兴实业有限责任公司 A kind of processing method of TC18 titanium alloy wire
CN105033249A (en) * 2015-06-17 2015-11-11 宝鸡市三立有色金属有限责任公司 Preparation method of titanium and titanium alloy wires or powder for 3D printing
CN109127726A (en) * 2018-08-22 2019-01-04 佛山职业技术学院 A kind of preparation method of technical pure titanium plate
CN109127726B (en) * 2018-08-22 2020-06-19 佛山职业技术学院 Preparation method of industrial pure titanium plate
CN112935008A (en) * 2021-01-25 2021-06-11 陕西鼎益科技有限公司 Novel hot rolling process for special high-temperature alloy wire
CN113523013A (en) * 2021-08-19 2021-10-22 索罗曼(常州)合金新材料有限公司 Production process of thick-wire-diameter titanium alloy wire
CN113523013B (en) * 2021-08-19 2022-04-08 索罗曼(常州)合金新材料有限公司 Production process of thick-wire-diameter titanium alloy wire
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Similar Documents

Publication Publication Date Title
JPH02211901A (en) Production of extremely fine titanium wire
JPS62149859A (en) Production of beta type titanium alloy wire
US3296695A (en) Production of plural-phase alloys
JPS58128292A (en) Thin strip of phosphorus copper brazing filler metal
JPH0596321A (en) Method for producing composite metal wire material
JPS599137A (en) Production of age-precipitation type alloy
JPH02187212A (en) Manufacture of extra-fine titanic wire
JPH0259109A (en) Manufacture of very fine titanium wire
JPH04200801A (en) Production of high delta-fe austenitic stainless steel strip
JPS5910522B2 (en) copper coated aluminum wire
US3456332A (en) Method of manufacturing bimetallic wire
JPS59110486A (en) Production of ti clad wire rod
JP2010222692A (en) Copper alloy seamless pipe for supplying water and hot water
JPS62259612A (en) Production of stainless steel fiber
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JP3628434B2 (en) Drawing tube excellent in corrosion resistance and method for producing the same
JPH0665409B2 (en) Shape memory alloy rod and wire manufacturing method
US1993600A (en) Drawn article and process of making the same
JP4434576B2 (en) Method for producing Nb3 (Al, Ge) or Nb3 (Al, Si) compound-based superconducting multi-core wire
JPH0446644B2 (en)
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock
JPS6372420A (en) Manufacture of beta type titanium alloy wire stock
JPS59181412A (en) Conductive copper alloy composite conductor
JPH02243747A (en) Intermetallic compound wire and its production
JPH0331457A (en) Production of filament body of shape memory alloy