JPS6372420A - Manufacture of beta type titanium alloy wire stock - Google Patents

Manufacture of beta type titanium alloy wire stock

Info

Publication number
JPS6372420A
JPS6372420A JP21376686A JP21376686A JPS6372420A JP S6372420 A JPS6372420 A JP S6372420A JP 21376686 A JP21376686 A JP 21376686A JP 21376686 A JP21376686 A JP 21376686A JP S6372420 A JPS6372420 A JP S6372420A
Authority
JP
Japan
Prior art keywords
wire
alloy
type titanium
heating
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21376686A
Other languages
Japanese (ja)
Other versions
JPH0569612B2 (en
Inventor
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP21376686A priority Critical patent/JPS6372420A/en
Publication of JPS6372420A publication Critical patent/JPS6372420A/en
Publication of JPH0569612B2 publication Critical patent/JPH0569612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To obtain wire stocks having good dimensional accuracy and surface quality by heating a beta type titanium alloy at a specific temp. in a vacuum or an inert gas atmosphere, annealing by cooling at a specific speed, again heating the alloy at a specific temp. in the air, and then cold drawing the alloy. CONSTITUTION:As for cold drawing of a beta type titanium alloy, the alloy is heated at a temp. in a temp. range higher than the beta transformation point in a vacuum or an inert gas atmosphere. Then, the alloy is subjected to a solution heat treatment (annealing) by cooling at a speed higher than 1.8 deg.C/min, is subjected to an oxide film forming treatment by heating at a temp. of 600-800 deg.C in the air, and then is cold drawn. Thus, the cold wire drawing without seizure by a die is performed and wire stocks having the good dimensional accuracy and surface quality.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、β型チタン合金線材の製造方法に関するもの
であり、特には寸法精度及び表面品質の良好な線材を得
ることを可能とする線材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a β-type titanium alloy wire, and in particular to a method for producing a wire with good dimensional accuracy and surface quality. Regarding the method.

澄明の背景 チタン及びチタン合金は、その優れた比強度、耐食性及
び耐熱性を保有しているために、宇宙航空材料、各種化
学プラント、海水淡水化装置等広範な用途に利用されて
いる。
Background of Clarity Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, and are therefore used in a wide range of applications such as aerospace materials, various chemical plants, and seawater desalination equipment.

チタン合金としては、従来、Ti−6AI−4V合金等
に代表されるα十β型チタン合金が広く用いられてきた
が、α+β型合金は、冷間加工性に乏しく、加工の多く
を切削に頼るため、最終製品に至るまでの歩留りが非常
に低いという欠点をイエしている。そこで、α+β型合
金に比較して冷間加工性に優れ、しかも高強度が得られ
ることからβ型チタン合金の利用が近年拡がりつつある
As titanium alloys, alpha-deca-beta type titanium alloys such as Ti-6AI-4V alloy have been widely used, but alpha+beta type alloys have poor cold workability and require much of the processing to be done by cutting. Because of this, the yield rate up to the final product is extremely low. Therefore, the use of β-type titanium alloys has been expanding in recent years because they have superior cold workability and high strength compared to α+β-type alloys.

この利用分野の1つとして、優れた冷間加工性と時効処
理を施した場合の高強度を生かしたボルト類、バネ材用
等の素材としての線材が挙げられる。 即ち、β型チタ
ン合金は、溶体化処理後のβ単一組において、優れた冷
間加工性をもつため、冷間引抜き伸線が容易であり、か
つ使用の目的に応じて、この線材を成形加工後時効熱処
理を行うことによって、高い強度が得られる。
One field of use is wire rods as materials for bolts, spring materials, etc., which take advantage of their excellent cold workability and high strength when subjected to aging treatment. In other words, β-type titanium alloy has excellent cold workability in the β single set after solution treatment, so it is easy to cold draw and draw the wire, and this wire can be used depending on the purpose of use. High strength can be obtained by performing aging heat treatment after forming.

尚1本明細書におけるβ型チタン合金は、β域からの急
冷によって常温でもβ単一組となり、時効処理によって
α相を析出し、時効硬化性をもつ準安定β型チタン合金
全体を意味し、Ti−15V −3Cr −3S n 
−3A 1合金、Ti−15M o −52r −3A
 1合金、Ti−11,5M。
Note that 1. The β-type titanium alloy in this specification refers to the entire metastable β-type titanium alloy that forms a single β-type even at room temperature by rapid cooling from the β region, precipitates the α phase by aging treatment, and has age hardenability. , Ti-15V-3Cr-3S n
-3A 1 alloy, Ti-15Mo -52r -3A
1 alloy, Ti-11,5M.

−6Zr−4,5Sn合金、Ti−13V−11Cr 
−3A 1合金等の合金を例としてあげることができる
-6Zr-4,5Sn alloy, Ti-13V-11Cr
An example of this is an alloy such as -3A1 alloy.

菜】U支Δ上1憂り叙 一般に純チタンなどのチタン材は冷間加工性に優れてお
り、高加工度の冷間引抜き伸線が可能である。
U Support Δ Upper 1 Disadvantage In general, titanium materials such as pure titanium have excellent cold workability, and can be cold-drawn and drawn to a high degree of workability.

しかしながら、このようなチタン材料は工具との焼付き
を起こしやすいという欠点を有しており、通常の引抜き
伸線用の潤滑剤を使用するだけでは、引抜きダイスとの
焼付きを起こし、伸線が出来ない、又、伸線できたとし
ても、材料表面に大きなダイス疵が多数発生し、欠陥製
品となってしまう。
However, such titanium materials have the disadvantage that they easily seize with tools, and if only a normal lubricant for drawing wire is used, it may seize with drawing dies and wire drawing Even if the wire could be drawn, many large die defects would occur on the surface of the material, resulting in a defective product.

このため、引抜き伸線前の純チタン材料には、潤滑性能
をもつ酸化被膜を表面に生成させる処理と焼鈍処理を兼
ねて、大気中で、一般に500〜650℃の加熱処理が
施される。
For this reason, the pure titanium material before drawing and wire drawing is generally subjected to heat treatment at 500 to 650° C. in the atmosphere, which serves as both a treatment to generate an oxide film with lubricating properties on the surface and an annealing treatment.

しかし、β型チタン合金の場合は、その多くが750℃
近傍にβ変態点をもっているため、焼鈍は、一般に75
0〜800”Cを超えた温度域で。
However, in the case of β-type titanium alloys, most of them are heated to 750°C.
Since the β transformation point is nearby, annealing is generally performed at 75
In the temperature range exceeding 0 to 800"C.

真空中又は不活性ガス中において行われる。It is carried out in vacuum or in an inert gas.

この焼鈍時に、潤滑性能をもつ表面酸化被膜を生成させ
る処理を兼ねるため、大気中にて、上記温度域での加熱
を行った場合、特に800℃を超えた温度域では、生成
される酸化被膜は、硬くて脆いものとなり、潤滑の役を
果さない。又、同時に800℃を超えた大気加熱では、
β型チタン合金の酸素吸収量が多くなり、酸化被膜の下
層に加工性の悪い酸素富化層が厚くなるため、材料の加
工性そのものが低下してしまう。
During this annealing, it also serves as a treatment to generate a surface oxide film with lubricating properties, so if heating is performed in the above temperature range in the air, especially in a temperature range exceeding 800°C, the oxide film that is generated may becomes hard and brittle and does not serve as a lubricant. In addition, when atmospheric heating exceeds 800℃ at the same time,
The amount of oxygen absorbed by the β-type titanium alloy increases, and the oxygen-enriched layer with poor workability becomes thick under the oxide film, resulting in a decrease in the workability of the material itself.

従って、β型チタン合金の場合には、焼鈍と酸化被膜生
成を兼ねた大気加熱を行うことは困難である。
Therefore, in the case of a β-type titanium alloy, it is difficult to perform atmospheric heating for both annealing and oxide film formation.

一方、線材の製造技術として、引抜き伸線加工によらず
に、ローラーダイスや孔型圧延を用いる方法もあるが、
これらの方法による伸線では、製造された線の寸法精度
が悪く、特に良好な真円度が得られず、そのまま製品と
することができない。
On the other hand, as a manufacturing technology for wire rods, there are methods that use roller dies or groove rolling instead of drawing wire drawing.
In wire drawing by these methods, the dimensional accuracy of the manufactured wire is poor, and particularly good roundness cannot be obtained, so that it cannot be used as a product as it is.

したがって、このようなローラーダイスや孔型圧延を用
いた場合には多かれ少なかれ、後工程に引抜き伸線を必
要とする。
Therefore, when such a roller die or groove rolling is used, drawing wire drawing is more or less required as a subsequent process.

このような状況のため、従来、β型チタン合金を引抜き
伸線を行う有効な方法がなかった。
Due to this situation, there has hitherto been no effective method for drawing and drawing β-type titanium alloys.

且豆夏豆へ 上記の状況に鑑みて1本発明は、β型チタン合金をダイ
スとの焼付きを起こすことなく、冷間引抜き伸線加工を
可能とし、寸法精度と表面品質の良好な線材の製造方法
を提供する。
In view of the above circumstances, the present invention has been developed to make it possible to cold-draw and wire-draw β-type titanium alloys without causing seizure with dies, and to produce wire rods with good dimensional accuracy and surface quality. Provides a manufacturing method.

即ち1本発明は、β型チタン合金の冷間引抜き伸線に際
し、該合金を、真空中又は不活性ガス雰囲気中において
、β変態点以上の温度域に加熱し、続いて1.8℃/ 
m i n以上の速度で冷却して溶体化処理(焼鈍)し
た後、600〜800℃の大気加熱による酸化被膜生成
処理を行い、その後冷間引抜き伸線することを特徴とす
るβ型チタン合金線材の製造方法に関するものである。
That is, in the present invention, when cold drawing a β-type titanium alloy, the alloy is heated in a vacuum or in an inert gas atmosphere to a temperature range equal to or higher than the β transformation point, and then heated at 1.8°C/
A β-type titanium alloy characterized by performing solution treatment (annealing) by cooling at a rate of at least min. The present invention relates to a method for manufacturing wire rods.

倉里匁男オ匁双肌 本発明の対象とするチタン合金材は、冷間加工性の優れ
たβ型チタン合金である。
The titanium alloy material that is the object of the present invention is a β-type titanium alloy that has excellent cold workability.

チタン合金製品は一般に鋳造されたインゴットの鋳造組
織を破壊すると共に、その後の工程に適した中間素材を
得るため、インゴットブレイクダウン工程を出発工程と
する。インゴットブレイクダウンはインゴットを分塊圧
延或いは鍛造することにより実施される。次いで製造さ
れたビレットは、所定の寸法に熱間圧延する圧延工程及
び酸洗、ピーリング加工等による脱スケール工程を経由
して、冷間伸線用の素線に加工される。
Titanium alloy products generally start with an ingot breakdown process in order to destroy the cast structure of the cast ingot and obtain an intermediate material suitable for subsequent processes. Ingot breakdown is performed by blooming or forging an ingot. Next, the manufactured billet is processed into a wire for cold wire drawing through a rolling process of hot rolling to a predetermined size and a descaling process such as pickling and peeling.

この素線を素材として製品寸法に応じた冷間伸線が行わ
れ、最終的に製品の用途に応じて焼鈍(溶体化処理)或
いは時効処理等の熱処理が行われる。
This strand is used as a raw material and subjected to cold wire drawing according to the product dimensions, and finally heat treatment such as annealing (solution treatment) or aging treatment is performed according to the use of the product.

本発明の主要工程は、脱スケールが行われた熱間圧延上
りの素線を引抜きによって冷間伸線する工程であり、そ
の前工程における加工層は、本発明の要件とするもので
はなく、いかなる工程をもとり得る。又、冷間伸線工程
においてローラーダイスや孔型圧延を行うことも何ら拒
むものではない、このような加工方法を用いた場合には
、寸法精度を向上させるために最終的に本発明の冷間伸
線を行う。
The main process of the present invention is a process of cold drawing the descaled hot-rolled wire by drawing, and the processed layer in the previous process is not a requirement of the present invention. Any process can be used. Furthermore, it is not at all prohibited to perform roller die or groove rolling in the cold wire drawing process.When such a processing method is used, the cold wire drawing process of the present invention is finally applied in order to improve the dimensional accuracy. Perform wire drawing.

前述したように、従来の純チタン材料の冷間引抜き伸線
は、素線を500〜650℃の温度域で加熱することに
よって、焼鈍を行うと共に、表面に潤滑性能を有する酸
化被膜を生成させる処理を施した後、さらにその上に伸
線用の潤滑剤を付与し、実施されていた。
As mentioned above, in the conventional cold drawing wire drawing of pure titanium materials, the wire is annealed by heating it in a temperature range of 500 to 650°C, and an oxide film with lubricating properties is generated on the surface. After the treatment, a lubricant for wire drawing was applied on top of the treatment.

しかし、β型チタン合金の場合には、その多くが750
℃近傍にβ変態点をもっているので、冷間加工性に優れ
たβ単一組にするには、β変態点を超えた750〜80
0℃以上の温度に加熱する必要がある。
However, in the case of β-type titanium alloys, most of them are 750
Since the β-transformation point is near the β-transformation point, in order to obtain a β-single set with excellent cold workability, it is necessary to
It is necessary to heat it to a temperature of 0°C or higher.

しかし、750〜800℃以上の@度、特には、800
 ’Cを超えた温度域で大気加熱を行った場合、素線の
表面に生成される酸化被膜は硬く、脆いものとなり、潤
滑性能を持たなくなる。
However, temperatures above 750-800℃, especially 800℃
When atmospheric heating is performed in a temperature range exceeding 'C, the oxide film formed on the surface of the wire becomes hard and brittle, and has no lubricating performance.

従って、β型チタン合金の場合には、焼鈍と、潤滑性能
をもつ酸化被膜生成処理を区分しなければならない8例
えば、予め素線あるいは中間寸法までローラーダイス又
は孔型圧延による伸線を行った線材を、真空中又は不活
性ガス中でβ変態点以上の温度域において5〜60分加
熱保持し、次いで1.8℃/min以上の速度で冷却を
行う焼鈍(溶体化処理)を施す、このように焼鈍を真空
中又は不活性ガス中で行うのは、表面の酸化を防ぐため
である。
Therefore, in the case of β-type titanium alloys, it is necessary to distinguish between annealing and a treatment for forming an oxide film with lubricating properties. Annealing (solution treatment) is performed by heating and holding the wire rod in a temperature range above the β transformation point in vacuum or in an inert gas for 5 to 60 minutes, and then cooling at a rate of 1.8° C./min or more. The reason why annealing is performed in vacuum or in an inert gas is to prevent surface oxidation.

加熱時間を5〜60分としたのは、5分以下の時間では
焼鈍が十分ではなく、60分以下としたのは、60分を
超える時間の加熱を行うとβ粒の粗大化が進み、材料の
延性が低下するためである。
The reason why the heating time was set to 5 to 60 minutes is that annealing is not sufficient if the heating time is 5 minutes or less, and the reason why the heating time is set to 60 minutes or less is that heating for more than 60 minutes causes coarsening of the β grains. This is because the ductility of the material decreases.

冷却速度を1.8で/ m i n以上としたのは。The cooling rate was set to 1.8/min or higher.

1.8℃/ m i n未満の冷却速度では材料の冷却
中にα相の析出が起こり、冷間加工性が低下するおそれ
があるからである。
This is because if the cooling rate is less than 1.8° C./min, precipitation of α phase may occur during cooling of the material, which may reduce cold workability.

このような処理により、酸化被膜のないβ単一組の素線
が得られる。
Through such treatment, a single set of β strands without an oxide film can be obtained.

但し、大気中にて溶体化処理を施し、その後ピーリング
、センタレス加工等により表面の酸化被膜、酸素富化層
をとり除く処理で上記の処理を代替してもよい。
However, the above-mentioned treatment may be replaced by a treatment in which a solution treatment is performed in the atmosphere, and then an oxide film and an oxygen-enriched layer on the surface are removed by peeling, centerless treatment, or the like.

このようにして焼鈍された線材を、大気中にて、600
〜800”Cの温度で5分〜1時間加熱し。
The wire rod annealed in this way was heated in the atmosphere for 600 minutes.
Heat at a temperature of ~800"C for 5 minutes to 1 hour.

空冷以上の速度で冷却させ、表面に酸化被膜を形成させ
る。
Cool at a rate faster than air cooling to form an oxide film on the surface.

加熱時間は当然のことながら、加熱温度によって異なり
、低温側では長時間で、高温側では短時間の加熱を行う
。ここで生成される酸化被膜は、良好な潤滑性能をもち
、母材との密着性もよい。
Naturally, the heating time varies depending on the heating temperature; heating is performed for a long time on the low temperature side, and short time on the high temperature side. The oxide film produced here has good lubrication performance and good adhesion to the base material.

ここで加熱温度を800℃以下としのけ、前述のように
、800℃を超えた温度域の大気加熱で生成される酸化
被膜は硬くて脆いため、潤滑被膜としての役を果さなく
なる。さらに800℃を超えた大気加熱では、酸化被膜
の下の母相に生成される酸素富化層が厚くなり、線材そ
のものの加工性が劣化する。
Here, the heating temperature is set to 800° C. or less, but as mentioned above, the oxide film produced by atmospheric heating in a temperature range exceeding 800° C. is hard and brittle, and therefore does not serve as a lubricating film. Further, when heated in the atmosphere above 800° C., the oxygen-enriched layer formed in the matrix under the oxide film becomes thicker, and the workability of the wire rod itself deteriorates.

一方、加熱温度を600℃以上としたのは、600’C
未満の温度域ではα相の析出が起こり。
On the other hand, the heating temperature was 600°C or higher.
Precipitation of α phase occurs in the temperature range below.

材料の加工性が低下するおそれがあるためであり、又、
良好な潤滑性能を有する酸化被膜が得られないためであ
る。
This is because the workability of the material may decrease, and
This is because an oxide film having good lubrication performance cannot be obtained.

又、加熱時間を5分〜1時間としたのは、5分未満では
、良好な潤滑性能をもつ酸化被膜が得られないためであ
り、1時間以下としたのは、1時間を超す加熱を行うと
、母相の酸素富化層が厚くなり、材料の加工性が低下す
ると同時に生成される酸化被膜の潤滑性能が低下するた
めである。冷却速度を空冷以上としたのは、焼鈍時と同
じ理由による。この処理を行う加熱炉は、連続炉又はバ
ッチ炉がいずれも使用することができる。又、加熱の形
式は電気炉或いは重油、プロパン等を燃料とする加熱炉
のいずれでもよい、そして、これらの使用する炉によっ
てa素置圧が異なるので、各々の炉において温度と時間
を調整すればよい。
The reason why the heating time was set from 5 minutes to 1 hour was because an oxide film with good lubrication performance could not be obtained if the heating time was less than 5 minutes, and the reason why the heating time was set to 1 hour or less was because heating for more than 1 hour This is because, if this is done, the oxygen-enriched layer of the matrix becomes thicker, the workability of the material decreases, and at the same time, the lubricating performance of the generated oxide film decreases. The reason why the cooling rate was set to be higher than air cooling was due to the same reason as during annealing. As the heating furnace for this treatment, either a continuous furnace or a batch furnace can be used. In addition, the heating method may be an electric furnace or a heating furnace fueled by heavy oil, propane, etc., and since the base pressure differs depending on the furnace used, the temperature and time must be adjusted for each furnace. Bye.

こうして処理されたβ型チタン合金の素線の表面に、例
えば樹脂系の潤滑剤等を付与して冷間引抜き伸線を行う
For example, a resin-based lubricant or the like is applied to the surface of the β-type titanium alloy strand treated in this manner, and cold drawing is performed.

伸線後の線材は酸洗による脱スケールを行った後、最終
製品への要求に応じて溶体化処理或いは溶体化時効処理
等が施される。
The wire rod after wire drawing is descaled by pickling, and then subjected to solution treatment, solution aging treatment, etc., depending on the requirements of the final product.

介匪二羞求 近年、利用度の高まりつつあるβ型チタン合金の冷間引
抜き伸線技術を確立し、寸法精度及び表面品質の良好な
線材の製造を可能とする。
We have established a cold drawing wire drawing technology for β-type titanium alloy, which has been increasingly used in recent years, and have made it possible to manufacture wire rods with good dimensional accuracy and surface quality.

び比較 β型チタン合金の1つとして、第1表に示す化学成分を
もつTi−15V−3Cr−3Sn−3A1合金の直径
12mφの熱間圧延線材を製造した。次いでこの線材の
酸化被膜及び酸素富化層をピーリング加工により除去し
た後、ローラーダイス伸線によって得られた直径4.5
Iφの素線を供試材として、直径2.8nnφの線材の
試作を実施した。
As one of the β-type titanium alloys for comparison, a hot-rolled wire rod of Ti-15V-3Cr-3Sn-3A1 alloy having a chemical composition shown in Table 1 and having a diameter of 12 mφ was manufactured. Next, the oxide film and oxygen-enriched layer of this wire were removed by peeling, and the wire was drawn with a roller die to obtain a diameter of 4.5 mm.
Using Iφ wire as a test material, a wire rod with a diameter of 2.8 nnφ was prototyped.

この線材の試作結果を比較例と共に第2表に示す。第2
表1こ示す溶体化処理(※1)は3ルームタイプの真空
加熱炉を用い、真空中で加熱後冷却室にてArガス冷却
を行った。又、酸化被膜処理(※2)はバッチ式電気加
熱炉によって実施した。
The results of trial production of this wire rod are shown in Table 2 together with comparative examples. Second
In the solution treatment (*1) shown in Table 1, a three-room vacuum heating furnace was used, and after heating in vacuum, Ar gas cooling was performed in a cooling chamber. In addition, the oxide film treatment (*2) was performed using a batch type electric heating furnace.

真円度(×3)は線の丸断面における直径の最大値と最
小値の差を示す。
Circularity (x3) indicates the difference between the maximum and minimum diameters in a circular cross section of a wire.

第2表に示されるように、本発明法による冷間引抜き伸
線では、4.5+nmφから2.8Iφまで伸線が出来
たが、本発明法から外れた方法、即ち800℃を超えた
温度域の大気加熱による酸化被膜処理を行った場合およ
び、真空溶体化処理後550℃で大気加熱を行った場合
、いずれも2パス目或いは3バス目に破断が起こり、線
材の表面にはダイス疵が見られた。
As shown in Table 2, in the cold drawing method of the present invention, it was possible to draw wire from 4.5+nmφ to 2.8Iφ. When oxide film treatment is performed by heating in the atmosphere at 550°C after vacuum solution treatment, breakage occurs in the 2nd or 3rd pass in both cases, and die scratches appear on the surface of the wire. It was observed.

一方、ローラーダイス及び孔型圧延による伸線を行った
ものは、2.8Iφまでの伸線ができるが、真円度は引
抜き伸線を行ったものに比べ著しく悪く、ロール疵も残
ることが示される。以上のことから、寸法精度及び表面
品質の優れた線材を得るのに、本発明法は大きな効果を
もつことが判る。
On the other hand, wire drawn by roller dies and groove rolling can be drawn up to 2.8Iφ, but the roundness is significantly worse than that drawn by drawing, and roll flaws may remain. shown. From the above, it can be seen that the method of the present invention is highly effective in obtaining wire rods with excellent dimensional accuracy and surface quality.

第1表 供試材の化学成分(wt%) 以下余白Table 1 Chemical composition of sample material (wt%) Margin below

Claims (1)

【特許請求の範囲】[Claims] β型チタン合金の冷間引抜き伸線に際し、該合金を真空
中又は不活性ガス雰囲気中において、β変態点以上の温
度域に加熱し、続いて1.8℃/min以上の速度で冷
却して溶体化処理(焼鈍)した後、600〜800℃の
大気加熱による酸化被膜生成処理を行い、その後冷間引
抜き伸線することを特徴とするβ型チタン合金線材の製
造方法。
When cold-drawing a β-type titanium alloy, the alloy is heated in a vacuum or in an inert gas atmosphere to a temperature range equal to or higher than the β transformation point, and then cooled at a rate of 1.8°C/min or higher. A method for manufacturing a β-type titanium alloy wire, which comprises solution treatment (annealing) at 600 to 800° C., followed by oxide film formation treatment by heating in the air at 600 to 800° C., followed by cold drawing and wire drawing.
JP21376686A 1986-09-12 1986-09-12 Manufacture of beta type titanium alloy wire stock Granted JPS6372420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21376686A JPS6372420A (en) 1986-09-12 1986-09-12 Manufacture of beta type titanium alloy wire stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21376686A JPS6372420A (en) 1986-09-12 1986-09-12 Manufacture of beta type titanium alloy wire stock

Publications (2)

Publication Number Publication Date
JPS6372420A true JPS6372420A (en) 1988-04-02
JPH0569612B2 JPH0569612B2 (en) 1993-10-01

Family

ID=16644675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21376686A Granted JPS6372420A (en) 1986-09-12 1986-09-12 Manufacture of beta type titanium alloy wire stock

Country Status (1)

Country Link
JP (1) JPS6372420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
EP1083243A3 (en) * 1999-09-10 2006-03-22 Terumo Corporation Beta titanium wire, method for its production and medical devices using beta titanium wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234605A (en) * 1985-08-09 1987-02-14 Toho Titanium Co Ltd Working method for titanium and titanium alloy wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234605A (en) * 1985-08-09 1987-02-14 Toho Titanium Co Ltd Working method for titanium and titanium alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
EP1083243A3 (en) * 1999-09-10 2006-03-22 Terumo Corporation Beta titanium wire, method for its production and medical devices using beta titanium wire

Also Published As

Publication number Publication date
JPH0569612B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
JP4013761B2 (en) Manufacturing method of titanium alloy bar
JPS62149859A (en) Production of beta type titanium alloy wire
CN110976512A (en) Cold rolling method for TC4 titanium alloy wire
US5125986A (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
JP3707799B2 (en) Zirconium alloy tube manufacturing method
JPS6372420A (en) Manufacture of beta type titanium alloy wire stock
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JPS60121220A (en) Production of hot rolled steel wire rod and bar having excellent cold forgeability
JPS61231150A (en) Manufacture of ti alloy wire rod
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
RU2635650C1 (en) Method of thermomechanical processing of high-alloyed pseudo- (titanium alloys alloyed by rare and rare-earth metals
RU2110600C1 (en) Method for producing articles from zirconium alloys
CN117488118B (en) Preparation method of Hastelloy C-276 precise baseband for high-temperature superconductivity and Hastelloy C-276 precise baseband
RU2183691C2 (en) Method for making products of titanium alloy
RU2697309C1 (en) Method of making wire from high-strength titanium-based alloys
JP3582371B2 (en) Method for manufacturing high carbon chromium steel wire and mechanical structural parts
JPH0261042A (en) Production of beta titanium alloy wire having high fatigue strength
RU2682071C1 (en) METHOD FOR MANUFACTURE OF (α+β)-TITANIUM ALLOY WIRE FOR ADDITIVE TECHNOLOGY
JPH0692629B2 (en) Manufacturing method of α + β type titanium alloy seamless pipe
KR101782066B1 (en) A method of manufacturing titanium alloy billet by forging
JPH02112804A (en) Production of seamless pipe consisting of alpha+beta type titanium alloy
JPH04371521A (en) Production of steel pipe for bearing
JPH0390212A (en) Method for hot-extruding close-packed hexagonal system metal
JPH09228013A (en) Manufacture of seamless steel tube made of alpha+beta type titanium