JPH02187212A - Manufacture of extra-fine titanic wire - Google Patents

Manufacture of extra-fine titanic wire

Info

Publication number
JPH02187212A
JPH02187212A JP448989A JP448989A JPH02187212A JP H02187212 A JPH02187212 A JP H02187212A JP 448989 A JP448989 A JP 448989A JP 448989 A JP448989 A JP 448989A JP H02187212 A JPH02187212 A JP H02187212A
Authority
JP
Japan
Prior art keywords
wire
carbon steel
low carbon
titanic
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP448989A
Other languages
Japanese (ja)
Other versions
JPH0761495B2 (en
Inventor
Akihiko Takatsu
高津 明彦
Wataru Takahashi
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1004489A priority Critical patent/JPH0761495B2/en
Publication of JPH02187212A publication Critical patent/JPH02187212A/en
Publication of JPH0761495B2 publication Critical patent/JPH0761495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To obtain the extra-fine titanic wire of good quality by cooling the billet which the aggregate of composite wire rods coated the periphery of titanic wire rods with a low carbon steel are taken as its inner layer and a low carbon steel is taken as its outer layer part at the specific cooling speed after heating at the specific temperature and rolling at the specific temperature. CONSTITUTION:The billet which the aggregate of composite wire rods coated the periphery of the titanic wire rods with the low carbon steel are taken as its inner layer and the low carbon steel is taken as its outer layer part is heated at <=1,000 deg.C and then a hot wire rod rolling is performed at <=950 deg.C. Then the wire rods involving many extra-fine titanic wires in its inside are obtained by cooling at >=1 deg.C/sec cooling speed. The part of the low carbon steel of that wire rods is dissolved and is removed with an acid solution. Thus the extra-fine titanic wire of good quality is manufactured at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン極細線の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ultrafine titanium wires.

〔従来の技術〕[Conventional technology]

チタン極細線は、その優れた耐食性などにより、化学物
質用フィルター、複合材料用繊維または電磁波シールド
材など多くの用途が考えられている。
Due to its excellent corrosion resistance, titanium ultrafine wires are being considered for many uses, including filters for chemical substances, fibers for composite materials, and electromagnetic shielding materials.

従来、この種のTi極細線の製造方法としては、特開昭
62−185893号公報のように、熱間圧延によって
製造した5、5鰭φのTi線材を、その表面にNiメツ
キを施し、このNiメツキを潤滑皮膜として、冷間伸線
し、最終的に極細線を得るためには、酸洗−焼鈍一酸洗
−Niメツキ−冷間伸線の工程を何度も繰り返していた
(以下先行法1という)。
Conventionally, as a manufacturing method of this type of Ti ultra-fine wire, as in JP-A-62-185893, the surface of a Ti wire with a diameter of 5.5 fins manufactured by hot rolling is plated with Ni. Using this Ni plating as a lubricating film, the process of pickling, annealing, pickling, Ni plating, and cold wire drawing was repeated many times in order to finally obtain an ultra-fine wire by cold drawing. (hereinafter referred to as precedent law 1).

他方、熱間圧延線材を用いて金属細線を得る方法として
は、特開昭51−17163号公報の方法(先行法2と
いう)や特開昭61−137623号公報の方法(先行
法3という)がある。
On the other hand, methods for obtaining thin metal wires using hot-rolled wire rods include the method of JP-A-51-17163 (referred to as prior method 2) and the method of JP-A-61-137623 (referred to as prior method 3). There is.

先行法2は、[外層が普通鋼で内部がファイバー用金属
素材から成る熱間押出し用ビレットを製作し、熱間押出
によJ/J線材圧延用ビレットとなし、該ビレットを熱
間線材圧延し、内部がファイバー用金属素材で、外層部
が普通鋼からなる複合線材を得、該複合線材の集合体を
内層とし、外層を普通鋼として更に1回以上の熱間押出
しと熱間線材圧延を行うことを特徴とする多数本のファ
イバー用金属細線を内包する線材の製造方法」として示
され、束ね圧延法とされている。この線材を冷間伸線方
法洗し、ファイバーとするものである。この方法は冷間
伸線のみで極細線とする方法に比べて、製造コストは低
いと思われる。
Prior method 2 is to produce a hot extrusion billet whose outer layer is ordinary steel and whose inner layer is made of a metal material for fibers, to form a billet for J/J wire rod rolling by hot extrusion, and to hot-roll the billet. Then, a composite wire is obtained in which the inner part is made of a metal material for fibers and the outer layer is made of common steel, and the assembly of the composite wire is used as the inner layer, and the outer layer is made of common steel, and is further hot extruded and hot wire rolled one or more times. A method for producing a wire containing a large number of thin metal wires for fibers, which is characterized by performing the following steps, and is referred to as a bundling rolling method. This wire is subjected to a cold drawing process to produce fiber. This method seems to have a lower manufacturing cost than the method of producing ultra-fine wire only by cold drawing.

また、先行法3は、[ステンレス長繊維を得るにあたり
、ステンレス綿状材を炭素1tO,008wt%以下の
極低炭素銅帯で被覆して複合線状材を得しめ、この複合
線状材の多数本をステンレス線状材よりも炭素含有量の
少ない炭素鋼管に挿入して熱間圧延し、冷間伸線と焼鈍
処理を繰り返して細線化し、化学的に上記両炭素鋼を除
去することを特徴とし」複合線材を得るのに極低炭素鋼
帯を金属線材外周部に巻くことを主要点としている。
In addition, in the prior method 3, [in order to obtain stainless steel long fibers, a stainless steel cotton material is coated with an ultra-low carbon copper strip containing less than 1 tO,008 wt% of carbon to obtain a composite wire material; A large number of wires are inserted into a carbon steel tube with a lower carbon content than stainless steel wire material, hot rolled, cold drawn and annealed repeatedly to make the wire thinner, and both carbon steels are chemically removed. The main feature is that an ultra-low carbon steel strip is wrapped around the outer periphery of the metal wire to obtain a composite wire.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記先行法lでは、前記工程を多数回必
要があるため、必然的に製造コストが嵩むものであった
However, in the prior method I, since the above steps were required to be performed many times, the manufacturing cost inevitably increased.

他方、先行法2および3によって、たとえばステンレス
極細線を製造する場合には、通常の鉄の熱間圧延条件で
問題なく圧延でき、しかも得られた内部にステンレス極
細線を含んだ線材を、鉄のみを溶解する酸、たとえば硝
酸を用いて酸洗することにより、最終的にステンレス極
細線を得ることができる。
On the other hand, when producing ultra-fine stainless steel wire using the preceding methods 2 and 3, for example, it can be rolled under normal iron hot rolling conditions without any problems, and the resulting wire containing ultra-fine stainless steel wire inside can be rolled with iron. By pickling with an acid that dissolves only the stainless steel, such as nitric acid, an ultrafine stainless steel wire can be finally obtained.

しかし、本発明が対象とするチタン線の場合においては
、TiとFeとで容易に低融点の化合物(溶融点107
0℃)を生成するため、通常の熱間圧延条件(1100
℃以上)では、Fe−Ti化合物がチタン線全面にでき
てしまう。この化合物は硝酸に溶解してしまうため、チ
タンの極細線を得ることができない。さらに高い温度に
加熱し圧延し、巻取りを行うとFeがTi中に拡散し、
同しくFe−Ti化合物をつくり、同様にこの化合物は
、硝酸に溶解するので、所定径のチタン極細線をうろこ
とができない。
However, in the case of titanium wire, which is the object of the present invention, Ti and Fe can easily be combined into a low melting point compound (melting point 107
0°C), normal hot rolling conditions (1100
℃ or higher), Fe-Ti compounds are formed on the entire surface of the titanium wire. Since this compound dissolves in nitric acid, ultrafine titanium wires cannot be obtained. When heated to a higher temperature, rolled, and wound, Fe diffuses into Ti.
Similarly, a Fe-Ti compound is prepared, and since this compound dissolves in nitric acid, it cannot pass through a titanium ultrafine wire of a predetermined diameter.

そこで、本発明の目的は、製造コストが高くなることが
ない、むしろ安価になるとともに、しかも品質的に良好
なチタン極細線を得ることができる製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a manufacturing method that does not increase the manufacturing cost, but rather makes it possible to obtain a titanium ultrafine wire that is inexpensive and of good quality.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、チタン線材の外周を低炭素鋼で被覆した複
合線材の集合体を内層とし、外層部を低炭素鋼としたビ
レットを、1000℃以下で加熱し、次いで950℃以
下で熱間線材圧延を行った後、1℃/秒以上の冷却速度
で冷却し、内部に多数本のチタン極細線を内包した線材
を得た後、この線材の低炭素鋼部分を酸を用いて溶解除
去することで解決できる。
The above problem was achieved by heating a billet with an inner layer made of a composite wire rod assembly made of titanium wire coated with low carbon steel and an outer layer made of low carbon steel at a temperature below 1000°C, and then heating the billet at a temperature below 950°C. After rolling, the wire is cooled at a cooling rate of 1°C/second or higher to obtain a wire containing many ultrafine titanium wires, and then the low carbon steel portion of this wire is dissolved and removed using acid. This can be solved.

〔作 用〕[For production]

本発明にしたがって得た複合ビレットを、加熱温度を1
000℃以下、圧延温度を950℃以下で熱間圧延し、
圧延後の冷却速度を1℃/秒以上とすることで、Fe−
Ti化合物層の厚みを圧延後直径の20%以内に抑える
ことができる。
The composite billet obtained according to the present invention was heated to a temperature of 1
000℃ or less, hot rolling at a rolling temperature of 950℃ or less,
By setting the cooling rate after rolling to 1°C/sec or more, Fe-
The thickness of the Ti compound layer can be kept within 20% of the diameter after rolling.

使用するチタン線材を低炭素鋼で被覆するようにすると
、隔離材として、コスト的に安いものとなり、かつ酸化
スケールを付けたチタン複合線材の製造が容易となる。
If the titanium wire rod used is coated with low carbon steel, it will be used as a separator at a low cost, and the titanium composite wire rod with oxide scales will be easily manufactured.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

本発明におけるTi線材とは、純Ti等のα相Ti、T
i−6八N−4V等の(α+β)型T1合金、Ti−3
A/8V  6Cr−4Mo  4Zr、Ti−15V
−3Cr3Sn−3A1等のβ型Ti合金が対象である
The Ti wire in the present invention refers to α-phase Ti such as pure Ti, T
(α+β) type T1 alloy such as i-68N-4V, Ti-3
A/8V 6Cr-4Mo 4Zr, Ti-15V
The target is β-type Ti alloys such as -3Cr3Sn-3A1.

Ti外外部部低炭素鋼を被覆する迄のTiの冷間伸線方
法としては、ローラーダイス、穴ダイスを用いることが
できる。伸線時の潤滑下地として、酸化スケールをTi
材表面に生成させれば、スケールが潤滑剤の役目と、隔
離材であるFeのTi中への拡散を防げる働きをするの
で、スケールを生成させるのが望ましい態様である。T
i線材の外周を低炭素鋼で被覆するのは、Ti線材同志
の融着を防止するためであるが、特開昭61−1376
23号では、炭素量0.008wt%以下の極低炭素鋼
を用いるとなっているがTii材の場合、拡散した炭素
がTi材表面でTiと結合し、TiCとなり、Ti材内
部にはあまり拡散しないので、用いる低炭素鋼の炭素は
0.1%以下であればよい。
A roller die or a hole die can be used as a method for cold drawing Ti until coating the low carbon steel on the Ti outer part. Ti oxide scale is used as a lubrication base during wire drawing.
If scale is formed on the surface of the material, it acts as a lubricant and prevents diffusion of Fe, which is a separator, into Ti, so it is desirable to form scale. T
The reason why the outer periphery of the i-wire is coated with low carbon steel is to prevent the Ti wires from fusing together.
No. 23 specifies that ultra-low carbon steel with a carbon content of 0.008wt% or less is used, but in the case of Tii material, the diffused carbon combines with Ti on the surface of the Ti material to become TiC, and there is not much inside the Ti material. Since it does not diffuse, the carbon content of the low carbon steel used may be 0.1% or less.

Tj線材外周部に低炭素鋼を被覆する方法は公知の多く
の方法があり、本発明においていずれも採用できる。す
なわち、Tiの丸鋼を内部に入れた低炭素鋼バイブを熱
間押出しにて圧着し、それを熱間圧延もしくは穴ダイス
伸線にて加工する方法(先行法4とする)も有り、T1
丸鋼を内部に入れた低炭素鋼パイプを冷間穴ダイス伸線
をして所定の直径のクラッド線とする方法(先行法5と
する)等が有る。
There are many known methods for coating the outer periphery of the Tj wire with low carbon steel, and any of them can be employed in the present invention. That is, there is also a method (previous method 4) in which a low carbon steel vibrator with a Ti round steel inside is crimped by hot extrusion and processed by hot rolling or hole die wire drawing.
There is a method of drawing a low carbon steel pipe with a round steel inside into a clad wire of a predetermined diameter by cold-hole die wire drawing (referred to as prior method 5).

この時内部に入れるTi丸鋼の表面には酸化スケールが
あるのが望ましい。酸化スケールを生成させる条件はT
i合金の種類によって異なるが、600〜b 行うとよい。酸化スケール厚さは、1〜5μm程度生成
させるのが望ましい。このようにして、低炭素鋼で被覆
した複合線材は、これを所定長さに切断し、外層材とし
ての低炭素鋼管などの外層材に密に詰め込み、熱間圧延
を行う。外層材の炭素鋼の炭素量も0.1wt%以下で
よい。
At this time, it is desirable that there be oxide scale on the surface of the Ti round steel inserted inside. The conditions for generating oxide scale are T
i Although it differs depending on the type of alloy, it is recommended to perform 600-b. The thickness of the oxide scale is preferably about 1 to 5 μm. In this way, the composite wire coated with low carbon steel is cut into a predetermined length, packed tightly into an outer layer material such as a low carbon steel pipe as an outer layer material, and hot rolled. The carbon content of the carbon steel of the outer layer material may also be 0.1 wt% or less.

次に本発明における熱間圧延条件の限定理由を示す。Next, the reasons for limiting the hot rolling conditions in the present invention will be described.

加熱温度を1000℃以下としたのは、1000℃を超
えると、Fe−Ti化合物層の融点(1070℃)に近
すぎること、およびFe−Ti化合物層が異常に厚くな
るからである。加熱時間はビレットが均一されるための
最も短い時間が望ましく、通常2時間以内である。
The reason why the heating temperature was set to 1000°C or less is because if it exceeds 1000°C, it is too close to the melting point (1070°C) of the Fe-Ti compound layer and the Fe-Ti compound layer becomes abnormally thick. The heating time is preferably the shortest to make the billet uniform, and is usually within 2 hours.

圧延温度を950℃以下としたのは、圧延することによ
ってTi線の線径は非常に小さくなる。しかるに、Fe
−Ti化合物層の厚さは、温度と時間の関数であり、線
径が小さくなった分だけ、線径に占めるPe−Ti化合
物層の比率は大きくなり、Ti極細線が得られなくなる
。それゆえ、圧延温度は、950°C以下とした。圧延
時間は2〜3分以内が望ましい。例えば880℃〜83
0℃で圧延比100、圧延時間3分で2℃/秒で冷却し
たところ、Fe−Ti化合物層の厚さは8μmであった
The reason why the rolling temperature is set to 950° C. or less is because the wire diameter of the Ti wire becomes extremely small by rolling. However, Fe
The thickness of the -Ti compound layer is a function of temperature and time, and as the wire diameter becomes smaller, the ratio of the Pe--Ti compound layer to the wire diameter increases, making it impossible to obtain a very fine Ti wire. Therefore, the rolling temperature was set to 950°C or less. The rolling time is preferably within 2 to 3 minutes. For example, 880℃~83
When the film was cooled at 2° C./sec at a rolling ratio of 100 and a rolling time of 3 minutes at 0° C., the thickness of the Fe-Ti compound layer was 8 μm.

950℃を超える温度での圧延の場合には、圧延時間を
短く、圧延後の冷却速度を早くしても、FeTi化合物
層を15μm以下に抑えることが難しい。
In the case of rolling at a temperature exceeding 950° C., it is difficult to suppress the FeTi compound layer to 15 μm or less even if the rolling time is shortened and the cooling rate after rolling is increased.

熱間圧延後の冷却速度を1℃/秒以上としたのは、この
速度以下ではPe0Ti中における拡散速度が早い温度
範囲となっている時間が長くなるので、Fe−Ti化合
物層が厚くなり、表面粗度、寸法精度良好なTi極細線
が得られるのである。
The reason why the cooling rate after hot rolling was set to 1° C./sec or higher is that if the cooling rate is lower than this speed, the time in the temperature range where the diffusion rate in Pe0Ti is high becomes longer, so the Fe-Ti compound layer becomes thicker. A Ti ultrafine wire with good surface roughness and dimensional accuracy can be obtained.

熱間圧延によって、一般的に5.5〜10龍φ程度の線
材となす。この線材を酸を用いて、隔離材である低炭素
鋼を溶解し、φ100〜200μm程度のTi極細線を
得ることができる。酸の種類は硝酸が望ましい。これは
、鉄のみを溶解し、Tiは溶解しないからである。濃度
は20〜40%が望ましい。20%未満では溶解能力が
劣り、酸洗時間を多く必要とする。また40%を超える
場合は、溶解反応時、液が沸騰しやすく、安全上問題が
ある。処理温度も50℃以下が望ましく、50°Cを超
える温度では溶解反応時液が沸騰しやすく、安全−L問
題がある。
By hot rolling, it is generally made into a wire rod with a diameter of about 5.5 to 10 mm. By melting the low carbon steel that is the separator using acid, a Ti ultrafine wire with a diameter of about 100 to 200 μm can be obtained. Nitric acid is preferable as the type of acid. This is because only iron is dissolved and Ti is not dissolved. The concentration is preferably 20-40%. If it is less than 20%, the dissolving ability is poor and a long pickling time is required. Moreover, if it exceeds 40%, the liquid tends to boil during the dissolution reaction, which poses a safety problem. The treatment temperature is also desirably 50°C or lower; at temperatures above 50°C, the liquid tends to boil during the dissolution reaction, which poses a safety problem.

またさらに細いTi線を得る場合には、熱間圧延複合線
材を冷間伸線する。1龍φ程度迄伸線すれば10μmφ
程度のTi極細線が得られる。この際、何回かの焼鈍を
行うが、焼鈍温度、時間はFe−Ti化合物層の拡大を
防止するため、700 ’C以下、2時間以内が望まし
い。
In order to obtain a thinner Ti wire, the hot rolled composite wire is cold drawn. If you draw the wire to about 1 dragon diameter, it will be 10μmφ.
A very fine Ti wire of about 100 mL can be obtained. At this time, annealing is performed several times, and the annealing temperature and time are preferably 700'C or less and 2 hours or less in order to prevent the Fe-Ti compound layer from expanding.

〔実施例〕〔Example〕

次に実施例を示し本発明の効果を明らかにする。 Next, examples will be shown to clarify the effects of the present invention.

(実施例1) 直径11. On+ ψ(7)$47ivAA ト5.
:JJ、1m680°CX30分=A、C,の条件にて
表面に酸化スケールを生成させた直径11.0龍φの純
Ti線Bとを用意する。両者とも外径21.7 +u内
径12.3 m−の低炭素鋼管に挿入する。長さは1〜
6m程度とする。
(Example 1) Diameter 11. On+ ψ(7) $47ivAA 5.
A pure Ti wire B with a diameter of 11.0 mm and oxide scale formed on the surface under the conditions of: JJ, 1 m, 680°C, 30 minutes = A, C, is prepared. Both are inserted into a low carbon steel pipe with an outer diameter of 21.7 m and an inner diameter of 12.3 m. The length is 1~
The length should be approximately 6m.

しかる後に内径19.4鰭φの穴ダイスを通ずことによ
り外径19.4 smφの低炭素鋼、中身11.0mm
φの純Tiのクラツド材を得る。しかる後にこれを順次
穴ダイスを通すことにより外径3.51φの低炭素鋼、
中身2. Omφとした。
After that, it was passed through a hole die with an inner diameter of 19.4 fins to obtain a low carbon steel with an outer diameter of 19.4 smφ and a content of 11.0 mm.
A pure Ti cladding material of φ is obtained. After that, by sequentially passing this through a hole die, a low carbon steel with an outer diameter of 3.51φ,
Contents 2. It was set as Omφ.

純Ti線の化学成分、被覆用の低炭素鋼の化学成分を第
1および第2表に示す。複合線材を矯正した後3mに切
断した。つづいて外径φ135、内径φ50の低炭素鋼
管に140本詰め、熱間圧延ビレットを2木製作した。
The chemical composition of the pure Ti wire and the chemical composition of the low carbon steel for coating are shown in Tables 1 and 2. After straightening the composite wire, it was cut into 3 m lengths. Next, 140 low-carbon steel pipes with an outer diameter of φ135 and an inner diameter of φ50 were packed, and two hot-rolled billets were made.

第3表に低炭素鋼管の化学成分を示す。Table 3 shows the chemical composition of low carbon steel pipes.

第1表 (wt%) 第2表 (vt%) 第3表 (wt%) ついで、共に9.00℃X2Hr加熱後、850℃で熱
延し、9.5龍φの線材A’、B’となし、850〜5
00℃間を3℃/秒で風冷したくA材の圧延品をA’、
B材のそれをB′とする)。
Table 1 (wt%) Table 2 (vt%) Table 3 (wt%) Then, after heating at 9.00°C for 2 hours, they were hot rolled at 850°C, and wire rods A' and B with a diameter of 9.5 ' and pear, 850-5
A rolled product of material A that wants to be air-cooled between 00°C and 3°C/second is A',
Let that of material B be B').

9.5鶴φ線材の横断面のミクロ組織より、A′B′複
合線材中のT i 線材の径は約140μmであり、R
e−Ti化合物層の厚さはA′は7μm、B’は4.0
μであり、表面に酸化スケールを生成させたB材を用い
ることで、その化合物層を薄くすることができる。
From the microstructure of the cross section of the 9.5 crane φ wire, the diameter of the T i wire in the A′B′ composite wire is approximately 140 μm, and R
The thickness of the e-Ti compound layer is A' is 7 μm and B' is 4.0 μm.
μ, and by using material B with oxide scale formed on its surface, the compound layer can be made thinner.

A’、B’複合線材を処理温度45℃、40%wt%l
lNOsで酸洗することで、A′からは約120μ、B
′からは約130μの純Ti線が得られた。
A' and B' composite wires were treated at a temperature of 45°C and 40%wt%l.
By pickling with lNOs, about 120μ from A′ and B
A pure Ti wire of about 130 μm was obtained from .

(実施例2) 実施例1のA′複合線材を、外径4mlφ迄冷間冷間し
た後、680℃xロ1rの焼鈍処理を施し、更に外径φ
2迄冷間伸線した後、680℃X1llrの焼鈍処理を
施し、更に外径φ1迄冷間伸線した。
(Example 2) The A' composite wire of Example 1 was cold worked to an outer diameter of 4 mlφ, then annealed at 680°C x 1 r, and further reduced to an outer diameter of φ
After cold wire drawing to a diameter of 2, annealing treatment was performed at 680° C. x 1 llr, and further cold wire drawing was performed to an outer diameter of φ1.

次いで、実施例1と同一条件の酸洗条件で酸洗し、外径
14μmの純Ti極細線140本を得た。Fe −Ti
拡散層は酸洗で除去された。
Next, pickling was carried out under the same pickling conditions as in Example 1 to obtain 140 pure Ti ultrafine wires with an outer diameter of 14 μm. Fe-Ti
The diffusion layer was removed by pickling.

(実施例3) 実施例1のA純Ti線を用いた熱間圧延ビレ、2トを熱
間圧延条件を種々変化させて、φ9.5線材に圧延した
際のFe−Ti化合物層の厚さを測定した結果を第4表
に示す。
(Example 3) Thickness of the Fe-Ti compound layer when the hot-rolled fins and 2 pieces using the A pure Ti wire of Example 1 were rolled into a φ9.5 wire rod by varying the hot rolling conditions. Table 4 shows the results of measuring the strength.

加熱時間は2時間、圧延時間阻1〜7は2〜3分、NO
3は10分とした。
Heating time is 2 hours, rolling time 1 to 7 is 2 to 3 minutes, NO
3 was set to 10 minutes.

第4表に示すごとく、本発明例では、Fe−Ti化合物
層の厚さは薄く、良好なTi極細線をつくることができ
たが、比較例では、Fe−Ti化合物層が厚(、Ti極
細線の表面粗度が悪く、かつ、歩留が低かった。
As shown in Table 4, in the present invention example, the thickness of the Fe-Ti compound layer was thin and it was possible to make a good Ti ultrafine wire, but in the comparative example, the Fe-Ti compound layer was thick (, Ti The surface roughness of the ultra-fine wire was poor and the yield was low.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、品質的に良好なチタン極
細線を安価なコストで製造できる。
As described above, according to the present invention, a titanium ultrafine wire with good quality can be manufactured at low cost.

Claims (3)

【特許請求の範囲】[Claims] (1)チタン線材の外周を低炭素鋼で被覆した複合線材
の集合体を内層とし、外層部を低炭素鋼としたビレット
を、1000℃以下で加熱し、次いで950℃以下で熱
間線材圧延を行った後、1℃/秒以上の冷却速度で冷却
し、内部に多数本のチタン極細線を内包した線材を得た
後、この線材の低炭素鋼部分を酸を用いて溶解除去する
ことを特徴とするチタン極細線の製造方法。
(1) A billet with an inner layer made of a composite wire rod assembly made of titanium wire coated with low carbon steel and an outer layer made of low carbon steel is heated at a temperature below 1000°C, and then hot wire rolled at a temperature below 950°C. After that, the wire is cooled at a cooling rate of 1°C/second or more to obtain a wire containing many ultrafine titanium wires, and then the low carbon steel portion of this wire is dissolved and removed using acid. A method for producing ultrafine titanium wire characterized by:
(2)内部に多数本のチタン極細線を内包した線材を得
た後、冷間引抜きを行い、続いてその線材の低炭素鋼部
分を酸を用いて溶解除去する請求項1記載の方法。
(2) The method according to claim 1, wherein after obtaining a wire containing a large number of ultrafine titanium wires, cold drawing is performed, and then the low carbon steel portion of the wire is dissolved and removed using acid.
(3)チタンの表面に酸化スケールを生成しているもの
を用いる請求項1または2記載の方法。
(3) The method according to claim 1 or 2, in which titanium is used which has oxide scale formed on its surface.
JP1004489A 1989-01-11 1989-01-11 Titanium extra fine wire manufacturing method Expired - Fee Related JPH0761495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004489A JPH0761495B2 (en) 1989-01-11 1989-01-11 Titanium extra fine wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004489A JPH0761495B2 (en) 1989-01-11 1989-01-11 Titanium extra fine wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH02187212A true JPH02187212A (en) 1990-07-23
JPH0761495B2 JPH0761495B2 (en) 1995-07-05

Family

ID=11585506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004489A Expired - Fee Related JPH0761495B2 (en) 1989-01-11 1989-01-11 Titanium extra fine wire manufacturing method

Country Status (1)

Country Link
JP (1) JPH0761495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899365A3 (en) * 1997-09-01 1999-07-28 Bridgestone Metalpha Corporation Titanium fiber and method of producing the same
EP1070558A2 (en) * 1999-07-13 2001-01-24 Bridgestone Corporation Method of manufacturing titanium fiber or titanium alloy fiber
JP2008303516A (en) * 2007-06-11 2008-12-18 Hi-Lex Corporation Titanium filament and method for producing the same
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561162A (en) * 1979-06-15 1981-01-08 Matsushita Electric Works Ltd Lowwfrequency treating appliance
JPS61137623A (en) * 1984-12-10 1986-06-25 Tokyo Seiko Kk Production of stainless steel fiber
JPS61157668A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of titanium hot rolled plate
JPS61159564A (en) * 1985-01-07 1986-07-19 Nippon Steel Corp Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
JPS62124002A (en) * 1985-11-21 1987-06-05 Kawasaki Steel Corp Production of extra fine metallic wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561162A (en) * 1979-06-15 1981-01-08 Matsushita Electric Works Ltd Lowwfrequency treating appliance
JPS61137623A (en) * 1984-12-10 1986-06-25 Tokyo Seiko Kk Production of stainless steel fiber
JPS61157668A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of titanium hot rolled plate
JPS61159564A (en) * 1985-01-07 1986-07-19 Nippon Steel Corp Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
JPS62124002A (en) * 1985-11-21 1987-06-05 Kawasaki Steel Corp Production of extra fine metallic wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899365A3 (en) * 1997-09-01 1999-07-28 Bridgestone Metalpha Corporation Titanium fiber and method of producing the same
US6316122B1 (en) * 1997-09-01 2001-11-13 Bridgestone Metalpha Corporation Titanium fiber and method of producing the same
EP1070558A2 (en) * 1999-07-13 2001-01-24 Bridgestone Corporation Method of manufacturing titanium fiber or titanium alloy fiber
EP1070558A3 (en) * 1999-07-13 2003-06-04 Bridgestone Corporation Method of manufacturing titanium fiber or titanium alloy fiber
JP2008303516A (en) * 2007-06-11 2008-12-18 Hi-Lex Corporation Titanium filament and method for producing the same
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Also Published As

Publication number Publication date
JPH0761495B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPS62149859A (en) Production of beta type titanium alloy wire
JPH02187212A (en) Manufacture of extra-fine titanic wire
US3844021A (en) Method of simultaneously drawing a plurality of wires and apparatus therefor
JPH0596321A (en) Method for producing composite metal wire material
JPH02211901A (en) Production of extremely fine titanium wire
US3372465A (en) Method of bonding layers to an austenitic chromium steel core
DE813839C (en) Method for connecting two metal rods
JPH01240632A (en) Corrosion-resistant aluminum-based alloy
JPH0259109A (en) Manufacture of very fine titanium wire
JP4499956B2 (en) Steel cord manufacturing method
JPH04279212A (en) Manufacture of fine wire of titanium or its alloys
JP2002126950A (en) Manufacturing method of electrode wire for wire electric discharge machining
JPS599137A (en) Production of age-precipitation type alloy
DE3835789A1 (en) IMPROVED METHOD FOR PRODUCING SEAMLESS TUBES AND SIMILAR ITEMS FROM A TITANIUM ALLOY
JPS5910522B2 (en) copper coated aluminum wire
JP2502058B2 (en) Manufacturing method of NiTi alloy
JPS62259612A (en) Production of stainless steel fiber
JPS59110486A (en) Production of ti clad wire rod
JPH0115564B2 (en)
US1993600A (en) Drawn article and process of making the same
JP2000061525A (en) Manufacture of metallic fiber
JPS5935826A (en) Manufacture of small aperture and long-sized double pipe
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH02243747A (en) Intermetallic compound wire and its production
JPS59181412A (en) Conductive copper alloy composite conductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees