JP2008303516A - Titanium filament and method for producing the same - Google Patents

Titanium filament and method for producing the same Download PDF

Info

Publication number
JP2008303516A
JP2008303516A JP2007154427A JP2007154427A JP2008303516A JP 2008303516 A JP2008303516 A JP 2008303516A JP 2007154427 A JP2007154427 A JP 2007154427A JP 2007154427 A JP2007154427 A JP 2007154427A JP 2008303516 A JP2008303516 A JP 2008303516A
Authority
JP
Japan
Prior art keywords
titanium
wire
long fiber
metal tube
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007154427A
Other languages
Japanese (ja)
Other versions
JP5268183B2 (en
Inventor
Minoru Teraura
實 寺浦
Mikio Kurata
三樹夫 倉田
Retsu Tsuda
烈 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hi Lex Corp
Original Assignee
Hi Lex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hi Lex Corp filed Critical Hi Lex Corp
Priority to JP2007154427A priority Critical patent/JP5268183B2/en
Publication of JP2008303516A publication Critical patent/JP2008303516A/en
Application granted granted Critical
Publication of JP5268183B2 publication Critical patent/JP5268183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium filament having a length of ≥5 m with a small diameter and useful in a medical field, and a method for efficiently producing the titanium filament. <P>SOLUTION: The superfine titanium filament 17 is prepared by inserting one titanium wire 10 into a metal tube 11 excellent in malleability, and subjected to swaging and wire drawing to be a coated wire material 15, annealing the coated wire material 15 at 500-800°C, bundling two or more annealed coated wire materials 15 and putting the coated wire material into an outer layer material 16 including a metal tube excellent in malleability, subsequently removing the coating material 14 and the outer layer 16 by dissolving them with acid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はチタン長繊維、とくに医療分野で用いられるチタン長繊維およびそのチタン長繊維の製造法に関する。   The present invention relates to a titanium long fiber, particularly a titanium long fiber used in the medical field and a method for producing the titanium long fiber.

特開平11−81050号公報Japanese Patent Laid-Open No. 11-81050 特開平6−344021号公報Japanese Patent Laid-Open No. 6-344021 特公昭49−23755号公報Japanese Patent Publication No.49-23755 特公昭56−1162号公報Japanese Patent Publication No.56-1162

特許文献1には、触媒に使用するチタン繊維あるいはチタン合金繊維で、断面略楕円形で表面に凹凸を形成して表面積を増加させた、円相当直径が5μmから30μmのチタン(合金)繊維が開示されている。なお、円相当直径とは、異形断面の大きさを示す数値で、断面積が同一の円の直径を意味する。線径を細くし、表面積を増加させるのは、触媒としての機能を向上させるためである。   Patent Document 1 discloses titanium (alloy) fibers having a circle equivalent diameter of 5 μm to 30 μm, which are titanium fibers or titanium alloy fibers used for a catalyst and have an approximately elliptical cross section and an uneven surface formed to increase the surface area. It is disclosed. The equivalent circle diameter is a numerical value indicating the size of the irregular cross section, and means the diameter of a circle having the same cross sectional area. The reason for reducing the wire diameter and increasing the surface area is to improve the function as a catalyst.

さらに特許文献1には、軟鋼(SPCC)の帯材で直径6mmの電縫管を形成しながら純チタン線材を挿入し、直径4.3mmに伸線加工して管の内面と芯線とを密着させ、電炉内で焼鈍し、ついで得られた被覆チタン線材を多数本、別の軟鋼管に挿入し、伸線加工および熱処理を行ない、軟鋼を溶解して分線する集束伸線法により、外径約8μmのチタン繊維とすることが開示されている。また、軟鋼の炭素含有量は0.25重量%以下、とくに0.12重量%以下が好ましいこと、焼鈍の最高到達温度は580℃〜650℃が好ましいこと、被覆の厚さは厚い方が好ましいが、溶解の手間を考えて被覆する素線の直径の5〜20%とくに8〜15%が好ましいことが記載されている。   Furthermore, in Patent Document 1, a pure titanium wire is inserted while forming an electric-welded tube with a diameter of 6 mm with a strip of mild steel (SPCC), drawn to a diameter of 4.3 mm, and the inner surface of the tube and the core wire are brought into close contact with each other. And then annealed in an electric furnace, and then inserted a number of the obtained coated titanium wires into another mild steel pipe, subjected to wire drawing and heat treatment, and melted and separated the mild steel to obtain the outer Disclosed is a titanium fiber having a diameter of about 8 μm. Further, the carbon content of mild steel is preferably 0.25% by weight or less, particularly preferably 0.12% by weight or less, the highest ultimate temperature for annealing is preferably 580 ° C. to 650 ° C., and the coating is preferably thicker. However, it is described that 5 to 20%, particularly 8 to 15%, of the diameter of the wire to be coated is preferable in consideration of the time and labor of melting.

また、特許文献1では、チタン繊維の好ましい断面形状として、略円形、楕円形、多角形が挙げられ、扁平なもの、湾曲したものは表面積を稼ぐことはできるが好ましくないとしている。繊維の表面に形成する凹凸は、被覆する軟鋼の結晶が湾曲することにより生ずるものであり、同一の断面形状で延びているものではない。また、チタン繊維の長さについてはとくに言及していない。   Moreover, in patent document 1, as a preferable cross-sectional shape of a titanium fiber, a substantially circular shape, an ellipse shape, and a polygonal shape can be cited. A flat shape and a curved shape can increase the surface area but are not preferable. The unevenness formed on the surface of the fiber is caused by bending of the crystal of the mild steel to be coated, and does not extend with the same cross-sectional shape. Further, no particular mention is made of the length of the titanium fiber.

特許文献2は、強度が低く芯線加工しにくいアルミニウムや銅などの芯材の周囲に、ステンレスや鋼などの強度が高い金属被覆を設けてクラッド構造にした金属線を、その周囲に酸で溶解できる外層材を設けて集束伸線加工し、その後、酸で外層材を溶解する、クラッド構造の金属線の製造法を開示している。金属被覆としてチタンおよびチタン合金が挙げられている。特許文献3は、金属線の周囲に2重にメッキを施す集束伸線法による金属繊維の製造法が開示されており、得られる金属繊維の断面形状として、略図ながら六角形のものが図示されている。   In Patent Document 2, a metal wire having a clad structure with a high-strength metal coating such as stainless steel or steel around a core material such as aluminum or copper, which has low strength and is difficult to process the core wire, is dissolved with acid around the core wire. A manufacturing method of a metal wire having a clad structure is disclosed, in which an outer layer material that can be formed is provided and focused and drawn, and then the outer layer material is dissolved with an acid. Titanium and titanium alloys are mentioned as metal coatings. Patent Document 3 discloses a method of manufacturing metal fibers by a focused wire drawing method in which a metal wire is double-plated around a metal wire, and a hexagonal shape is schematically illustrated as a cross-sectional shape of the obtained metal fiber. ing.

特許文献4には、厚さ130mm、幅550mm、長さ3000mmの金属チタンのスラブの周囲を厚さ15mmの軟鋼板(SS34)で囲み、加熱し、厚さ4mmまで熱間圧延して厚さ150mm、幅550mmとし、さらに冷間圧延で厚さ4mmにし、ついで軟鋼板を分離するチタン板材の製造法が開示されている。このものは断面形状が長方形で、長さが数m以上であるが、繊維ではない。   In Patent Document 4, a metal titanium slab having a thickness of 130 mm, a width of 550 mm, and a length of 3000 mm is surrounded by a mild steel plate (SS34) having a thickness of 15 mm, heated, and hot-rolled to a thickness of 4 mm. A manufacturing method of a titanium plate material is disclosed in which the thickness is set to 150 mm, the width is 550 mm, the thickness is further reduced to 4 mm by cold rolling, and then the mild steel plate is separated. This has a rectangular cross-sectional shape and a length of several meters or more, but is not a fiber.

特許文献1の製造法では、チタン線の周囲に軟鋼を被覆して集束伸線する方法において、「複合線材の最高到達温度を580〜650℃にすることを特徴とする」との内容が記載されているが、この条件であればすべてが同程度の引っ張り強さとなるため、伸線加工中に断線し、長尺チタン繊維を得ることができない。すなわち純チタン線の結晶構造は最密六方格子(hcp)であり、被覆する軟鋼の結晶構造は体心立方格子(bcc)または面心立方格子(fcc)である。そして仮に同一の応力を付与した場合、塑性変形能としては、bcc>fcc>hcpとなり、チタン線のhcpが一番塑性変形しにくい結晶構造である。そのため、負荷に対して「塑性変形+弾性変形」する割合が大きい。このため、[チタン線の引っ張り強さ=金属管の引っ張り強さ]の関係であると、金属管が塑性変形(全長変化)するのに対し、チタン線は塑性変形+弾性変形し、弾性変形の蓄積により断線しやすい。そのため、長尺のチタン線を伸線加工することができない。また、特許文献1のチタン線は、とくに触媒に用いることもあって、チタン線材の表面に、軟鋼の結晶粒によって形成される凹凸もう形成しているので、繊維同士が滑りにくく、絡合させたり束にしたりするときに取り扱いにくい。   In the production method of Patent Document 1, the content of “characterized by setting the maximum temperature of the composite wire to 580 to 650 ° C.” in the method of focusing and drawing by coating mild steel around the titanium wire is described. However, since the tensile strength is almost the same under these conditions, it is not possible to obtain a long titanium fiber by breaking during wire drawing. That is, the crystal structure of the pure titanium wire is a close-packed hexagonal lattice (hcp), and the crystal structure of the coated mild steel is a body-centered cubic lattice (bcc) or a face-centered cubic lattice (fcc). If the same stress is applied, the plastic deformability is bcc> fcc> hcp, and the hcp of the titanium wire has a crystal structure that is least susceptible to plastic deformation. Therefore, the ratio of “plastic deformation + elastic deformation” with respect to the load is large. For this reason, when the relationship of [tensile strength of titanium wire = tensile strength of metal tube] is satisfied, the metal tube undergoes plastic deformation (change in the entire length), whereas the titanium wire undergoes plastic deformation + elastic deformation and elastic deformation. It is easy to break by accumulation of. Therefore, a long titanium wire cannot be drawn. In addition, the titanium wire of Patent Document 1 is particularly used for a catalyst, and the surface of the titanium wire is already formed with irregularities formed by crystal grains of mild steel, so that the fibers are difficult to slip and entangle. It is difficult to handle when bundling.

他方、特許文献2、3の製造法についても、長いチタン繊維や扁平なチタン繊維を得ることができない。特許文献4のチタン板材の製造法は、数mの長さの扁平なチタン板材を製造することはできるが、チタン繊維の製造法には応用できない。   On the other hand, with respect to the production methods of Patent Documents 2 and 3, long titanium fibers and flat titanium fibers cannot be obtained. The method for producing a titanium plate material of Patent Document 4 can produce a flat titanium plate material having a length of several meters, but cannot be applied to a method for producing titanium fibers.

本発明は塑性変形しにくいチタン線を塑性変形しやすい金属でコートするにも関わらず、できるだけ細く、かつ、長いチタン繊維を効率よく製造する方法を提供することを技術課題としている。   An object of the present invention is to provide a method for efficiently producing a titanium fiber that is as thin and long as possible, even though a titanium wire that is difficult to plastically deform is coated with a metal that is easily plastically deformed.

本発明のチタン長繊維の製造法(請求項1)は、金属チタンまたは金属チタンを主体とする合金材からなるチタン線を展性に優れた金属からなるコート材でコートして縮径し、得られたコート線を500〜800℃で1〜10分間焼鈍し、焼鈍したコート線を複数本束にして、展性に優れた金属管に入れ、ついで、[コート線の引っ張り強さ≦その金属の引っ張り強さ]を満たすようにして金属管ごと50m以上伸線加工し、ついで金属管およびコート材を酸で溶解除去することを特徴としている。このようなチタン長繊維の製造法においては、前記伸線加工により、金属管ごと70m以上、伸線するのが好ましい(請求項2)。さらに前記コート線を複数本束にして金属管に入れた後、伸線加工の前に、スエージング加工により減面率15〜25%まで縮径するのが好ましい(請求項3)。また、前記金属管ごと複数本のコート線を伸線加工した後、酸で溶解する前に、圧延して異形断面とすることもできる(請求項4)。   The method for producing a titanium long fiber of the present invention (Claim 1) is a method of reducing the diameter by coating a titanium wire made of metal titanium or an alloy material mainly composed of metal titanium with a coating material made of a metal having excellent malleability, The obtained coated wire was annealed at 500 to 800 ° C. for 1 to 10 minutes, bundled with a plurality of annealed coated wires, put into a metal tube having excellent malleability, and then [tensile strength of coated wire ≦ the The metal pipe is stretched by 50 m or more so as to satisfy the metal tensile strength], and then the metal pipe and the coating material are dissolved and removed with an acid. In such a method for producing a titanium long fiber, it is preferable that the metal tube is drawn by 70 m or more by the drawing process (claim 2). Furthermore, it is preferable to reduce the diameter to 15 to 25% by a swaging process after drawing a plurality of the coated wires into a metal tube and before the wire drawing process (Claim 3). Further, after drawing a plurality of coated wires together with the metal tube, it can be rolled into an irregular cross section before being dissolved with an acid (Claim 4).

本発明のコート線の製造法(請求項5)は、1本のチタン線を展性に優れた金属管に入れ、ついで、[チタン線の引っ張り強さ≦その金属の引っ張り強さ]を満たすようにして伸線加工により縮径し、コート線とすることを特徴としている。その場合、前記1本のチタン線を単線用の金属管に入れた後、スエージング加工により減面率15〜25%まで縮径し、ついで伸線加工するのが好ましい(請求項6)。また、前記単線用の金属管の外径をチタン線の外径の2〜6倍とするのが好ましい(請求項7)。   In the method for producing a coated wire of the present invention (Claim 5), one titanium wire is put in a metal tube having excellent malleability, and then [tension strength of titanium wire ≦ tensile strength of the metal] is satisfied. Thus, the diameter is reduced by wire drawing to form a coated wire. In this case, it is preferable that the single titanium wire is put in a single wire metal tube, then the diameter is reduced to 15 to 25% by a swaging process, and then the wire drawing is performed. Moreover, it is preferable that the outer diameter of the metal tube for single wires is 2 to 6 times the outer diameter of the titanium wire.

本発明のチタン長繊維(請求項8)は、前述のいずれかのチタン長繊維の製造法によって製造され、しかも円相当径が100μm以下で、長さ20m以上であることを特徴としている。このようなチタン長繊維では、円相当径が15μm以下で、長さ50m以上あるのが好ましい(請求項9)。また、断面が略多角形状で、その一辺15μm以下とすることもできる(請求項10)。また、断面形状が略星形であるものであってもよい(請求項11)。   The titanium long fiber of the present invention (Claim 8) is manufactured by any one of the above-described methods for manufacturing a titanium long fiber, and further has an equivalent circle diameter of 100 μm or less and a length of 20 m or more. Such a titanium long fiber preferably has an equivalent circle diameter of 15 μm or less and a length of 50 m or more. Moreover, a cross section is substantially polygonal shape, and can also be 15 micrometers or less on one side (Claim 10). Further, the cross-sectional shape may be a substantially star shape (claim 11).

前述のチタン長繊維においては、短辺1に対し、長辺比が2〜8.5倍の扁平な断面形状とすることもできる(請求項12)。また、前述のチタン長繊維においては、断面形状が長さ方向に略一定で続いており、表面形状が長さ方向に平滑であるものが好ましい(請求項13)。   In the above-mentioned titanium long fiber, it is also possible to have a flat cross-sectional shape with a long side ratio of 2 to 8.5 times with respect to the short side 1 (claim 12). Moreover, in the above-mentioned titanium long fiber, it is preferable that the cross-sectional shape continues substantially constant in the length direction and the surface shape is smooth in the length direction (Claim 13).

さらに前述のいずれのチタン長繊維においても、絡合または編組することで細胞培養担体の全体または一部を構成するものとすることができる(請求項14)。   Furthermore, in any of the above-mentioned titanium long fibers, the whole or a part of the cell culture carrier can be constituted by entanglement or braiding (claim 14).

また、前述のいずれのチタン長繊維においても、絡合または編組することで生体組織誘導型スカフォールドの全体または一部を構成するためのものとすることができる(請求項15)。さらに前述のいずれかのチタン長繊維においても、そのチタン長繊維を1本用い、絡合または編組することで生体組織誘導型スカフォールドを構成するものとすることもできる(請求項16)。なお、「スカフォールド」には、生体内に埋め込まれる「インプラント」も含まれる。   In addition, any of the above-mentioned titanium long fibers can be configured to constitute the whole or a part of the biological tissue-derived scaffold by entanglement or braiding (claim 15). Further, in any of the above-mentioned titanium long fibers, one of the titanium long fibers can be entangled or braided to constitute a biological tissue-inducing scaffold (claim 16). The “scaffold” includes an “implant” that is implanted in a living body.

本発明のチタン長繊維の製造法(請求項1)は、展性に優れた金属でコートし、縮径したチタン線を、あらかじめ500〜800℃で1〜10分間焼鈍してから集束伸線法により細く加工する。さらに[コート線の引っ張り強さ≦その金属の引っ張り強さ]を満たす条件で集束伸線加工を行うので、50m以上伸線加工しても断線しにくい。すなわち本発明者は、この条件を満たすことにより、「チタン線の塑性変形+弾性変形」以上に金属管が塑性変形するので、チタン線を断線させず、50m以上、長尺伸線できることを見出したのである。また、50m以上、とくに70m以上伸線加工することにより、医療などで利用しやすい長繊維を得ることができる。チタンは生体適合性が高いため、医療に多く用いられているが、チタン繊維の端部から発生する摩耗粉が周囲の軟組織に炎症反応を生起しやすい。そのため、医療に用いるチタン繊維はできるだけ端部が少ないもの、すなわち長い繊維と用いるのが好ましい。   The method for producing a titanium long fiber of the present invention (Claim 1) is a method of focusing wire drawing after annealing a titanium wire coated with a metal having excellent malleability and reduced in diameter at 500 to 800 ° C. for 1 to 10 minutes in advance. Finely processed by the method. Further, since the converging wire drawing is performed under the conditions satisfying [the tensile strength of the coated wire ≦ the tensile strength of the metal], it is difficult to break even if the wire drawing is performed for 50 m or more. That is, the present inventor has found that, by satisfying this condition, the metal tube is plastically deformed more than “plastic deformation + elastic deformation of the titanium wire”, so that the long wire can be drawn longer than 50 m without breaking the titanium wire. It was. Moreover, the long fiber which is easy to use by medical treatment etc. can be obtained by drawing at 50 m or more, especially 70 m or more. Titanium is widely used in medicine because of its high biocompatibility, but wear powder generated from the end of the titanium fiber tends to cause an inflammatory reaction in the surrounding soft tissue. Therefore, it is preferable to use titanium fibers used for medical treatment with those having as few ends as possible, that is, long fibers.

また、前記伸線加工では、金属管ごと70m以上、伸線するのが好ましい(請求項2)。人工歯根や生体組織培養用としてチタン長繊維を巻き付ける場合は、70m程度必要であるので、70m以上まで伸線することにより、各種の用途に適合させることができる。   In the wire drawing process, it is preferable to draw 70 m or more for each metal tube. When winding a titanium long fiber for artificial tooth roots or living tissue culture, about 70 m is required, and by drawing to 70 m or more, it can be adapted to various applications.

前記コート線を複数本束にして金属管に入れた後、伸線加工の前に、スエージング加工により減面率15〜25%まで縮径する場合(請求項3)は、塑性加工率を高く設定することができ、径方向への塑性加工を強く行うことができるため、チタン線を断線させることなく伸線加工による縮径が可能となる。さらに金属管とコート線との密着度も高くなる。それにより50m以上、さらに70m以上まで伸線しても、断線しない。なお、ここでいう減面率は、「[(元の断面積−加工後の断面積)/元の断面積]×100(%)」である。   When a plurality of coated wires are bundled and put into a metal tube, and before the wire drawing process, the surface reduction rate is reduced to 15 to 25% by swaging (Claim 3). Since it can be set high and the plastic working in the radial direction can be performed strongly, the diameter can be reduced by the drawing without breaking the titanium wire. Furthermore, the degree of adhesion between the metal tube and the coated wire is also increased. Thereby, even if it draws to 50 m or more and also 70 m or more, it does not break. The area reduction rate here is “[(original cross-sectional area−cross-sectional area after processing) / original cross-sectional area] × 100 (%)”.

前記金属管ごと複数本のコート線を伸線加工した後、酸で溶解する前に、圧延して異形断面とする場合(請求項4)は、圧延率を任意に設定することで、最終的に得られるチタン線の断面形状の縦横比を制御することができる。   After drawing a plurality of coated wires together with the metal tube and before rolling with an acid to form a deformed cross section (Claim 4), the rolling rate can be arbitrarily set to finally The aspect ratio of the cross-sectional shape of the titanium wire obtained can be controlled.

前記チタン線をコート材でコートする工程が、1本のチタン線を展性に優れた金属管に入れ、ついで[チタン線の引っ張り強さ≦その金属の引っ張り強さ]を満たすように伸線加工により縮径し、コート線とする場合(請求項5)は、径方向の塑性加工率を高く設定することができ、伸線するとき、断線することなく伸線することができる。それにより、それぞれのコート線を束にして集束伸線加工したとき、金属管と個々のコート線とが一体となってずれることなく伸線され、50m以上の長さまで伸線しても断線しない。   In the step of coating the titanium wire with a coating material, one titanium wire is put in a metal tube having excellent malleability and then drawn so as to satisfy [Tensile strength of titanium wire ≦ Tensile strength of the metal]. When the diameter is reduced by processing to form a coated wire (Claim 5), the plastic working rate in the radial direction can be set high, and the wire can be drawn without being disconnected when drawn. As a result, when focused wire drawing is performed with a bundle of the respective coated wires, the metal tube and the individual coated wires are drawn together without shifting, and even if they are drawn to a length of 50 m or more, they are not broken. .

本発明のコート線の製造方法(請求項6)は、1本のチタン線を単線用の金属管に入れた後、スエージング加工により減面率15〜25%まで縮径し、その後伸線加工を行うので、金属管とチタン線との密着度が高くなる。それにより、それぞれのコート線を束にして伸線加工したとき、金属管と個々のコート線とが一体となってずれることなく伸線され、50m以上、さらに70m以上の長さまで伸線しても、断線しないため、チタン長繊維を製造する中間成形品として適切である。   In the method for producing a coated wire of the present invention (Claim 6), a single titanium wire is put into a single wire metal tube, and then the diameter is reduced to 15 to 25% by a swaging process, and then the wire is drawn. Since the processing is performed, the adhesion between the metal tube and the titanium wire is increased. As a result, when the respective coated wires are bundled and drawn, the metal tube and the individual coated wires are drawn together without any deviation and drawn to a length of 50 m or more, and further to 70 m or more. However, since it is not disconnected, it is suitable as an intermediate molded product for producing titanium long fibers.

前記1本のチタン線を入れる金属管の外径がチタン線の外径の2〜6倍である場合(請求項7)は、金属管の厚さが厚いため、チタン長繊維を得るために伸線加工したとき、チタン線が金属管によって充分に保護され、破断しにくい。さらに生産性が高い。すなわち2倍未満の場合は、伸線後、断面形状の凹凸が大きすぎるため断線し、長尺化が困難である。また、6倍を超えると伸線しようとする集束線に対するチタン線の断面積率が極端に少なくなり、生産性が著しく低下する。   When the outer diameter of the metal tube into which the single titanium wire is placed is 2 to 6 times the outer diameter of the titanium wire (Claim 7), the thickness of the metal tube is thick, so that a titanium long fiber is obtained. When wire drawing is performed, the titanium wire is sufficiently protected by the metal tube and is not easily broken. Furthermore, productivity is high. That is, in the case of less than twice, since the unevenness of the cross-sectional shape is too large after wire drawing, it is disconnected and it is difficult to make the length longer. On the other hand, if it exceeds 6 times, the cross-sectional area ratio of the titanium wire with respect to the focused wire to be drawn is extremely reduced, and the productivity is remarkably lowered.

本発明のチタン長繊維(請求項8)は、前記いずれかの製造法によって製造された、円相当径が100μm以下で、長さ20m以上のチタン長繊維であるので、生体組織培養に用いるチタンウエブを構成するなど、医療用のチタン繊維として好適である。   The titanium long fiber of the present invention (Claim 8) is a titanium long fiber having an equivalent circle diameter of 100 μm or less and a length of 20 m or more produced by any one of the above production methods. It is suitable as a titanium fiber for medical use such as constituting a web.

このようなチタン長繊維において、円相当径が15μm以下で、長さ50m以上の場合(請求項9)は、医療用のチタン繊維としてさらに好適である。   In such a titanium long fiber, when the equivalent circle diameter is 15 μm or less and the length is 50 m or more (Claim 9), it is more suitable as a medical titanium fiber.

また、断面が略多角形状で、その一辺が15μm以下である場合(請求項10)は、チタン繊維同士あるいはチタン線を基材に溶接あるいは拡散接合する場合、接合強度が円形断面より高い。また、絡合させたときに、形状が安定する。なお、拡散接合とは、母材を密着させ、母材の融点以下の温度条件で、塑性変形をできるだけ生じない程度に加圧して接合面間に生ずる原子拡散を利用して接合する方法である。断面形状が略星形である場合(請求項11)も断面多角形の場合と同様の効果があり、しかも生産が容易である。   Further, when the cross section is substantially polygonal and one side thereof is 15 μm or less (claim 10), when the titanium fibers or the titanium wires are welded or diffusion bonded to the base material, the bonding strength is higher than that of the circular cross section. Moreover, the shape is stabilized when entangled. Diffusion bonding is a method in which a base material is brought into close contact, and is joined by utilizing atomic diffusion generated between joint surfaces by applying pressure to the extent that plastic deformation does not occur as much as possible under a temperature condition below the melting point of the base material. . When the cross-sectional shape is substantially a star (claim 11), the same effects as in the case of a polygonal cross-section are obtained, and the production is easy.

前記チタン長繊維において、短辺1に対し、長辺比が2〜8.5倍の扁平な断面形状を有する場合(請求項12)は、医療用のチタン線として一層好適である。さらに溶接あるいは拡散接合のときの接合強度を充分に確保することができ、また、チタン繊維間の空隙率を自在に調整することができるという利点がある。   When the long titanium fiber has a flat cross-sectional shape with a long side ratio of 2 to 8.5 times with respect to the short side 1 (Claim 12), it is more suitable as a titanium wire for medical use. Furthermore, there is an advantage that the bonding strength at the time of welding or diffusion bonding can be sufficiently secured, and the porosity between the titanium fibers can be freely adjusted.

前記チタン長繊維において、断面形状が長さ方向に略一定で続いており、表面形状が長さ方向に平滑である場合(請求項13)は、軸方向に引き抜くときの抵抗が少ない。そのため取り扱いが一層容易であり、編組する際、空隙率を一定にし易い。   In the titanium long fiber, when the cross-sectional shape is substantially constant in the length direction and the surface shape is smooth in the length direction (Claim 13), the resistance when drawn in the axial direction is small. Therefore, it is easier to handle and it is easy to keep the porosity constant when braiding.

前記いずれのチタン長繊維においても、絡合または編組することで細胞培養担体の全体または一部を構成するためのものである場合(請求項14)は、細胞培養の効率が高い。また、絡合させたとき、あるいは編組したときの接合強度を充分確保することができ、また、空隙率を調節しやすい。また、絡合や編組によって得られた細胞培養担体は、細胞培養の効率が高い。   In any of the above-mentioned titanium long fibers, when the whole or part of the cell culture carrier is constituted by entanglement or braiding (claim 14), the efficiency of cell culture is high. In addition, it is possible to ensure sufficient bonding strength when entangled or braided, and to easily adjust the porosity. In addition, the cell culture carrier obtained by entanglement or braiding has high cell culture efficiency.

前記いずれのチタン長繊維においても、絡合または編組することで生体組織誘導型スカフォールド(インプラントを含む)の全体または一部を構成するためのものである場合(請求項15)は、生体組織を効率よく誘導することができる。また、絡合させたとき、あるいは編組したときの接合強度を充分確保することができ、また、空隙率を調節しやすい。とくに1本のチタン長繊維を用い、絡合または編組することで生体組織誘導型スカフォールドを構成するものである場合は、得られたスカフォールドにチタン長繊維の端部が2個所しかないので、生体組織に炎症反応が生じにくい。また、絡合させたとき、あるいは編組したときの接合強度を充分確保することができ、空隙率を調節しやすい。   In any of the above-mentioned titanium long fibers, in order to constitute all or part of a biological tissue-derived scaffold (including an implant) by entanglement or braiding (claim 15), It can be guided efficiently. In addition, it is possible to ensure sufficient bonding strength when entangled or braided, and to easily adjust the porosity. In particular, when a living tissue induction type scaffold is constructed by entanglement or braiding using one titanium long fiber, the end of the titanium long fiber has only two ends in the obtained scaffold. Inflammatory reactions are unlikely to occur in tissues. Further, it is possible to sufficiently secure the bonding strength when entangled or braided, and to easily adjust the porosity.

つぎに図面を参照しながら本発明のチタン繊維およびその製造法を説明する。図1aは本発明のチタン長繊維の製造法の一実施形態を示す部分工程図、図1bは図1aの工程による断面形状の変化を示す部分工程図、図2aは図1aの工程の後工程を示す部分工程図、図2bは図1bの後工程を示す部分工程図、図3は図1の第6工程で得られた集束線の拡大断面図、図4は図3の集束線を酸処理した後のチタン長繊維の拡大斜視図、図5は本発明のチタン長繊維の製造法の他の実施形態を示す部分工程図、図6は図5の第9工程で得られる扁平な集束線の拡大断面図、図7は図6の扁平な集束線を酸処理した後のチタン長繊維の拡大斜視図、図8は本発明の実施例における集束線の断面を示す顕微鏡写真、図9は図8の要部拡大顕微鏡写真、図10は本発明のチタン長繊維の一実施例を示す顕微鏡写真、図11は本発明の他の実施例における集束線の断面を示す顕微鏡写真、図12は図11の要部拡大顕微鏡写真である。   Next, the titanium fiber of the present invention and the production method thereof will be described with reference to the drawings. FIG. 1a is a partial process diagram illustrating an embodiment of the method for producing a titanium long fiber of the present invention, FIG. 1b is a partial process diagram illustrating a change in cross-sectional shape according to the process of FIG. 1a, and FIG. 2a is a subsequent process of the process of FIG. 2b is a partial process diagram showing the subsequent process of FIG. 1b, FIG. 3 is an enlarged cross-sectional view of the focusing line obtained in the sixth process of FIG. 1, and FIG. FIG. 5 is a partial process diagram showing another embodiment of the method for producing a titanium long fiber of the present invention, and FIG. 6 is a flat converging obtained in the ninth step of FIG. FIG. 7 is an enlarged perspective view of the long titanium fiber after the acid treatment of the flat converging line in FIG. 6, FIG. 8 is a micrograph showing a cross section of the converging line in the embodiment of the present invention, and FIG. Is an enlarged micrograph of the main part of FIG. 8, FIG. 10 is a microphotograph showing one embodiment of the titanium long fiber of the present invention, and FIG. Micrograph showing a cross section of the focused beam in another embodiment, and FIG. 12 is an enlarged micrograph of FIG.

図1aおよび図2aに示すチタン長繊維の製造法では、まず、チタン線10を単線用の金属管11に挿入する第1工程S1を行い、ついで得られた金属管入りのチタン線12をスエージング加工して外径をいくらか縮径し(第2工程S2)、さらに伸線加工して径を0.1〜1mmまで縮径する(第3工程S3)。それによりチタン細線13を金属製の被覆材14でコートした被覆線材(コート線)15が得られる。   In the method for producing a titanium long fiber shown in FIGS. 1a and 2a, first, the first step S1 of inserting the titanium wire 10 into the metal tube 11 for single wire is performed, and then the titanium wire 12 containing the metal tube obtained is scanned. Aging is performed to reduce the outer diameter somewhat (second step S2), and then the wire is further drawn to reduce the diameter to 0.1 to 1 mm (third step S3). As a result, a coated wire (coated wire) 15 obtained by coating the titanium fine wire 13 with the metal coating material 14 is obtained.

上記の工程において素材となるチタン線10は、径0.5〜4mm程度の金属チタン(純チタン)が用いられる。ただしα合金、β合金、α−β合金など、チタンを主体とする合金(チタン合金)を使用することもできる。本明細書において「チタン線」とは、これらの両方を含む。単線用の金属管11の素材としては、軟鋼、アルミニウム、ステンレスなどの展性に優れた金属で、[チタン線の引っ張り強さ≦その金属の引っ張り強さ]を満たすものが用いられる。軟鋼の場合は炭素含有量が0.05〜0.3wt%程度が用いられる。   The titanium wire 10 used as the material in the above process is made of titanium metal (pure titanium) having a diameter of about 0.5 to 4 mm. However, alloys (titanium alloys) mainly composed of titanium, such as α alloys, β alloys, α-β alloys, and the like can also be used. In this specification, “titanium wire” includes both of them. As a material of the metal tube 11 for single wires, a metal excellent in malleability such as mild steel, aluminum, and stainless steel satisfying [Tensile strength of titanium wire ≦ Tensile strength of the metal] is used. In the case of mild steel, a carbon content of about 0.05 to 0.3 wt% is used.

金属管11の内径はチタン線10の外径とほぼ同一で、チタン線10を容易に挿入できる程度であればよい。金属管11の外径は、チタン線10の径の2〜6倍程度が好ましく、さらに3〜5倍程度が一層好ましい。すなわち金属管11の厚さはチタン線の径の0.5〜2.5倍程度、より好ましくは1〜2倍程度である。金属管11の厚さがチタン線10の径の0.5倍未満の場合は、薄肉となり、チタン線の断面形状の凹凸が大きくなるため断線し、長尺化できない。また、金属管11の厚さがチタン線10の径の3倍を超えると、チタン線の断面積が小さ過ぎて生産効率(歩留まり)が低くなる。   The inner diameter of the metal tube 11 is almost the same as the outer diameter of the titanium wire 10, and it is sufficient that the titanium wire 10 can be easily inserted. The outer diameter of the metal tube 11 is preferably about 2 to 6 times the diameter of the titanium wire 10, and more preferably about 3 to 5 times. That is, the thickness of the metal tube 11 is about 0.5 to 2.5 times the diameter of the titanium wire, more preferably about 1 to 2 times. When the thickness of the metal tube 11 is less than 0.5 times the diameter of the titanium wire 10, the metal tube 11 is thin and the cross-sectional shape of the titanium wire becomes large, so the wire is disconnected and cannot be elongated. On the other hand, if the thickness of the metal tube 11 exceeds three times the diameter of the titanium wire 10, the cross-sectional area of the titanium wire is too small and the production efficiency (yield) becomes low.

第2工程S2で用いるスエージング加工は金属を工具で径方向に加圧し、塑性変形して縮径(圧縮成形)させる鍛造加工の一種であり、公知のスエージングマシンを用い、金属管11をダイスを用いて上下方向から、あるいは上下左右方向から、さらに全周から衝撃的な負荷を与えて圧延することにより行う。軸方向に引っ張る伸線加工とは異なり、金属管とチタン線とを強く密着させることができる。圧延は、元の径の0.7倍(減面率約25%)から0.95倍(減面率約15%)程度になるまで1〜10回行うのが好ましい。0.7倍未満まで強く圧延するとチタン線が断線し、0.95倍を超える程度の弱い圧延の場合は伸線加工のときにチタン線と金属間の間にずれを生ずるおそれがある。   The swaging process used in the second step S2 is a kind of forging process in which a metal is pressed in a radial direction with a tool and plastically deformed to reduce the diameter (compression molding). The metal tube 11 is formed using a known swaging machine. Using a die, rolling is performed from the up-down direction or from the up-down, left-right direction, and by applying an impact load from the entire circumference. Unlike the wire drawing which is pulled in the axial direction, the metal tube and the titanium wire can be strongly adhered. The rolling is preferably performed 1 to 10 times until the original diameter is 0.7 times (about 25% area reduction) to 0.95 times (about 15% area reduction). If it is strongly rolled to less than 0.7 times, the titanium wire is broken, and if it is weakly rolled to a degree exceeding 0.95 times, there is a possibility that a deviation occurs between the titanium wire and the metal during wire drawing.

第3工程S3の伸線加工では、外径が0.03〜0.3倍になるまで、1〜60回程度、たとえば丸穴ダイスなどの伸線ダイスを用いて伸線する。使用する潤滑剤は二硫化モリブデン入りの「コーシン」など、公知の潤滑剤を用いることができる。単独線の伸線加工により、細径化した被覆線材15が得られる。なお、必要に応じて、スエージング加工の後、あるいはスエージング加工の途中、あるいは伸線加工の途中で焼鈍してもよい。   In the wire drawing in the third step S3, the wire is drawn using a wire drawing die such as a round hole die, for example, about 1 to 60 times until the outer diameter becomes 0.03 to 0.3 times. As the lubricant to be used, a known lubricant such as “Koshin” containing molybdenum disulfide can be used. The coated wire 15 having a reduced diameter is obtained by drawing a single wire. If necessary, annealing may be performed after swaging, in the middle of swaging, or in the middle of wire drawing.

ついで細径化した被覆線材15を第4工程S4の熱処理工程において500〜800℃、1〜10分間焼鈍し、軟化させる。この焼鈍は、第2工程S2および第3工程S3で生じた加工硬化を軟化させるためであるが、後述する集束伸線中に加工硬化しても、その集束伸線加工で用いる金属管(外層材)16の硬度より低い硬度が維持される程度まで、具体的には[チタン線の引っ張り強さ≦その金属の引っ張り強さ]を満たす程度まで軟化させる必要がある。すなわち、被覆線材15は細径加工により常に径方向と軸方向に塑性加工を受けるので、外層材16の硬さより被覆線材15の硬さが高い場合は、塑性伸びに対して弾性伸びが増加し、伸線加工中に断線を生じ、長尺で生産することができなくなるからである。   Next, the coated wire rod 15 having a reduced diameter is annealed and softened at 500 to 800 ° C. for 1 to 10 minutes in the heat treatment step of the fourth step S4. This annealing is for softening the work hardening generated in the second step S2 and the third step S3. However, even if work hardening is performed during the focused drawing described later, the metal tube (outer layer) used in the focused drawing process is used. Material) It is necessary to soften to a degree that the hardness lower than 16 is maintained, specifically, to a degree satisfying [Tensile strength of titanium wire ≦ Tensile strength of the metal]. That is, since the coated wire 15 is always subjected to plastic processing in the radial direction and the axial direction by the small diameter processing, when the hardness of the coated wire 15 is higher than the hardness of the outer layer material 16, the elastic elongation increases relative to the plastic elongation. This is because a wire breakage occurs during the drawing process, making it impossible to produce a long product.

たとえば集束伸線加工で用いる外層材16が軟鋼パイプの場合は、600〜700℃の炉に3〜8分程度入れて焼鈍するのが好ましい。このときの焼鈍が充分でなく、チタン線が金属管より硬くなると、途中で断線を生ずる。また、焼鈍が過剰で、温度が800℃を超え、焼鈍の時間が10分を超える場合は、金属管とチタン線の合金が生ずるため、好ましくない。たとえば金属管として軟鋼を用いる場合は、前述のように短時間、低温での焼鈍にしてFe−Ti合金層の生成を抑制するのが好ましい。   For example, when the outer layer material 16 used in the converging wire drawing is a mild steel pipe, it is preferable to anneal in a furnace at 600 to 700 ° C. for about 3 to 8 minutes. If the annealing at this time is not sufficient and the titanium wire becomes harder than the metal tube, disconnection occurs in the middle. Further, when the annealing is excessive, the temperature exceeds 800 ° C., and the annealing time exceeds 10 minutes, an alloy of a metal tube and a titanium wire is generated, which is not preferable. For example, when using mild steel as the metal tube, it is preferable to suppress the formation of the Fe—Ti alloy layer by annealing at a low temperature for a short time as described above.

焼鈍した被覆線材15は、第5工程S5において多数本束ねて外層材16に挿入する。外層材16となる金属管は、単線の被覆材と同様の、軟鋼、アルミニウム、ステンレス鋼などの金属、とくに[コート線の引っ張り強さ≦その金属の引っ張り強さ]を満たす金属製の管を用いる。外層材16の内径は被覆線材15の本数によって異なるが、被覆線材15の束を挿入できる程度で、あまり隙間ができない程度が好ましい。外層材16の外径は、内径の1.0〜1.5倍程度が好ましい。外層材16が厚すぎると生産性が低下し、薄すぎると断線を生じたり、酸で熔解するときにチタン繊維同士を分離できなくなったりするからである。   In the fifth step S <b> 5, many annealed coated wire materials 15 are bundled and inserted into the outer layer material 16. The metal pipe used as the outer layer material 16 is a metal pipe that satisfies the [tensile strength of the coated wire ≦ the tensile strength of the metal], such as soft steel, aluminum, and stainless steel, similar to the coating material of the single wire. Use. The inner diameter of the outer layer material 16 varies depending on the number of the covered wire 15, but it is preferable that the bundle of the covered wire 15 can be inserted and that there is not much gap. The outer diameter of the outer layer material 16 is preferably about 1.0 to 1.5 times the inner diameter. This is because if the outer layer material 16 is too thick, the productivity is lowered, and if it is too thin, disconnection occurs, or titanium fibers cannot be separated from each other when melted with an acid.

被覆線材15を挿入した外層材16は、始めにスエージングを行なう(第6工程S6)。第6工程S6のスエージング加工では、第2工程S2のスエージング加工と同様に、公知のスエージングマシンを用い、ダイスを用いて上下方向から、あるいは上下左右方向から衝撃的な負荷を与えて圧延する。圧延は単線のスエージング加工と同様に、元の径の0.7倍(減面率約25%)から0.95倍(減面率約15%)程度になるまで1〜10回行うのが好ましい。0.7倍未満まで強く圧延するとチタン線が断線し、0.95倍を超える程度の弱い圧延の場合はチタン線と金属間の間にずれを生ずる。   The outer layer material 16 into which the covered wire 15 is inserted is first swaged (sixth step S6). In the swaging process in the sixth step S6, similarly to the swaging process in the second step S2, a known swaging machine is used, and a shock is applied from the vertical direction or from the vertical and horizontal directions using a die. Roll. Rolling is performed 1 to 10 times until the original diameter becomes 0.75 (area reduction rate of about 25%) to 0.95 times (area reduction rate of about 15%), as in the case of single wire swaging. Is preferred. When the steel sheet is strongly rolled to less than 0.7 times, the titanium wire is broken, and in the case of weak rolling that exceeds 0.95 times, a deviation occurs between the titanium wire and the metal.

ついで図2の第7工程S7で集束伸線加工を行う。第7工程S7の集束伸線加工では、外径が0.03〜0.1倍になるまで、15〜60回程度、たとえば丸穴ダイスなどの伸線ダイスを用いて伸線する。使用する潤滑剤は二硫化モリブデン入りの「コーシン」など、公知の潤滑剤を用いることができる。集束伸線加工により、チタン線は所望の太さ、たとえば円相当径が4〜100μmになるまで、より好ましくは、円相当径が15μm以下になるまで細径化される。長さは50m以上、とくに70m以上になるまで伸線する。   Subsequently, the focused wire drawing is performed in the seventh step S7 of FIG. In the focused wire drawing process of the seventh step S7, the wire is drawn using a wire drawing die such as a round hole die about 15 to 60 times until the outer diameter becomes 0.03 to 0.1 times. As the lubricant to be used, a known lubricant such as “Koshin” containing molybdenum disulfide can be used. By focusing and drawing, the titanium wire is thinned to a desired thickness, for example, an equivalent circle diameter of 4 to 100 μm, more preferably an equivalent circle diameter of 15 μm or less. The wire is drawn until the length is 50 m or more, particularly 70 m or more.

集束伸線加工により、図3に示すように、被覆材14の内部に細径化されたチタン長繊維17が詰まった状態の集束線18が得られる。被覆材14はほとんど継ぎ目が見えないが、略六角形状に加工されている。チタン長繊維17は、元の円形断面が変形されて表面に凹凸が見られ、略星形になっているが、上下の寸法と左右の寸法がほぼ同程度であり、ほぼ円形に内接する形状である。   As shown in FIG. 3, the converging wire 18 provides a converging wire 18 in a state in which the titanium long fibers 17 having a small diameter are packed inside the coating material 14. The covering material 14 has almost no visible seam, but is processed into a substantially hexagonal shape. The titanium long fiber 17 is deformed from the original circular cross section and has irregularities on the surface, and has a substantially star shape. However, the upper and lower dimensions are substantially the same as the left and right dimensions, and the shape is inscribed in a substantially circular shape. It is.

ついで得られた集束線18を酸処理する第8工程S8を行う。酸処理には、単線の被覆材14および集束線18の外層材16、さらにチタンと被覆材14あるいは外層材16との合金層を溶解し、チタン長繊維17を溶解しない酸を用いる。被覆材14および外層材16が軟鋼の場合は20〜50%に希釈した硝酸水溶液(希硝酸)などが用いられる。ただし硫酸ないし希硫酸などを用いることもできる。硝酸水溶液などは溶解槽に入れておき、集束線をその溶解槽に送り込み、順に漬けていく。漬ける時間は2〜15分程度であり、その後、分離したチタン繊維の束を水洗、乾燥させてボビンに巻き取る。   Next, an eighth step S8 is performed in which the obtained focusing line 18 is acid-treated. For the acid treatment, an acid that dissolves the single-layer coating material 14 and the outer layer material 16 of the focusing wire 18, and the alloy layer of titanium and the coating material 14 or the outer layer material 16 but does not dissolve the titanium long fibers 17 is used. When the covering material 14 and the outer layer material 16 are mild steel, an aqueous nitric acid solution (dilute nitric acid) diluted to 20 to 50% is used. However, sulfuric acid or dilute sulfuric acid can also be used. Nitric acid aqueous solution or the like is put in a dissolution tank, and a focusing line is sent to the dissolution tank and soaked in order. The soaking time is about 2 to 15 minutes, and then the separated bundle of titanium fibers is washed with water, dried and wound on a bobbin.

酸処理により被覆材14および外層材16が溶解されることにより、図4に示すようなチタン長繊維17が得られる。それぞれのチタン長繊維17は、図3の周囲に凹凸が形成された円あるいは星形の断面形状を有し、同一の断面形状で軸方向に延び、50m以上、とくに70m以上まで伸線する。このとき、表面形状は長さ方向に滑らかである。チタン長繊維17の長さは、元のチタン線10の長さが1000mmの場合は、伸線加工などにより1000〜10000倍に伸びて、約1000m程度、長いものでは1000mを超えるものも得ることができる。   When the covering material 14 and the outer layer material 16 are dissolved by the acid treatment, a titanium long fiber 17 as shown in FIG. 4 is obtained. Each of the titanium long fibers 17 has a circular or star-shaped cross-section with irregularities formed in the periphery of FIG. 3, extends in the axial direction with the same cross-sectional shape, and is drawn to 50 m or more, particularly 70 m or more. At this time, the surface shape is smooth in the length direction. The length of the titanium long fiber 17 is about 1000 m when the original titanium wire 10 has a length of 1000 mm and is stretched about 1000 to 10000 times by wire drawing or the like. Can do.

上記の製造法で得られるチタン長繊維17は、従来知られているチタン繊維の太さのうち、最小径に近く、しかも1000m以上と長いため、束ねた長繊維、あるいはチタン繊維を絡合したウエブ、不織布あるいは織布として医療材料などとして好適に用いることができる。絡合したウエブの場合は、真空焼結することにより、あるいは拡散接合することにより、交差部分で接合させ、所望の三次元構造を備えた多孔質のウエブとすることができる。不織布あるいは織布とする場合は、1枚だけ用いてもよく、重ねて多層の形態とすることもできる。いずれの場合も、きわめて細いチタン長繊維ながら体積あるいは面積が大きく、強度が高いウエブや不織布、織布をうることができる。   Titanium long fiber 17 obtained by the above manufacturing method is close to the minimum diameter among the conventionally known titanium fiber thicknesses and is as long as 1000 m or more, and therefore, bundled long fibers or titanium fibers are entangled. It can be suitably used as a medical material as a web, non-woven fabric or woven fabric. In the case of an entangled web, it is possible to obtain a porous web having a desired three-dimensional structure by joining at an intersection by vacuum sintering or diffusion bonding. When a non-woven fabric or a woven fabric is used, only one piece may be used, or a multilayered form may be formed. In any case, it is possible to obtain a web, a nonwoven fabric, or a woven fabric having a large volume or area and high strength while being an extremely thin titanium long fiber.

チタン繊維を医療用生体適合用インプラントなどに使用する場合、チタン線の径が細径化されるほど長くなり、インプラントにおける繊維の端部が少なくなる。チタン繊維をインプラントに用いる場合、端部が原因で炎症反応を生起するため、端部が少ない方が好ましく、1本のチタン繊維でインプラントをまかなうことができれば最も好ましい。チタン繊維の不織布からなる生体培養用のセル(5×5mm)を1本の線を絡合して形成する場合、外径8μm、空隙率87%とすると、76mのチタン線が必要になる。このことからも細線で70m以上の長尺化が好ましいことが分かる。ちなみに100μm程度のチタン線でよい場合は、空隙率87%で、0.5mで足りる。   When titanium fibers are used for medical biocompatible implants and the like, the diameter of the titanium wire becomes longer as the diameter of the titanium wire is reduced, and the ends of the fibers in the implant are reduced. When titanium fibers are used for the implant, an inflammatory reaction is caused by the end portion. Therefore, it is preferable that the end portion is small, and it is most preferable if the implant can be covered with one titanium fiber. When a cell for living body culture (5 × 5 mm) made of a non-woven fabric of titanium fibers is formed by tangling one wire, a 76 m titanium wire is required if the outer diameter is 8 μm and the porosity is 87%. From this, it can be seen that a length of 70 m or more with a thin wire is preferable. Incidentally, when a titanium wire of about 100 μm is sufficient, a porosity of 87% is sufficient and 0.5 m is sufficient.

さらにチタン長繊維17を溶解直後に捻り加工することにより、チタン長繊維の撚り線ないしワイヤを形成することができ、その場合も繊維長が長いため、繊維くずが分離するおそれが少なく、引っ張り強度が高い撚り線を得ることができる。   Further, by twisting the titanium long fiber 17 immediately after melting, a twisted wire or wire of the titanium long fiber can be formed. In this case as well, since the fiber length is long, there is little risk of separation of fiber, and the tensile strength A high stranded wire can be obtained.

また、チタン長繊維は、断面形状では表面に凹凸があるが、長手方向には平滑である。そのため、繊維同士が滑りやすく、多数本のチタン長繊維を束ねたり、ウエブに加工したり、織布あるいは不織布に加工する場合の取り扱いが容易である。また、断面形状が均一であるため、強度などの物理的性質が長手方向に渡ってほぼ均一である。   Further, the titanium long fibers have irregularities on the surface in the cross-sectional shape, but are smooth in the longitudinal direction. Therefore, the fibers are slippery, and handling is easy when a large number of titanium long fibers are bundled, processed into a web, or processed into a woven or non-woven fabric. Further, since the cross-sectional shape is uniform, physical properties such as strength are substantially uniform over the longitudinal direction.

図5は、図2の集束伸線加工(第7工程S7)の後、集束線18を酸処理工程(第8工程S8)の前に、ダイスあるいはローラによって上下から圧延する圧延工程(第9工程S9)を施す製造法を示している。図5の場合は集束線20の幅が厚さの4〜28倍程度になるように圧延している。圧延加工は2回程度行う。幅が厚さの28倍を超えるまで圧延すると、割れが生じたり、チタン長繊維が断線する問題がある。   FIG. 5 shows a rolling process (ninth step) in which the converging wire 18 is rolled from above and below by a die or a roller after the converging wire drawing process (seventh step S7) in FIG. 2 and before the acid treatment step (eighth step S8). The manufacturing method which performs process S9) is shown. In the case of FIG. 5, rolling is performed so that the width of the focusing line 20 is about 4 to 28 times the thickness. The rolling process is performed about twice. If rolling is performed until the width exceeds 28 times the thickness, there is a problem that cracking occurs or the titanium long fibers are disconnected.

このように圧延加工を施すと、図6に示すようにそれぞれの被覆材14およびチタン長繊維21も扁平に押し潰される。そのため、酸処理工程(第8工程8)を施すと、図7に示すような扁平な断面形状のチタン長繊維21を得ることができる。   When the rolling process is performed in this manner, the respective covering materials 14 and the titanium long fibers 21 are also flattened as shown in FIG. Therefore, when the acid treatment step (eighth step 8) is performed, a long titanium fiber 21 having a flat cross section as shown in FIG. 7 can be obtained.

図7の扁平なチタン長繊維21は、ウエブに加工したり、真空焼結や拡散接合などで不織布あるいは織布にする場合に、チタン繊維同士の接合力強化あるいは表面積確保による細胞の定着率向上という効果がある。また、撚り線にする場合も柔軟になり、かつ、表面積を確保できるので、細胞の定着率を向上させる効果がある。さらにウエブなどにするほか、束ねて人工歯根やインプラントなどの医療材料にすることもできる。   The flat titanium long fibers 21 shown in FIG. 7 improve the cell fixing rate by strengthening the bonding force between titanium fibers or securing the surface area when processed into a web or made into a nonwoven fabric or woven fabric by vacuum sintering or diffusion bonding. There is an effect. Moreover, since it becomes flexible and can ensure a surface area also when making it a strand wire, there exists an effect which improves the fixing rate of a cell. In addition to webs, they can be bundled into medical materials such as artificial tooth roots and implants.

図5の場合は単純に上下に圧延する場合を示したが、たとえば一旦平坦にした後、さらに湾曲させたり波形などに圧延することにより、酸で溶解した後に種々の断面形状のチタン繊維を得ることができる。また、平坦に圧延せず、始めから湾曲状あるいは波形状に圧延することもできる。いずれの場合も医療材料に用いるためウエブなどに加工したとき、立体構造が複雑になり、空隙率を高めるなどの効果がある。   In the case of FIG. 5, the case of simply rolling up and down was shown, but after flattening, for example, by further bending or rolling into a corrugated shape, etc., titanium fibers having various cross-sectional shapes are obtained after being dissolved with acid. be able to. Moreover, it can also be rolled into a curved shape or a wave shape from the beginning without rolling flatly. In either case, since it is used as a medical material, when it is processed into a web or the like, the three-dimensional structure becomes complicated, and the void ratio is increased.

[実施例1]外径:0.8mm、材質:純チタン 、長さ1000mmのチタン線を、外径3.4mm、内径0.8mm、カーボン量:0.089wt%の軟鋼パイプを準備した。ついでチタン線を軟鋼パイプに挿入し、スエージングマシンを用いてスエージング加工を施した。このとき、チタン線は外径0.56mmまで縮径されていた。スエージング加工後は、軟鋼パイプの引張り強さは656.5N/mm2、であり、チタン線の引張り強さは696.3N/mm2であった。得られた被覆チタン線を伸線ダイス(丸穴ダイス)を用いて外径0.273mmまで冷間による伸線加工を施した。 [Example 1] A mild steel pipe having an outer diameter of 0.8 mm, a material: pure titanium, a titanium wire having a length of 1000 mm, an outer diameter of 3.4 mm, an inner diameter of 0.8 mm, and a carbon content of 0.089 wt% was prepared. The titanium wire was then inserted into a mild steel pipe and swaging was performed using a swaging machine. At this time, the titanium wire was reduced in diameter to 0.56 mm. After the swaging process, the tensile strength of the mild steel pipe was 656.5 N / mm 2 and the tensile strength of the titanium wire was 696.3 N / mm 2 . The obtained coated titanium wire was cold-drawn to an outer diameter of 0.273 mm using a drawing die (round hole die).

得られた被覆線材を650℃で5分間、熱処理(焼鈍)した。さらに得られた被覆線材を170本束ねて前述と同一の材料からなる外径6.0mm、内径4.0mm、長さ2000mmの軟鋼パイプに挿入し、前述と同様のスエージング加工を行い、外径約3.0mmまで細径化した。さらに前述と同様の伸線加工により、外径0.71mmまで伸線加工した。得られた集束線の断面の写真を図8に、その拡大写真を図9にそれぞれ示す。   The obtained coated wire was heat-treated (annealed) at 650 ° C. for 5 minutes. Further, 170 obtained coated wires were bundled and inserted into a mild steel pipe made of the same material as described above and having an outer diameter of 6.0 mm, an inner diameter of 4.0 mm, and a length of 2000 mm. The diameter was reduced to about 3.0 mm. Furthermore, it was drawn to an outer diameter of 0.71 mm by the same drawing process as described above. A photograph of the cross section of the obtained focusing line is shown in FIG. 8, and an enlarged photograph thereof is shown in FIG.

ついで得られた集束線を20%の硝酸水溶液で溶解し、若干生成したFe−Ti合金層および外層の軟鋼を除去し、外径約8μmの純チタン長繊維を得た。得られた純チタン長繊維の顕微鏡写真を図10に示す。純チタン長繊維の長さは128mであった。途中で破断している純チタン長繊維は1本もなかった。   Subsequently, the obtained focused line was dissolved in a 20% nitric acid aqueous solution, and the slightly formed Fe—Ti alloy layer and the outer mild steel were removed to obtain pure titanium long fibers having an outer diameter of about 8 μm. A micrograph of the obtained pure titanium long fiber is shown in FIG. The length of the pure titanium long fiber was 128 m. None of the pure titanium long fibers broke along the way.

[実施例2]実施例1と同一の方法で集束線を形成し、幅1.853mm、厚さ0.175mmとなるように圧延加工した。圧延した集束線の断面を図11に、その拡大写真を図12にそれぞれ示す。これを実施例1と同様の硝酸水溶液で溶解し、軟鋼をFe−Ti合金層および外層の軟鋼を除去し、幅約10μm、厚さ約2μmの扁平な純チタン長繊維を得た。集束純チタン長繊維の長さは134mであった。   Example 2 A converging line was formed by the same method as in Example 1, and rolled so as to have a width of 1.853 mm and a thickness of 0.175 mm. FIG. 11 shows a cross section of the rolled focusing line, and FIG. 12 shows an enlarged photograph thereof. This was dissolved in the same nitric acid aqueous solution as in Example 1, and the mild steel was removed from the Fe—Ti alloy layer and the outer mild steel to obtain flat pure titanium long fibers having a width of about 10 μm and a thickness of about 2 μm. The length of the focused pure titanium long fiber was 134 m.

[比較例1]焼鈍加工を施さないほかは実施例1と同様の方法で純チタン長繊維を作成した。しかし得られたチタン長繊維はすべて15〜20m程度で破断しており、長尺で生産できないことが分かった。   [Comparative Example 1] Pure titanium filaments were prepared in the same manner as in Example 1 except that annealing was not performed. However, it was found that all of the obtained titanium long fibers were broken at about 15 to 20 m and could not be produced in a long length.

[比較例2]被覆材として外径0.9mm、内径0.8mmの軟鋼を用いたほかは、実施例1と同様にして純チタン長繊維を作成した。しかし得られたチタン長繊維は長さ5〜15m程度で破断しているものが88%以上であり、長尺で生産できないことが分かった。   [Comparative Example 2] Pure titanium filaments were prepared in the same manner as in Example 1 except that mild steel having an outer diameter of 0.9 mm and an inner diameter of 0.8 mm was used as the coating material. However, it was found that the obtained titanium long fibers had a length of about 5 to 15 m and were broken by 88% or more, and could not be produced long.

図1aは本発明のチタン長繊維の製造法の一実施形態を示す部分工程図、図1bは図1aの工程による断面形状の変化を示す部分工程図である。FIG. 1a is a partial process diagram showing an embodiment of a method for producing a titanium long fiber of the present invention, and FIG. 1b is a partial process diagram showing a change in cross-sectional shape by the process of FIG. 1a. 図2aは図1aの工程の後工程を示す部分工程図、図2bは図1bの後工程を示す部分工程図である。FIG. 2a is a partial process diagram showing a post process of the process of FIG. 1a, and FIG. 2b is a partial process diagram showing a post process of FIG. 1b. 図1の第6工程で得られた集束線の拡大断面図である。It is an expanded sectional view of the focusing line obtained at the 6th process of FIG. 図3の集束線を酸処理した後のチタン長繊維の拡大斜視図である。FIG. 4 is an enlarged perspective view of a titanium long fiber after acid treatment of the focusing line in FIG. 3. 本発明のチタン長繊維の製造法の他の実施形態を示す部分工程図である。It is a partial process figure which shows other embodiment of the manufacturing method of the titanium long fiber of this invention. 図5の第9工程で得られる扁平な集束線の拡大断面図である。It is an expanded sectional view of the flat converging line obtained at the 9th process of FIG. 図6の扁平な集束線を酸処理した後のチタン長繊維の拡大斜視図である。It is an expansion perspective view of the titanium long fiber after acid-treating the flat focusing line of FIG. 本発明の実施例における集束線の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of the focusing line in the Example of this invention. 図8の要部拡大顕微鏡写真である。It is a principal part enlarged micrograph of FIG. 本発明のチタン長繊維の一実施例を示す顕微鏡写真である。It is a microscope picture which shows one Example of the titanium long fiber of this invention. 本発明の他の実施例における集束線の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of the focusing line in the other Example of this invention. 図11の要部拡大顕微鏡写真である。It is a principal part enlarged micrograph of FIG.

符号の説明Explanation of symbols

10 チタン線
11 金属管
12 金属管入りチタン線
13 チタン細線
14 被覆材
15 被覆線材
16 外層材
17 チタン長繊維
18 集束線
20 扁平な集束線
21 扁平なチタン長繊維
DESCRIPTION OF SYMBOLS 10 Titanium wire 11 Metal tube 12 Titanium wire containing metal tube 13 Titanium thin wire 14 Coating material 15 Covering wire material 16 Outer layer material 17 Titanium long fiber 18 Focusing wire 20 Flat focusing wire 21 Flat titanium long fiber

Claims (16)

金属チタンまたは金属チタンを主体とする合金材からなるチタン線を展性に優れた金属からなるコート材でコートして縮径し、
得られたコート線を500〜800℃で1〜10分間焼鈍し、
焼鈍したコート線を複数本束にして、展性に優れた金属管に入れ、
ついで
[コート線の引っ張り強さ≦金属管の引っ張り強さ]
を満たすようにして金属管ごと50m以上伸線加工し、
ついで金属管およびコート材を酸で溶解除去する、
チタン長繊維の製造法。
Titanium wire made of metal titanium or an alloy material mainly composed of metal titanium is coated with a coating material made of a metal having excellent malleability to reduce the diameter,
The obtained coated wire was annealed at 500 to 800 ° C. for 1 to 10 minutes,
Multiple annealed coated wires are bundled into a metal tube with excellent malleability,
Next, [Tensile strength of coated wire ≤ Tensile strength of metal tube]
The wire is drawn by 50m or more together with the metal tube,
Next, the metal tube and the coating material are dissolved and removed with an acid.
Production method of titanium long fiber.
前記伸線加工のとき、金属管ごと70m以上、伸線する請求項1記載のチタン長繊維の製造法。   The method for producing a titanium long fiber according to claim 1, wherein at the time of the wire drawing, the metal tube is drawn by 70 m or more. 前記コート線を複数本束にして金属管に入れた後、伸線加工の前に、スエージング加工により減面率15〜25%まで縮径する請求項1記載のチタン長繊維の製造法。   The method for producing a titanium long fiber according to claim 1, wherein a plurality of the coated wires are bundled and placed in a metal tube, and before diameter drawing, the diameter is reduced to 15 to 25% by a swaging process. 前記金属管ごと複数本のコート線を伸線加工した後、酸で溶解する前に、圧延して異形断面とする請求項1記載のチタン長繊維の製造法。   2. The method for producing a titanium long fiber according to claim 1, wherein a plurality of coated wires are drawn together with the metal tube and then rolled into an irregular cross section before being melted with an acid. 前記チタン線をコート材でコートする工程が、1本のチタン線を展性に優れた単線用の金属管に入れ、
ついで、
[チタン線の引っ張り強さ≦その金属の引っ張り強さ]
を満たすようにして伸線加工により縮径し、コート線とする請求項1記載のチタン長繊維の製造法。
The step of coating the titanium wire with a coating material includes putting one titanium wire into a single-wire metal tube excellent in malleability,
Next,
[Tensile strength of titanium wire ≤ Tensile strength of the metal]
The method for producing a titanium continuous fiber according to claim 1, wherein the diameter is reduced by wire drawing so as to satisfy the above condition to obtain a coated wire.
1本のチタン線を単線用の金属管に入れた後、スエージング加工により減面率15〜25%まで縮径し、ついで伸線加工するコート線の製造法。   A method for producing a coated wire, in which a single titanium wire is put into a single wire metal tube, then the diameter is reduced to 15 to 25% by a swaging process, and then the wire is drawn. 単線用の金属管の外径がチタン線の外径の2〜6倍である請求項6記載のコート線の製造法。   7. The method for producing a coated wire according to claim 6, wherein the outer diameter of the single wire metal tube is 2 to 6 times the outer diameter of the titanium wire. 請求項1〜5のいずれかの製造法によって製造された、円相当径が100μm以下で、長さ20m以上のチタン長繊維。   A titanium long fiber having an equivalent circle diameter of 100 μm or less and a length of 20 m or more, produced by the production method according to claim 1. 円相当径が15μm以下で、長さ50m以上の請求項8記載のチタン長繊維。   The titanium continuous fiber according to claim 8, wherein the equivalent circle diameter is 15 µm or less and the length is 50 m or more. 断面が略多角形状で、その一辺が15μm以下である請求項8記載のチタン長繊維。   The titanium long fiber according to claim 8, wherein the cross section is substantially polygonal and one side thereof is 15 µm or less. 断面形状が略星形である請求項8記載のチタン長繊維。   9. The titanium long fiber according to claim 8, wherein the cross-sectional shape is a substantially star shape. 短辺1に対し、長辺比が2〜8.5倍の扁平な断面形状を有する請求項8記載のチタン長繊維。   The titanium long fiber according to claim 8, which has a flat cross-sectional shape with a long side ratio of 2 to 8.5 times with respect to the short side 1. 断面形状が長さ方向に略一定で続いており、表面形状が長さ方向に平滑である請求項8記載の医療用のチタン長繊維。   The medical titanium long fiber according to claim 8, wherein the cross-sectional shape continues substantially constant in the length direction and the surface shape is smooth in the length direction. 請求項8〜13のいずれかに記載のチタン長繊維であって、絡合または編組することで細胞培養担体の全体または一部を構成するチタン長繊維。   The titanium long fiber according to any one of claims 8 to 13, wherein the titanium long fiber constitutes all or part of the cell culture carrier by entanglement or braiding. 請求項8〜13のいずれかに記載のチタン長繊維であって、絡合または編組することで生体組織誘導型スカフォールドの全体または一部を構成するチタン長繊維。   The titanium long fiber according to any one of claims 8 to 13, wherein the titanium long fiber constitutes all or part of the biological tissue-derived scaffold by entanglement or braiding. 請求項8〜13のいずれかに記載のチタン長繊維を1本用い、絡合または編組することで生体組織誘導型スカフォールドの全体または一部を構成するチタン長繊維。   A titanium long fiber that constitutes the whole or a part of a biological tissue-derived scaffold by using one titanium long fiber according to any one of claims 8 to 13 and tangling or braiding it.
JP2007154427A 2007-06-11 2007-06-11 Titanium long fiber and method for producing the same Active JP5268183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154427A JP5268183B2 (en) 2007-06-11 2007-06-11 Titanium long fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154427A JP5268183B2 (en) 2007-06-11 2007-06-11 Titanium long fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008303516A true JP2008303516A (en) 2008-12-18
JP5268183B2 JP5268183B2 (en) 2013-08-21

Family

ID=40232486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154427A Active JP5268183B2 (en) 2007-06-11 2007-06-11 Titanium long fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5268183B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095856A (en) * 2007-10-16 2009-05-07 Hi-Lex Corporation Titanium fiber and its manufacturing method
CN105598199A (en) * 2015-11-11 2016-05-25 西安菲尔特金属过滤材料有限公司 Preparation method of titanium fiber
JP2017221298A (en) * 2016-06-14 2017-12-21 福井県 Fiber structure for implant type tissue regeneration and implant type tissue regeneration method using the same
CN111867515A (en) * 2018-01-31 2020-10-30 弹性钛合金植入物有限责任公司 Self-fixating mesh implant based on titanium wire and bioabsorbable polymer
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299809A (en) * 1987-05-30 1988-12-07 Ishikawajima Harima Heavy Ind Co Ltd Production of fine tube packed with high density filler
JPH0280145A (en) * 1988-09-14 1990-03-20 Tanaka Kikinzoku Kogyo Kk Manufacture of sliding use composite wire
JPH02187212A (en) * 1989-01-11 1990-07-23 Sumitomo Metal Ind Ltd Manufacture of extra-fine titanic wire
JPH05177244A (en) * 1992-01-08 1993-07-20 Bridgestone Bekaert Steel Code Kk Production of metallic fiber
JPH0617318A (en) * 1992-06-29 1994-01-25 Furukawa Electric Co Ltd:The Aggregate of metal fiber and its production
JPH1181050A (en) * 1997-09-01 1999-03-26 Bridgestone Metalpha Kk Titanium fiber and its production
JP2001087835A (en) * 1999-09-20 2001-04-03 Tokusen Kogyo Co Ltd PRODUCTION OF beta TITANIUM ALLOY FINE WIRE
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
WO2006090777A1 (en) * 2005-02-23 2006-08-31 Hi-Lex Corporation Medical material, artificial tooth root and method of producing material for clinical use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299809A (en) * 1987-05-30 1988-12-07 Ishikawajima Harima Heavy Ind Co Ltd Production of fine tube packed with high density filler
JPH0280145A (en) * 1988-09-14 1990-03-20 Tanaka Kikinzoku Kogyo Kk Manufacture of sliding use composite wire
JPH02187212A (en) * 1989-01-11 1990-07-23 Sumitomo Metal Ind Ltd Manufacture of extra-fine titanic wire
JPH05177244A (en) * 1992-01-08 1993-07-20 Bridgestone Bekaert Steel Code Kk Production of metallic fiber
JPH0617318A (en) * 1992-06-29 1994-01-25 Furukawa Electric Co Ltd:The Aggregate of metal fiber and its production
JPH1181050A (en) * 1997-09-01 1999-03-26 Bridgestone Metalpha Kk Titanium fiber and its production
JP2001087835A (en) * 1999-09-20 2001-04-03 Tokusen Kogyo Co Ltd PRODUCTION OF beta TITANIUM ALLOY FINE WIRE
WO2006033435A1 (en) * 2004-09-24 2006-03-30 Hi-Lex Corporation Scaffold material capable of inducing biological hard tissue or soft tissue
WO2006090777A1 (en) * 2005-02-23 2006-08-31 Hi-Lex Corporation Medical material, artificial tooth root and method of producing material for clinical use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095856A (en) * 2007-10-16 2009-05-07 Hi-Lex Corporation Titanium fiber and its manufacturing method
CN105598199A (en) * 2015-11-11 2016-05-25 西安菲尔特金属过滤材料有限公司 Preparation method of titanium fiber
JP2017221298A (en) * 2016-06-14 2017-12-21 福井県 Fiber structure for implant type tissue regeneration and implant type tissue regeneration method using the same
CN111867515A (en) * 2018-01-31 2020-10-30 弹性钛合金植入物有限责任公司 Self-fixating mesh implant based on titanium wire and bioabsorbable polymer
CN111867515B (en) * 2018-01-31 2024-01-30 钛合金纺织品公司 Self-anchoring mesh implant based on titanium wire and bioabsorbable polymer
CN114535343A (en) * 2022-04-26 2022-05-27 西部宝德科技股份有限公司 Titanium fiber preparation method

Also Published As

Publication number Publication date
JP5268183B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US4983184A (en) Alloplastic material for producing an artificial soft tissue component and/or for reinforcing a natural soft tissue component
JP5268183B2 (en) Titanium long fiber and method for producing the same
KR102626287B1 (en) Magnesium based absorbent alloy
JP5291914B2 (en) Titanium fiber and its production method
JPH0683726B2 (en) Guide wire for catheter
EP1070558A2 (en) Method of manufacturing titanium fiber or titanium alloy fiber
JP2019518135A (en) Nickel-titanium-yttrium alloy with reduced oxide inclusions
JPH1181050A (en) Titanium fiber and its production
US20160199621A1 (en) Magnetically insertable wire materials
EP3538681B1 (en) Ni-free beta ti alloys with shape memory and super-elastic properties
US6478752B1 (en) Catheter guide wire and production method for the same
JP2002069555A (en) NiTi BASED ALLOY WIRE AND ITS PRODUCTION METHOD
KR101976074B1 (en) Method for manufacturing biodegradable stent
CN112323524A (en) Nickel-titanium alloy wire rope and production process thereof
DE102019130522A1 (en) Process for the production of composite wires
JP3345851B2 (en) Method for simultaneously producing a plurality of Ni-Ti based shape memory alloy fine wires
JP2003526177A (en) Multifilament nickel-titanium alloy drawn superelastic wire
JP2023537912A (en) high strength wire
JPH0416246B2 (en)
JP3927988B1 (en) Manufacturing method of galvanized steel wire for optical drop cable
JP2838131B2 (en) Manufacturing method of metal filament
JP2024055265A (en) Operation rope
JP2000061525A (en) Manufacture of metallic fiber
JP2000144355A (en) Manufacture of nickel alloy fiber
JPS63203212A (en) Composite fiber for ni-ti base functional fibered material and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250