JP2529846B2 - Cavity rolling method for clad wire rod - Google Patents

Cavity rolling method for clad wire rod

Info

Publication number
JP2529846B2
JP2529846B2 JP62070415A JP7041587A JP2529846B2 JP 2529846 B2 JP2529846 B2 JP 2529846B2 JP 62070415 A JP62070415 A JP 62070415A JP 7041587 A JP7041587 A JP 7041587A JP 2529846 B2 JP2529846 B2 JP 2529846B2
Authority
JP
Japan
Prior art keywords
rolling
wire rod
rolled
layer portion
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070415A
Other languages
Japanese (ja)
Other versions
JPS63238901A (en
Inventor
宏之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62070415A priority Critical patent/JP2529846B2/en
Publication of JPS63238901A publication Critical patent/JPS63238901A/en
Application granted granted Critical
Publication of JP2529846B2 publication Critical patent/JP2529846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はクラッド線棒材の孔型圧延方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a hole rolling method for a clad wire rod.

[従来の技術] 従来、線棒材の孔型による連続圧延においては、素材
または製品断面の形状に応じて、第10図〜第12図に示す
圧延方式を適宜組合せた圧延が行なわれている。第10図
〜第12図において、1は圧延素子、2は孔型ロールであ
り、第10図は角−ダイヤ圧延、第11図は丸−オーバル圧
延、第12図は角−オーバル圧延を示している。
[Prior Art] Conventionally, in continuous rolling of a wire rod material by a hole type, rolling is performed by appropriately combining the rolling methods shown in FIGS. 10 to 12 depending on the shape of the material or the cross section of the product. . 10 to 12, 1 is a rolling element, 2 is a hole type roll, FIG. 10 is a square-diamond rolling, FIG. 11 is a round-oval rolling, and FIG. 12 is a square-oval rolling. ing.

このような線棒材の孔型圧延では、圧延材料の幅と厚
みが略同等程度であることから、圧延時における圧延材
料の幅広がりが大きく、圧延材料の天地方向寸法は減少
するものの、圧延材料のオーバル方向寸法は原寸法より
増加し、結果として圧延材料は偏平形状となる。そこ
で、線棒材の孔型圧延では、通常(例えば鉄鋼便覧第3
版865頁図10.4)、先行パスで圧延された圧延材料のオ
ーバル方向寸法を次パスで圧下して減少させることと
し、これら2パスを1単位とする複数パスの圧延を繰り
返している。すなわち、圧延材料は先行パスの圧下によ
り偏平となるが、これに引き続く次パスの圧延では圧延
の安定性確保のために幅と厚みの等しい形状にもどされ
ることが通例である。
In such hole rolling of wire rod material, since the width and thickness of the rolled material are approximately the same, the width of the rolled material during rolling is large and the vertical dimension of the rolled material is reduced. The oval dimension of the material increases from the original dimension, resulting in a flat rolled material. Therefore, in the case of the hole type rolling of the wire rod, it is usually performed (for example, in the Steel Manual
The plate on page 865 (Fig. 10.4), the size of the rolled material rolled in the preceding pass is reduced in the oval direction in the next pass, and the rolling is repeated in multiple passes with these two passes as one unit. That is, the rolled material is flattened by the reduction in the preceding pass, but in the subsequent rolling in the next pass, it is usually returned to a shape having the same width and thickness in order to secure the stability of rolling.

したがって、従来の線棒材の孔型圧延方法は、第2図
に示すように、圧延材料を互いに直交する2方向のそれ
ぞれから交互に圧下するため、水平圧延機と垂直圧延機
を交互に配置し、1パス毎に圧下方向を変えるミル配列
が一般的である。なお、水平圧延機を連続配置する場合
には、偏平形状の圧延材料をツイスターにより90度捻転
させて次スタンドの水平圧延機へ噛み込ませており、こ
の場合にも、圧延材料そのものに対する圧下方向はやは
り交互に直交する方向に入れ替わる圧延となる。
Therefore, according to the conventional hole-rolling method for wire rods, as shown in FIG. 2, the rolling material is alternately rolled down in each of two directions orthogonal to each other, so that horizontal rolling mills and vertical rolling mills are alternately arranged. However, a mill arrangement that changes the rolling direction for each pass is common. When the horizontal rolling mills are continuously arranged, the flat-shaped rolling material is twisted by 90 degrees with a twister and engaged with the horizontal rolling mill of the next stand. Is also a rolling process in which the directions are alternately changed.

[発明が解決しようとする問題点] しかしながら、上記従来の線棒材の孔型圧延方法にあ
っては、圧延材料を互いに直交する2方向のそれぞれか
ら交互に圧下する際、圧延材料の断面形状を一方の圧下
方向については偏平形状とするものの、他方の圧下方向
については偏平形状としないため、圧延材料内部のメタ
ルフローが両者の圧下方向で均一にならない。したがっ
て、例えば第3図に示すクラッド材10におけるように、
内層部11が円形状、外層部12が正方形状である素材を圧
延することを考えると、仕上圧延後の内層部11が偏平形
状となり、クラッド材10の断面の円周方向に均一な外層
厚さを得ることができない(第4図(B)参照)。
[Problems to be Solved by the Invention] However, in the above-described conventional wire rod rod-shaped rolling method, when the rolling material is alternately rolled from two directions orthogonal to each other, the cross-sectional shape of the rolling material is reduced. However, since one side has a flat shape in the rolling direction, but the other rolling direction does not have a flat shape, the metal flow inside the rolled material is not uniform in both rolling directions. Therefore, for example, as in the clad material 10 shown in FIG.
Considering rolling a material in which the inner layer portion 11 has a circular shape and the outer layer portion 12 has a square shape, the inner layer portion 11 after finishing rolling has a flat shape, and a uniform outer layer thickness in the circumferential direction of the cross section of the clad material 10. Cannot be obtained (see FIG. 4 (B)).

なお、クラッド材に対して圧延ではなく押し出し加工
を適用すれば、均一な内層部の変形状態を得ることがで
きるが、押し出し加工方法は生産性等の面で圧延方法に
比して全く不利である。
It should be noted that if an extruding process is applied to the clad material instead of rolling, a uniform deformed state of the inner layer portion can be obtained, but the extruding process is completely disadvantageous compared to the rolling method in terms of productivity and the like. is there.

本発明は、内層部と外層部とからなるクラッド線棒材
の孔型圧延において、内層部のひずみを均一化可能とす
ることを目的とする。
An object of the present invention is to make it possible to uniformize the strain in the inner layer portion in the hole rolling of the clad wire rod material including the inner layer portion and the outer layer portion.

[課題を解決するための手段] 本発明は、内層部と外層部からなるクラッド線棒材を
互いに直交する2方向のそれぞれから複数のパスで圧下
するクラッド線棒材の孔型圧延方法において、各圧下パ
スの出側における被圧延材料の厚みに対する幅の比が1.
1倍を越える偏平形状となる圧下パス回数と、被圧延材
料の幅に対する厚みの比が1.1倍を越える偏平形状とな
る圧下パス回数とを、略同等回数とするようにしたもの
である。
[Means for Solving the Problems] The present invention relates to a method for rolling a clad wire rod rod, comprising rolling the clad wire rod rod including an inner layer portion and an outer layer portion in a plurality of passes in each of two directions orthogonal to each other. The width-to-thickness ratio on the exit side of each rolling pass is 1.
The number of times of reduction passes that results in a flat shape exceeding 1 time and the number of times of reduction passes that results in a flat shape in which the ratio of the thickness of the material to be rolled to the width exceeds 1.1 times are made approximately equal.

[作用] 内層部と外層部からなるクラッド線棒材の圧延材料を
互いに直交する2方向のそれぞれから圧下するクラッド
線棒材の孔型圧延方法において、一方の圧下方向におい
てだけでなく、他方の圧下方向においても圧延材料を偏
平化させるものとすれば、圧延材料内層部のメタルフロ
ーを均一化できるものと考えられる。
[Operation] In a clad wire rod hole rolling method of rolling a rolled material of a clad wire rod composed of an inner layer portion and an outer layer portion from each of two directions orthogonal to each other, not only in one rolling direction but also in the other rolling direction. If the rolled material is flattened even in the rolling direction, it is considered that the metal flow in the inner layer portion of the rolled material can be made uniform.

すなわち、本発明のクラッド線棒材の孔型圧延方法
は、第1図に示すように、圧延材料に対する同一方向か
らの圧下を例えば2回連続させることにより、圧延材料
が偏平化する方向を90度変化させ、圧延材料を互いに直
交する2方向の両方に偏平化させ、これにより、圧延材
料内層部のメタルフローを均一化可能とするものであ
る。
That is, as shown in FIG. 1, the clad wire rod material roll rolling method of the present invention allows the rolling material to be flattened in a flattening direction by continuously rolling the rolling material in the same direction twice, for example, as shown in FIG. The rolling material is flattened in both two directions orthogonal to each other by varying the degree of change so that the metal flow in the inner layer portion of the rolling material can be made uniform.

したがって、本発明によれば、例えば第3図に示すク
ラッド材10においても、圧延による内部ひずみの均一化
を図り、圧延後における内層部11の断面形状を第4図
(A)に示すように真円化できる。
Therefore, according to the present invention, even in the clad material 10 shown in FIG. 3, for example, the internal strain caused by rolling is made uniform, and the cross-sectional shape of the inner layer portion 11 after rolling is as shown in FIG. 4 (A). It can be rounded.

なお、圧延材料を互いに直交する2方向の両方に偏平
化させる具体的方法としては、以下の方法が考えられ
る。
The following method is conceivable as a specific method for flattening the rolled material in both directions orthogonal to each other.

水平圧延機と垂直圧延機が交互に配置される場合に
は、ダイヤ→ダイヤ圧延、あるいはオーバル→オーバル
圧延のように、前者ではスクェア圧延、後者ではラウン
ド圧延を省略し、一方の方向へ偏平化した材料を次パス
の1パスで他方の方向へ偏平化させる方法が考えられ
る。ただし、この場合には、加工量が非常に大となり、
圧延の安定性、圧延材料の疵発生、設備負荷の点でやや
問題がある。
When the horizontal and vertical rolling mills are arranged alternately, like the diamond-to-diamond rolling or the oval-to-oval rolling, the square rolling is omitted in the former and the round rolling is omitted in the latter, and flattened in one direction. A method is conceivable in which the formed material is flattened in the other direction in one pass of the next pass. However, in this case, the processing amount becomes very large,
There are some problems in terms of rolling stability, rolling material defects, and equipment load.

また、既設の水平圧延機と垂直圧延機が交互に配置さ
れる場合には、特定のスタンドをダミーパスとすること
で同一方向圧延を2回続けて行ない、圧延材料を偏平化
させる方向を容易に90度変えることができる。ただし、
そのダミーパススタンドで圧下すべき圧延材料の減面率
は、他のスタンドへ振り替える必要があるので、圧下ス
ケジュールを変更する必要を生ずる。
In addition, when existing horizontal rolling mills and vertical rolling mills are alternately arranged, a specific stand is used as a dummy pass to perform rolling in the same direction twice in succession, thereby facilitating the direction of flattening the rolling material. You can change 90 degrees. However,
The reduction rate of the rolled material to be rolled down by the dummy pass stand needs to be transferred to another stand, so that the rolling down schedule needs to be changed.

また、新規に圧延機を設置する場合には、水平圧下パ
ス−水平圧下パスまたは垂直圧下パス−垂直圧下パスの
組合せを少なくとも1回以上連続させることのできる圧
延機配置とすれば、上記のようなダミーパスが不要とな
り、スタンド間距離の短縮を図ることができる。
Further, when a new rolling mill is installed, if the rolling mill is arranged so that the combination of the horizontal reduction pass-horizontal reduction pass or the vertical reduction pass-vertical reduction pass can be continuously performed at least once, the above-mentioned configuration is performed. This eliminates the need for a special dummy path and reduces the distance between stands.

さて、以上の方法により内層部と外層部とからなるク
ラッド線棒材の圧延材料を互いに直交する2方向の両方
向へ偏平化するが可能となるが、メタルフローの均一化
のためには上記両方向へ同程度の偏平度を与える必要が
ある。線棒材の連続圧延の最終工程では5%以下の軽圧
下を加えて寸法精度を向上させることが行なわれている
が、この程度の圧下では表層部の寸法のみが変化し材料
内部のメタルフローまでは引きおこせない。本発明で
は、メタルフローを生じさせるようなある圧下以上を与
える偏平形状を主眼としているので、圧下方向に5%、
幅方向に5%の寸法変化を生ずる場合以上も考えて、1.
1倍を超えるの偏平形状比を与えるパス回数を、2方向
の圧下パス相互間で略同等としたものである。
By the above-mentioned method, it is possible to flatten the rolled material of the clad wire rod consisting of the inner layer portion and the outer layer portion in both directions of two directions orthogonal to each other. It is necessary to give the same degree of flatness to. In the final process of continuous rolling of wire rod material, a light reduction of 5% or less is applied to improve dimensional accuracy. However, at this reduction, only the dimensions of the surface layer change and the metal flow inside the material is reduced. Can't bring up. In the present invention, since the main object is a flat shape that gives a certain reduction or higher that causes metal flow, 5% in the reduction direction,
Considering the case where a dimensional change of 5% occurs in the width direction, 1.
The number of passes that gives a flattened shape ratio of more than 1 times is approximately equal between the rolling passes in the two directions.

なお、上述の「1.1倍を超える」ことの限定理由は以
下の如くである。すなわち、あるパスにおいて縦×横が
1×1の材料を縦方向に5%圧下し、その結果、横方向
に5%の幅広がりを生じた場合、縦横比は0.95×1.05と
なる。よって偏平形状比は1.05/0.95=1.105となり偏平
形状比が1.1倍を超えることになる。
The reasons for limiting "above 1.1 times" are as follows. That is, in a certain pass, when a material having a length × width of 1 × 1 is pressed down by 5% in the lengthwise direction, and as a result, a width spread of 5% occurs in the widthwise direction, the aspect ratio becomes 0.95 × 1.05. Therefore, the flat shape ratio becomes 1.05 / 0.95 = 1.105, and the flat shape ratio exceeds 1.1 times.

また。上述の「パス回数を……略同等」とすることの
技術的意味は以下の如くである。すなわち、本発明は材
料の縦横に同程度の圧下を加えることによって、内部の
メタルフローを均一化するという思想に基づいている。
したがって、理想的には、圧下パスの出側における被圧
延材料の厚みに対する幅の比(図5のBD/AC)が1.1倍を
超える偏平形状となるパス(横長とするパス)と、被圧
延材料の幅に対する厚みの比(図5のAC/BD)が1.1倍を
越える偏平形状となるパス(縦長とするパス)の両パス
数を完全に同一にした場合に最も均一なメタルフローが
得られる。しかしながら、圧延スタンド数やスタンド配
列による制約、あるいは必要圧下量から定まる必要パス
数等によっては、この両パス数を同一にできない場合も
あり得る。ただし、第5図または第6図に示したよう
に、20数パスもの圧延を繰り返す工程においては、縦長
とするパス数と横長とするパス数を完全に同一にさせな
くてもメタルフローの均一さを悪化させることもない。
要は従来のように同一方向にのみ偏平させるのではな
く、偏平方向を縦横ほぼ同一回数にすることに本発明の
主眼があるのである。
Also. The technical meaning of setting the above-mentioned "pass counts to be approximately equal" is as follows. That is, the present invention is based on the idea that the internal metal flow is made uniform by applying the same degree of reduction in the length and width of the material.
Therefore, ideally, the ratio of the width to the thickness of the material to be rolled on the exit side of the reduction pass (BD / AC in Fig. 5) is a flat shape that exceeds 1.1 times (a horizontal pass), and The most uniform metal flow is obtained when the number of both passes of the flat shape (longitudinal pass) in which the ratio of the thickness to the width of the material (AC / BD in Fig. 5) exceeds 1.1 times is completely the same. To be However, it is possible that the number of both passes cannot be the same depending on the number of rolling stands, the arrangement of the stands, or the required number of passes determined from the required reduction amount. However, as shown in FIG. 5 or FIG. 6, in the process of repeatedly rolling 20 or more passes, even if the number of vertically long passes and the number of horizontally long passes are not completely the same, the metal flow is uniform. It doesn't make it worse.
The point is that the present invention focuses on making the flattening directions substantially the same number of times in the vertical and horizontal directions instead of flattening them in the same direction as in the conventional case.

[実施例] (実施例1) 第6図に従来法による圧延材料(クラッド材)の各パ
ス出側の偏平形状を示す。偏平形状は、圧延材料が捻転
しないものとして、各パス出側の材料の水平方向、垂直
方向の各寸法をとり、前者と後者の比(偏平度)で示し
た。1〜6号の粗スタンド列では角−ダイヤ圧延、7〜
18号の中間スタンド列および19〜28号の仕上スタンド列
では丸−オーバル圧延を行なった例である。
[Example] (Example 1) Fig. 6 shows a flat shape on the exit side of each pass of a rolled material (cladding material) according to a conventional method. As for the flat shape, assuming that the rolled material does not twist, the horizontal and vertical dimensions of the material on the exit side of each pass were taken, and the flatness was indicated by the ratio (flatness) of the former and the latter. Square-diamond rolling, 7-
Round-oval rolling is performed on the intermediate stand row of No. 18 and the finishing stand row of Nos. 19 to 28.

第5図は本発明法による圧延材料(クラッド材)の各
パス出側の偏平形状を示す。粗スタンド列ではミルモー
ターパワーに余裕があるため、ダミーパスを入れずにダ
イヤ→ダイヤ圧延として各方向へ交互に偏平化させてい
る。また、中間〜仕上スタンド列では、それぞれ1回の
ダミーパスを入れて偏平方向を入れ替えた。これらのダ
ミーパスで分担すべき減免率は通常は使用しない28スタ
ンドまでを使用することでカバーした。
FIG. 5 shows the flat shape on the delivery side of each pass of the rolled material (cladding material) according to the method of the present invention. In the rough stand row, because there is enough mill motor power, diamond-to-diamond rolling is performed without inserting a dummy path to flatten alternately in each direction. Further, in the middle to finishing stand rows, the flattening direction was changed by inserting a dummy pass once each. The reduction rate that should be shared by these dummy passes was covered by using up to 28 stands that are not normally used.

上記第5図、第6図において、圧延は145mm角のビレ
ットを用い、15mm直径まで24パス(ダミー4パス)の圧
延を行なった。圧延材料の内層部はTK−15、外層部はSF
45AYからなり、145mm角のビレット段階における内層部
は80mm直径で略真円形状に近いことを事前に確認した。
連続圧延は無張力を目標として行なったが、先後端部は
張力変動の影響がみられる可能性があるので長手方向の
中央部から圧延後のサンプルを採取した。なお、上記TK
−15の成分はC 0.16%、Si 0.25%、Mn 0.51%、P 0.01
8%、S 0.010%、Al 0.001%であり、SF45AYの成分はC
0.31%、Si 0.30%、Mn 1.05%、P 0.015%、S 0.007
%、Al 0.035%である。
In FIG. 5 and FIG. 6 described above, a 145 mm square billet was used for rolling, and 24 passes (4 dummy passes) were rolled to a diameter of 15 mm. Inner layer of rolled material is TK-15, outer layer is SF
It was confirmed in advance that the inner layer part consisting of 45 AY and having a 145 mm square billet stage had a diameter of 80 mm and was close to a substantially circular shape.
The continuous rolling was carried out with the goal of no tension, but there is a possibility that the influence of tension fluctuations may be observed at the front and rear ends, so samples were taken from the center in the longitudinal direction after rolling. The above TK
The components of −15 are C 0.16%, Si 0.25%, Mn 0.51%, P 0.01
8%, S 0.010%, Al 0.001%, SF45AY contains C
0.31%, Si 0.30%, Mn 1.05%, P 0.015%, S 0.007
%, Al 0.035%.

(実施例2) 次に、第4図(B)に従来法によって圧延された圧延
材料(クラッド材)のC断面を示し、第4図(A)に本
発明法によって圧延された圧延材料(クラッド材)のC
断面を示す。第4図(B)の従来法による圧延後の内層
部の形状はラストパスのオーバル方向に伸びて偏平な形
状となっており、内層部の最大径と最小径の比は1.35で
ある。これに対し、第4図(A)の本発明法による圧延
後の内層部の形状は略真円に近く、最大径と最小径の比
は1.06であり、本発明の効果(内部メタルフローの均一
化)が明確に認められる。
Example 2 Next, FIG. 4 (B) shows a C cross section of a rolled material (clad material) rolled by the conventional method, and FIG. 4 (A) shows a rolled material (rolled material rolled by the method of the present invention ( C of clad material)
3 shows a cross section. The shape of the inner layer portion after rolling by the conventional method in FIG. 4 (B) is flat and extends in the oval direction of the last path, and the ratio of the maximum diameter to the minimum diameter of the inner layer portion is 1.35. On the other hand, the shape of the inner layer portion after rolling according to the method of the present invention in FIG. 4 (A) is close to a nearly perfect circle, and the ratio of the maximum diameter to the minimum diameter is 1.06. (Uniformization) is clearly recognized.

(実施例3) また、第8図に従来法によって得られた圧延材料(ク
ラッド材)の円周方向における[内層半径/外層半径]
の変化を示し、第7図に本発明法によって得られた圧延
材料(クラッド材)の円周方向における[内層半径/外
層半径]の変化を示す。第9図は圧延材料の内層半径と
外層半径を示す模式図である。第7図と第8図によれ
ば、本発明法によって内層部の形状が真円化されること
が認められる。
(Example 3) Further, FIG. 8 shows [inner layer radius / outer layer radius] in the circumferential direction of the rolled material (cladding material) obtained by the conventional method.
7 shows the change in [inner layer radius / outer layer radius] in the circumferential direction of the rolled material (cladding material) obtained by the method of the present invention. FIG. 9 is a schematic diagram showing the inner layer radius and the outer layer radius of the rolled material. According to FIGS. 7 and 8, it is recognized that the shape of the inner layer portion is rounded by the method of the present invention.

[発明の効果] 以上のように、本発明によれば、内層部と外層部とか
らなるクラッド線棒材の孔型圧延において、圧延材料を
互いに直交する2方向の両方向に偏平化させることとな
り、圧延材料内層部のひずみを均一化できる。
[Effect of the Invention] As described above, according to the present invention, in the clad wire rod rolling comprising the inner layer portion and the outer layer portion, the rolled material is flattened in two directions orthogonal to each other. The strain in the inner layer of the rolled material can be made uniform.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による圧延方法の一例を示す模式図、第
2図は従来の圧延方法を示す模式図、第3図はクラッド
材を示す端面図、第4図(A)は本発明法によって圧延
されたクラッド材を示す端面図、第4図(B)は従来法
によって圧延されたクラッド材を示す断面図、第5図は
本発明法による各パス出側の偏平度を示す線図、第6図
は従来法による各パス出側の偏平度を示す線図、第7図
は本発明法によるクラッド材の円周方向形状を示す線
図、第8図は従来法によるクラッド材の円周方向形状を
示す線図、第9図はクラッド材の内層半径と外層半径を
示す模式図、第10図は孔型圧延方法を示す模式図、第11
図は孔型圧延方法を示す模式図、第12図は孔型圧延方法
を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a rolling method according to the present invention, FIG. 2 is a schematic diagram showing a conventional rolling method, FIG. 3 is an end view showing a clad material, and FIG. 4 (A) is a method of the present invention. Fig. 4 (B) is a sectional view showing the clad material rolled by the conventional method, and Fig. 5 is a diagram showing the flatness on the exit side of each pass according to the method of the present invention. FIG. 6 is a diagram showing the flatness on the exit side of each pass according to the conventional method, FIG. 7 is a diagram showing the circumferential shape of the clad material according to the method of the present invention, and FIG. 8 is a diagram showing the clad material according to the conventional method. A diagram showing the shape in the circumferential direction, FIG. 9 is a schematic diagram showing the inner layer radius and outer layer radius of the clad material, FIG. 10 is a schematic diagram showing the hole rolling method, and FIG.
FIG. 12 is a schematic diagram showing a channel rolling method, and FIG. 12 is a schematic diagram showing a channel rolling method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内層部と外層部からなるクラッド線棒材を
互いに直交する2方向のそれぞれから複数のパスで圧下
するクラッド線棒材の孔型圧延方法において、各圧下パ
スの出側における被圧延材料の厚みに対する幅の比が1.
1倍を越える偏平形状となる圧下パス回数と、被圧延材
料の幅に対する厚みの比が1.1倍を越える偏平形状とな
る圧下パス回数とを、略同等回数とすることを特徴とす
るクラッド線棒材の孔型圧延方法。
1. A method of rolling a clad wire rod comprising an inner layer portion and an outer layer portion in a plurality of passes in each of two directions orthogonal to each other. The ratio of width to thickness of rolled material is 1.
A clad wire rod characterized in that the number of times of reduction passes that result in a flat shape exceeding 1 time and the number of times of reduction passes that result in a flat shape in which the thickness-to-width ratio of the material to be rolled exceeds 1.1 times are approximately equal. Method for rolling a strip.
JP62070415A 1987-03-26 1987-03-26 Cavity rolling method for clad wire rod Expired - Lifetime JP2529846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070415A JP2529846B2 (en) 1987-03-26 1987-03-26 Cavity rolling method for clad wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070415A JP2529846B2 (en) 1987-03-26 1987-03-26 Cavity rolling method for clad wire rod

Publications (2)

Publication Number Publication Date
JPS63238901A JPS63238901A (en) 1988-10-05
JP2529846B2 true JP2529846B2 (en) 1996-09-04

Family

ID=13430817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070415A Expired - Lifetime JP2529846B2 (en) 1987-03-26 1987-03-26 Cavity rolling method for clad wire rod

Country Status (1)

Country Link
JP (1) JP2529846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121469B2 (en) * 1990-03-22 1995-12-25 川崎製鉄株式会社 Hot rolling method for powdered material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244448B2 (en) * 1972-05-19 1977-11-08
JPS6061102A (en) * 1983-09-12 1985-04-08 Sumitomo Metal Ind Ltd Rolling method of steel bar

Also Published As

Publication number Publication date
JPS63238901A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
US3326025A (en) Apparatus for alternately bending to draw wire or plate
JP2529846B2 (en) Cavity rolling method for clad wire rod
JP3968435B2 (en) Large strain introduction processing method and caliber rolling equipment
EP0597093A1 (en) Method of manufacturing metal bars and apparatus therefor
US4391117A (en) Rolling mills and methods of rolling
US6050122A (en) Slitter for the production of multiple sections
JP3260640B2 (en) Rolling equipment and method for rolling round bars and wires
JP3091055B2 (en) Multi-slit rolling method
RU2070448C1 (en) Method of periodical shape reinforcing steel production
JPH0785801B2 (en) Manufacturing method of thin wire
JP3491129B2 (en) Rolling method for deformed steel bars
US6298705B1 (en) Method and apparatus for rolling concrete reinforcing elements
JPH06344002A (en) Method and device for producing flat square wire
SU1503902A1 (en) Method of reversable rolling of low-ductility steels and alloys ingots
RU2346762C1 (en) Method for rolling of sectional bars
JP2001353503A (en) Rolling method
RU1777567C (en) Set of rolls
SU946698A1 (en) Roll calibrating method
JP2981140B2 (en) Cold rolling of steel strip
JP2000301204A (en) Method and device for rolling multisize wire and steel bar
SU1424900A1 (en) Method of producing steel wire or rods
RU2203747C2 (en) Method for making hot rolled strip
JPH06501A (en) Device for manufacturing wire rod with thin diameter
JP2897653B2 (en) Tube rolling method
SU971575A2 (en) Method for making wire from sintered tungsten-based materials