JPS62123046A - Manufacture of hydraulic road bed material - Google Patents
Manufacture of hydraulic road bed materialInfo
- Publication number
- JPS62123046A JPS62123046A JP60263195A JP26319585A JPS62123046A JP S62123046 A JPS62123046 A JP S62123046A JP 60263195 A JP60263195 A JP 60263195A JP 26319585 A JP26319585 A JP 26319585A JP S62123046 A JPS62123046 A JP S62123046A
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- slag
- granulated blast
- furnace slag
- steelmaking slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Road Paving Structures (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、製鋼スラグと高炉水砕スラグを原料とする水
硬性路盤材の製造方法に関し、殊に硬化物の物性(殊に
圧縮強度)が良好である他、膨張崩壊性の改善された新
規な水硬性路盤材を製造する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a hydraulic roadbed material using steelmaking slag and granulated blast furnace slag as raw materials, and particularly relates to a method for producing a hydraulic roadbed material using steelmaking slag and granulated blast furnace slag as raw materials, and particularly for improving the physical properties (especially compressive strength) of the hardened material. The present invention relates to a method for producing a novel hydraulic roadbed material that has good properties and improved swelling and collapsing properties.
[従来の技術]
鉄鋼生産過程で大量に副生ずる製鋼スラグは、石灰、シ
リカ及び酸化鉄を主成分とし鉱物相がカルシウムシリケ
ート、ブスタイト、カルシウム・フェライト・チタネー
ト等からなるものである為非常に重く且つ硬い鉱物であ
る。その為路盤材等の骨材として有効利用しようとする
研究も色々行なわれている。しかしこの製鋼スラグに含
まれる上記の石灰は非常に多量であり、該石灰が土中の
水分を吸収して膨張し崩壊するという欠陥がある為、耐
久性の要求される路盤材としては適性を欠く。しかも製
鋼スラグの主成分は石灰であり且つ主要鉱物もカルシウ
ムシリケートであることから、エージング等の処理後も
溶出液はpH10〜12といった高アルカリ性を示すと
いう問題もあり、大部分は価値の低い埋立材や仮設道路
材として使用されているに過ぎない。こうした中にあっ
ても製鋼スラグを路盤材として有効に活用することに成
功した技術がない訳ではなく、特公昭50−32927
号や同55−44802号等が提案されている。[Prior art] Steelmaking slag, which is produced in large quantities as a by-product during the steel production process, is extremely heavy because its main components are lime, silica, and iron oxide, and the mineral phase is composed of calcium silicate, bustite, calcium ferrite, titanate, etc. It is also a hard mineral. For this reason, various studies are being conducted to try to use it effectively as aggregate for roadbed materials, etc. However, this steelmaking slag contains a very large amount of lime, and has the defect that the lime absorbs moisture in the soil, expands, and collapses, making it unsuitable for use as a roadbed material that requires durability. lack Moreover, since the main component of steelmaking slag is lime and the main mineral is calcium silicate, there is a problem that even after treatments such as aging, the eluate remains highly alkaline with a pH of 10 to 12. It is only used as timber and temporary road material. Even under these circumstances, there are still technologies that have succeeded in effectively utilizing steelmaking slag as a roadbed material.
No. 55-44802, etc. have been proposed.
[発明が解決しようとする問題点]
しかし上記特公昭50−32927号は、製鋼スラグを
所謂タララシャランとして下層路盤用に使用するもので
あって、高レベルの圧縮強度や耐久性が要求される上層
路盤材として活用し得るものではなく、一方特公昭55
−44802号の路盤材では物性面の要求性能は一応満
足し得ると考えられるが、少量の製鋼スラグを大量の水
硬性高炉スラグと併用してはじめて目的を達成し得るも
ので、製鋼スラグの消費量には自ずと制限がある。しか
もこの方法では、セメント原料等として商品価値の高い
水硬性高炉スラグをこの分野に多量転用しなければなら
ないので、水硬性高炉スラグのセメント原料等としての
供給量を圧迫するという問題もある。[Problems to be solved by the invention] However, in the above-mentioned Japanese Patent Publication No. 50-32927, steelmaking slag is used as so-called tararasharan for the lower roadbed, and high levels of compressive strength and durability are required. It cannot be used as an upper layer roadbed material, and on the other hand,
Although it is thought that the roadbed material No. 44802 can satisfy the required performance in terms of physical properties, it can only achieve its purpose by using a small amount of steelmaking slag in combination with a large amount of hydraulic blast furnace slag, and the steelmaking slag is consumed. There is a natural limit to the amount. Moreover, in this method, a large amount of hydraulic blast furnace slag, which has high commercial value as a cement raw material, etc., must be diverted to this field, so there is a problem that the supply amount of hydraulic blast furnace slag as a cement raw material, etc. is reduced.
本発明は上記の様な状況のもとで、大量の製鋼スラグを
有効に利用し、しかも上層路盤材として十分に実用可能
な水硬性と物性及び耐久性を有する路盤材の製造方法を
提供しようとするものである。Under the above-mentioned circumstances, the present invention aims to provide a method for manufacturing a roadbed material that effectively utilizes a large amount of steelmaking slag and has sufficient hydraulic hardness, physical properties, and durability for practical use as an upper roadbed material. That is.
[問題点を解決する為の手段]
本発明は粒径が30mm以下の製鋼スラグと下記式で表
わされる細粒度指数(F)が50〜110である高炉水
砕スラグとを
F ” P too + P so+ P 3G(但し
2100 、P 50+ P50+P30はA37M
標準ふるいの100番、50番、30番の通過重量百分
率)
下記式を満足する様に配合するところに要旨を有するも
のである。[Means for Solving the Problems] The present invention combines steelmaking slag with a particle size of 30 mm or less and granulated blast furnace slag with a fineness index (F) of 50 to 110 expressed by the following formula as F '' P too + P so+ P 3G (However, 2100, P 50+ P50+P30 is A37M
Weight percentage passing through standard sieves No. 100, No. 50, and No. 30) The gist is that the ingredients are blended so as to satisfy the following formula.
(400−3,6F)≦10’ (G/S)50≦S
≦80
但しG:高炉水砕スラグの配合率(重量%)S:製鋼ス
ラグの配合率(%)。(400-3,6F)≦10' (G/S)50≦S
≦80 However, G: Blending ratio of granulated blast furnace slag (% by weight) S: Blending ratio of steelmaking slag (%).
[作用]
本発明で使用される製鋼スラグの鉱物相は、前述の通り
カルシウムシリケート、ブスタイト等を主成分とする硬
くて重い鉱物であるが、使用に当たっては路盤材として
の適性を確保する為、粒径が30mm以下となる様に破
砕しなければならない。[Function] As mentioned above, the mineral phase of the steelmaking slag used in the present invention is a hard and heavy mineral mainly composed of calcium silicate, bustite, etc., but in order to ensure its suitability as a roadbed material, It must be crushed to a particle size of 30 mm or less.
一方製鋼スラグと併用される高炉水砕スラグは高炉スラ
グを高圧水等により急冷処理することによって得られる
もので、周知の通り潜在水硬性を有しているが、粒度分
布は粗砂の範囲のもの(通常の高炉水砕スラグの細粒度
Fは20以上50未満)が殆んどであり、この為該高炉
水砕スラグをこのままで製鋼スラグと配合すると粗粒分
が多くなりて硬化物の物性は劣悪となる。ところが、高
炉水砕スラグを破砕し所定の粒度構成に細粒化して製鋼
スラグと配合すれば、製鋼スラグの細粒不足による空隙
が高炉水砕スラグの細粒化物により充填されて全体の空
隙率が減少し、硬化物の強度が向上すると共に、高炉水
砕スラグ自身の細粒化に伴う表面積の増大によって水硬
性自体も大幅に向上し、更には粒子内の細孔の減少によ
り製鋼スラグの膨張崩壊性も抑えられて硬化物の耐久性
を大幅に改善し得ることが確認された。殊に高炉水砕ス
ラグは元々粒子内に多くの気泡を有すると共に稜角に富
んでおり、コーンクラッシャー等によって容易に細粒化
することができ、しかも高炉水砕スラグ粒子の中でも破
砕され易い軟質のガラス貿は高レベルの水硬性を有して
いるので、これを製鋼スラグと共に配合してバインダー
的に作用させることにより、水硬性及び硬化物の強度共
に優れた路盤材とすることができる。そしてこうした高
炉水砕スラグの併用効果は、その粒度構成及び製鋼スラ
グとの配合比率と密接な相間々係を有していることが確
認された。ちなみに第1図は第1表に示す粒度構成の高
炉水砕スラグ(細粒化前及び細粒化後のもの)を使用し
、該水砕スラグ/製鋼スラグの配合比(G/S)と硬化
物の一軸圧縮強さの関係を示したものである。但し第1
図では製鋼スラグの配合率を60%(重量%:以下同じ
)に設定し、残部成分として高炉徐冷スラグ(細粒分が
多く且つ膨張崩壊性を持たない成分)を配合している。On the other hand, granulated blast furnace slag, which is used in combination with steelmaking slag, is obtained by rapidly cooling blast furnace slag with high-pressure water, and as is well known, it has latent hydraulic properties, but its particle size distribution is within the range of coarse sand. (The fine grain size F of normal granulated blast furnace slag is 20 or more and less than 50). Therefore, if the granulated blast furnace slag is mixed with steelmaking slag as it is, the coarse particles will increase and the hardened product will Physical properties become poor. However, if granulated blast furnace slag is crushed and refined to a predetermined particle size composition and mixed with steelmaking slag, the voids caused by the lack of fine particles in the steelmaking slag will be filled with the fine particles of the granulated blast furnace slag, reducing the overall porosity. In addition to improving the strength of the hardened product, the surface area of the granulated blast furnace slag itself increases due to its finer grain size, which greatly improves its hydraulic properties.Furthermore, the reduction of pores within the particles improves the hardness of steelmaking slag. It was confirmed that the expansion and disintegration properties were also suppressed and the durability of the cured product could be significantly improved. In particular, granulated blast furnace slag originally has many air bubbles in its particles and is rich in ridge angles, and can be easily reduced to fine particles using a cone crusher. Glass material has a high level of hydraulic properties, so by blending it with steelmaking slag to act as a binder, a roadbed material with excellent hydraulic properties and strength of the cured product can be obtained. It has been confirmed that the effect of using granulated blast furnace slag in combination is closely related to its particle size composition and blending ratio with steelmaking slag. Incidentally, Figure 1 uses granulated blast furnace slag (before and after refining) with the particle size composition shown in Table 1, and calculates the mixing ratio (G/S) of the granulated slag/steelmaking slag. This figure shows the relationship between the uniaxial compressive strength of the cured product. However, the first
In the figure, the blending ratio of steelmaking slag is set to 60% (weight %: the same hereinafter), and the remaining component is blast furnace slowly cooled slag (a component with many fine particles and no expansion and collapse properties).
またA37M標準ふるいの100番、50番、30番の
各篩い目サイズは、0.15mm、 0.3m+n 、
0.6mmである。In addition, the sieve size of the A37M standard sieve No. 100, No. 50, and No. 30 is 0.15 mm, 0.3 m + n,
It is 0.6 mm.
第1図からも明らかな様に、高炉水砕スラグ/製鋼スラ
グの配合比(G/S)を高めるにつれて硬化物の一軸圧
縮強さは増大する傾向がみられ、しかも細粒化が進んだ
もの(F値が大きいもの)はど圧縮強さの増強効果は大
きい。そしてこの実験値の中から「従来の水硬性スラグ
硬化物の規格で定められた一軸圧縮強さであるr12K
g−f/Cm2Jを得る為に必要なG/S値と細粒度F
の値Jを抜粋して整理すると、第2図の関係が得られ、
下記[1]式の関係が成立することが分かワた。As is clear from Figure 1, as the mixing ratio (G/S) of granulated blast furnace slag/steelmaking slag increases, the unconfined compressive strength of the hardened product tends to increase, and the grain size becomes finer. (those with a large F value) have a large effect of enhancing compressive strength. From these experimental values, we selected ``r12K, which is the unconfined compressive strength specified in the standard for conventional hydraulic slag hardened products.''
G/S value and fine grain size F required to obtain g-f/Cm2J
By extracting and arranging the value J of , the relationship shown in Figure 2 is obtained,
It turns out that the relationship expressed by equation [1] below holds true.
103 (G/S)≧(400−3,6F)・・・ [
I]
(G、S及びFの意味は前述の通り)
該[Hの有効性は、この式の関係を満たす様に調合して
得た下記第2表の実験データからも確認することができ
る。103 (G/S)≧(400-3,6F)... [
I] (The meanings of G, S, and F are as described above.) The effectiveness of [H can also be confirmed from the experimental data in Table 2 below, which was obtained by compounding to satisfy the relationship of this formula. .
尚上記第2表に示した各路盤材について一軸圧縮強さの
経時変化を調べた結果、いずれの路盤材も圧縮強さは経
時的に著しく増加し、材令180日では30にgf/c
m2以上の値を示すことが確認された。Furthermore, as a result of examining the changes in unconfined compressive strength over time for each of the roadbed materials shown in Table 2 above, the compressive strength of all roadbed materials increased significantly over time, and at 180 days old, it reached 30 gf/c.
It was confirmed that the value was greater than m2.
即ち使用する高炉水砕スラグの細粒度(F)に応じて前
記[11式の関係を満たす様に高炉水砕スラグと製鋼ス
ラグの配合比(G/S)を調整してやれば、−軸圧縮強
さの規格値を満足する路盤材を得ることができる。但し
本発明では前述の如く製鋼スラグを多量(路盤材全体に
占める構成比として50重量%以上)使用することを所
期の目的としており、こうした多量配合(高炉水砕スラ
グの配合量は当然逆に少なくなる)という要請のもとで
十分な一軸圧縮強さを確保する為には、高炉水砕スラグ
として細粒度Fが50以上のもの(少ない配合量でも高
い水硬性を示す細粒物)を使用しなければならない。In other words, if the blending ratio (G/S) of granulated blast furnace slag and steelmaking slag is adjusted to satisfy the relationship of Equation 11 above according to the fineness (F) of the granulated blast furnace slag used, -axial compressive strength It is possible to obtain a roadbed material that satisfies the standard value of thickness. However, as mentioned above, the purpose of the present invention is to use a large amount of steelmaking slag (50% by weight or more in terms of the composition ratio of the entire roadbed material), and the amount of granulated blast furnace slag that is mixed in such a large amount (the amount of granulated blast furnace slag mixed is naturally reversed) In order to ensure sufficient unconfined compressive strength due to the requirement that granulated blast furnace slag has a fineness of F of 50 or more (a fine grain that exhibits high hydraulic properties even in a small amount). must be used.
一方高炉水砕スラグは、製鋼スラグに配合する=1+け
トハ制婦−74〃ハ既坦魯九抑子イ而↓古耕九少なくす
る効果があるが、膨張量吸収率と細粒度Fの関係は第3
図に示す通りであり、高炉水砕スラグの細粒度Fが11
0を超えると製鋼スラグに対する膨張量吸収効果が乏し
くなり、硬化物の膨張崩壊を満足に抑制することができ
なくなる。こうした理由から本発明では高炉水砕スラグ
の細粒度Fを50〜110の範囲に設定している。On the other hand, when granulated blast furnace slag is mixed with steelmaking slag, it has the effect of reducing the amount of expansion and fineness F. Relationship is third
As shown in the figure, the fine grain size F of granulated blast furnace slag is 11
If it exceeds 0, the effect of absorbing the amount of expansion on the steelmaking slag will be poor, making it impossible to satisfactorily suppress expansion and collapse of the hardened material. For these reasons, in the present invention, the fineness F of the granulated blast furnace slag is set in the range of 50 to 110.
第4図はG/S値及びF値を種々変更した場合における
硬化物の一軸圧縮強さを調べた結果を示したグラフであ
り(但し製鋼スラグ量は50重量%一定とした)、この
グラフからもF値を50〜110の範囲とすることによ
り高レベルの一釉圧縮強さを確保し得ることが分かる。Figure 4 is a graph showing the results of examining the unconfined compressive strength of the cured product when the G/S value and F value were variously changed (however, the amount of steelmaking slag was kept constant at 50% by weight). It can also be seen that a high level of single glaze compressive strength can be ensured by setting the F value in the range of 50 to 110.
次に製鋼スラグの配合量は、「製鋼スラグの有効利用」
という所期の目的に沿うべく下限を50%と定めたが、
上限は以下に示す様な理由から80%程度とするのがよ
い。Next, the blending amount of steelmaking slag is determined based on "effective utilization of steelmaking slag."
In order to meet the intended purpose, the lower limit was set at 50%,
The upper limit is preferably about 80% for the reasons shown below.
即ち前記[I1式からも明らかな様にF値が50〜11
0の範囲においては、製鋼スラグの配合率Sと高炉水砕
スラグの配合率Gの間には比例関係があり、上記の様に
第3成分として高炉徐冷スラグを含む3成分系において
は、該徐冷スラグの量を減少させることにより、高炉水
砕スラグ量に比例して製鋼スラグ量を増加させることが
できる。但し水硬性路盤材においては前記第2表の欄外
に示した物性面の規格に加えて粒度分布にも規格があり
、第1表に示した如く粗砂に分類され且つ粒度分布の狭
い高炉水砕スラグを過剰に配合すると、路盤材の粒度分
布に偏りが生じて規格を外れることになる。その為高炉
水砕スラグを一定量以上配合することはできず、それに
伴って製鋼スラグの配合率も上限が決まってくる。モし
て粗粒(F値が50以下)の高炉水砕スラグを使用した
場合には、前記[I]式の要件を規定した場合でも製鋼
スラグの配合率は70%程度以下とすべきことが確認さ
れた。しかし高炉水砕スラグをF値が50〜110とな
る様に細粒化して使用する本発明においては、細粒化に
よって製鋼スラグに対する高炉水砕スラグの配合比率を
少なくすることができ、80%の製鋼スラグを配合した
場合でも物性及び粒度構成の両規格を満足する路盤材を
得ることができる。ちなみに第5図は、■細粒度が50
未満の高炉水砕スラグ(F値=44)17%と製鋼スラ
グ70%を配合して得た路盤材、及び■細粒度が50を
超える高炉水砕スラグ(F値=106)10%と製鋼ス
ラグ8o%を配合して得た路盤材(残部成分は何れも高
炉徐冷スラグ)の粒度分布を、JIS−A5Q15(7
)HMS−25で規定される範囲と対比して示したもの
である。That is, as is clear from the formula I1, the F value is 50 to 11.
In the range of 0, there is a proportional relationship between the proportion S of steelmaking slag and the proportion G of granulated blast furnace slag, and as mentioned above, in a three-component system that includes air-cooled blast furnace slag as the third component, By reducing the amount of slowly cooled slag, the amount of steelmaking slag can be increased in proportion to the amount of granulated blast furnace slag. However, for hydraulic roadbed materials, in addition to the standards for physical properties shown in the margins of Table 2 above, there are also standards for particle size distribution, and as shown in Table 1, blast furnace water, which is classified as coarse sand and has a narrow particle size distribution, If too much crushed slag is added, the particle size distribution of the roadbed material will become uneven, leading to deviations from the specifications. Therefore, it is not possible to mix more than a certain amount of granulated blast furnace slag, and accordingly, the upper limit of the mixing ratio of steelmaking slag is also determined. If coarse-grained (F value is 50 or less) granulated blast furnace slag is used, the proportion of steelmaking slag should be approximately 70% or less even if the requirements of formula [I] above are specified. was confirmed. However, in the present invention, in which granulated blast furnace slag is used after being refined to an F value of 50 to 110, the blending ratio of granulated blast furnace slag to steelmaking slag can be reduced to 80%. Even when a steelmaking slag of 100% is mixed, it is possible to obtain a roadbed material that satisfies both the standards for physical properties and grain size composition. By the way, in Figure 5, the fine grain size is 50.
Roadbed material obtained by blending 17% of granulated blast furnace slag (F value = 44) with a fineness of less than 17% and 70% of steelmaking slag; The particle size distribution of the roadbed material obtained by blending 80% slag (the remaining components are blast furnace slowly cooled slag) was determined by JIS-A5Q15 (7
) This is shown in comparison with the range specified by HMS-25.
この結果からも明らかな様に、細粒度が50未満の高炉
水砕スラグを使用する場合は、粒度構成の面からも製鋼
スラグの配合量は70%が上限と考えられるが、細粒度
が50以上の高炉水砕スラグを使用する本発明において
は、製鋼スラグの配合率を80%程度まで高めても規格
に適合する粒度構成の路盤材を得ることができる。但し
製鋼スラグ量が80%を超えると、適正な粒度分布を確
保する為の生産工程管理が難しくなると共に、硬化物の
膨張崩壊性を低レベルに抑えることができなくなり、例
えば第6図(製鋼スラグ配合量を硬化物の−φ+hl)
E縮強さの関係を示すグラフ:但しF値は8〇一定とし
た)に示す如<G/S値によっては水硬性スラグ硬化物
の規格で定められた一軸圧縮強さを外れる場合もでてく
る。As is clear from this result, when using granulated blast furnace slag with a fine grain size of less than 50%, the upper limit for the content of steelmaking slag is considered to be 70% in terms of grain size composition; In the present invention, which uses the above-described granulated blast furnace slag, it is possible to obtain a roadbed material having a particle size structure that meets the standards even if the blending ratio of steelmaking slag is increased to about 80%. However, if the amount of steelmaking slag exceeds 80%, it becomes difficult to control the production process to ensure an appropriate particle size distribution, and it becomes impossible to suppress the expansion and disintegration of the hardened product to a low level. The slag content is the cured product -φ+hl)
As shown in the graph showing the relationship between E shrinkage strength (where the F value was kept constant at 80), the uniaxial compressive strength may deviate from the standard for hydraulic slag cured products depending on the G/S value. It comes out.
尚本発明では、前述の要件を満たす限り製鋼スラグと高
炉水砕スラグの2成分のみで路盤材とすることもできる
が、通常は粒度調整及び物性改善の為、細粒物が多く膨
張崩壊性のない高炉徐冷スラグを適量配合し3成分系の
路盤材とするのがよい。In the present invention, as long as the above-mentioned requirements are met, it is possible to use only two components, steelmaking slag and granulated blast furnace slag, as a roadbed material. It is best to mix an appropriate amount of air-cooled blast furnace slag to make a three-component roadbed material.
[実施例]
下記第3表に示す成分組成及びj粒度分布の製鋼スラグ
、高炉水砕スラグ及び高炉徐冷スラグを使用し、これら
を第4表に示す比率で配合して同表に示す粒度分布及び
物性の路盤材を調整した。[Example] Using steelmaking slag, granulated blast furnace slag, and slow-cooled blast furnace slag with the component composition and particle size distribution shown in Table 3 below, these were mixed in the ratio shown in Table 4 to obtain the particle size shown in the table. The distribution and physical properties of the roadbed material were adjusted.
得られた3種の路盤材を使用し、下記の方法で上層路盤
材としての性能を調べた。即ち幅10mの道路に長さ5
0mに亘って3箇所(合計150m)に下層路盤材(バ
ラス)を敷きつめた後、上記各路盤材を上層路盤材とし
て敷きつめて(厚さ15cm)つき固め、更に5cmの
厚さでアスファルト合材で表面を舗装した。各層の物性
を第5表に示す。Using the three types of roadbed materials obtained, their performance as upper layer roadbed materials was investigated in the following manner. In other words, a road with a width of 10 m and a length of 5
After laying the lower base course material (balance) at three locations (total 150 m) over a length of 0 m, each of the above base base materials was laid as the upper base base material (15 cm thick), compacted, and asphalt mixture was further added to a thickness of 5 cm. The surface was paved with. Table 5 shows the physical properties of each layer.
そして舗装してから1年後の路盤状況を調べたところ、
上層路盤材の膨張に起因する崩壊や隆起、陥没或は路面
の割れ等は認められず、優れた路盤特性を有しているこ
とが確認された。When we investigated the condition of the roadbed one year after it was paved, we found that
There were no collapses, upheavals, depressions, or cracks in the road surface caused by the expansion of the upper roadbed material, and it was confirmed that the roadbed had excellent properties.
[発明の効果コ
本発明は以上の様に構成されるが、要は高炉水砕スラグ
と製鋼スラグの配合比を高炉水砕スラグの細粒度に応じ
て適正に調整することにより、水硬性、−軸圧縮強さ及
び耐久性の優れた路盤材を製造することができ、ひいて
は前述の要件を満足する範囲で多量の製鋼スラグを路盤
材原料として有効に活用し得ることになった。しかも本
発明によれば、セメント原料等として付加価値の高い高
炉水砕スラグの配合量を大幅に減少することができ、路
盤材を極めて安価に提供することができる。[Effects of the Invention] The present invention is constructed as described above, but the point is that by appropriately adjusting the blending ratio of granulated blast furnace slag and steelmaking slag according to the fineness of the granulated blast furnace slag, hydraulic properties, - A roadbed material with excellent axial compressive strength and durability can be manufactured, and a large amount of steelmaking slag can be effectively used as a raw material for the roadbed material within a range that satisfies the above requirements. Moreover, according to the present invention, the amount of granulated blast furnace slag, which has high added value as a cement raw material, can be significantly reduced, and the roadbed material can be provided at an extremely low cost.
第1図は、F値の異なる種々の高炉水砕スラグを使用し
た場合におけるG/S値と一軸圧縮強さの関係を示すグ
ラフ、第2図は一軸圧縮強さが12 Kgf / C0
I2である硬化物を得る為の高炉水砕スラグのF値及び
G/S値の関係を示すグラフ、第3図は高炉水砕スラグ
の細粒度Fと膨張量吸収率の関係を示すグラフ、第4図
はG/S値及びF値が硬化物の一釉圧縮強さに及ぼす影
響を示すグラフ、第5図はJISに規定する路盤材の粒
度分布と実装で用いた路盤材の粒度分布を示すグラフ、
第6図は製鋼スラグの配合量Sと一軸圧縮強さの関係を
示すグラフである。Figure 1 is a graph showing the relationship between G/S value and unconfined compressive strength when various granulated blast furnace slags with different F values are used, and Figure 2 is a graph showing the relationship between unconfined compressive strength of 12 Kgf/C0.
A graph showing the relationship between the F value and the G/S value of granulated blast furnace slag to obtain a hardened product that is I2, FIG. 3 is a graph showing the relationship between the fineness F of granulated blast furnace slag and the expansion absorption rate, Figure 4 is a graph showing the influence of G/S value and F value on the single glaze compressive strength of the cured product. Figure 5 is the particle size distribution of the roadbed material specified in JIS and the particle size distribution of the roadbed material used in mounting. A graph showing,
FIG. 6 is a graph showing the relationship between the blending amount S of steelmaking slag and the unconfined compressive strength.
Claims (1)
細粒度指数(F)が50〜110である高炉水砕スラグ
とを F=P_1_0_0+P_5_0+P_3_0(但しP
_1_0_0、P_5_0、P_3_0はASTM標準
ふるいの100番、50番、30番の通過重 量百分率) 下記式を満足する様に配合することを特徴とする水硬性
路盤材の製造方法。 (400−3.6F)≦10^3(G/S)50≦S≦
80 但しG:高炉水砕スラグの配合率(重量%)S:製鋼ス
ラグの配合率(%)。[Claims] Steelmaking slag with a particle size of 30 mm or less and granulated blast furnace slag with a fineness index (F) of 50 to 110 expressed by the following formula are combined into F=P_1_0_0+P_5_0+P_3_0 (where P
_1_0_0, P_5_0, and P_3_0 are weight percentages passing through ASTM standard sieves No. 100, No. 50, and No. 30). (400-3.6F)≦10^3 (G/S)50≦S≦
80 However, G: Blending ratio of granulated blast furnace slag (% by weight) S: Blending ratio of steelmaking slag (%).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60263195A JPS62123046A (en) | 1985-11-22 | 1985-11-22 | Manufacture of hydraulic road bed material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60263195A JPS62123046A (en) | 1985-11-22 | 1985-11-22 | Manufacture of hydraulic road bed material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62123046A true JPS62123046A (en) | 1987-06-04 |
Family
ID=17386095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60263195A Pending JPS62123046A (en) | 1985-11-22 | 1985-11-22 | Manufacture of hydraulic road bed material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62123046A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0393657A (en) * | 1989-09-05 | 1991-04-18 | Sumikin Kashima Kouka Kk | Hydraulic paving material |
JP2010013315A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Metal Ind Ltd | Manufacturing method of civil engineering material using steel slag |
JP2011001233A (en) * | 2009-06-19 | 2011-01-06 | Nippon Steel Corp | Non-expansive roadbed material |
JP2019137583A (en) * | 2018-02-10 | 2019-08-22 | Jfeスチール株式会社 | Method for manufacturing steelmaking slag roadbed material |
JP2019137584A (en) * | 2018-02-10 | 2019-08-22 | Jfeスチール株式会社 | Method for manufacturing steelmaking slag roadbed material |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840234A (en) * | 1971-09-25 | 1973-06-13 | ||
JPS5032927A (en) * | 1973-07-23 | 1975-03-29 | ||
JPS5222332A (en) * | 1975-08-13 | 1977-02-19 | Nippon Steel Corp | Hydraulic roadbed and roadbase material using dregs of hard water |
JPS5544802A (en) * | 1978-08-19 | 1980-03-29 | Rengo Co Ltd | Tool positioning device |
JPS5988503A (en) * | 1982-11-11 | 1984-05-22 | 株式会社中山製鋼所 | Composite rod foundation material and production thereof |
JPS59108996A (en) * | 1982-12-14 | 1984-06-23 | 日立造船株式会社 | Method of processing radioactive waste |
JPS6042698A (en) * | 1983-08-18 | 1985-03-06 | 日立造船株式会社 | Method of vitrifying radioactive waste |
JPS60146199A (en) * | 1984-01-09 | 1985-08-01 | 株式会社神戸製鋼所 | Method of solidifying and treating sodium nitrate |
JPS60250103A (en) * | 1984-05-24 | 1985-12-10 | 株式会社神戸製鋼所 | Hydraulic road material |
JPS6140902A (en) * | 1984-08-01 | 1986-02-27 | 株式会社神戸製鋼所 | Hydraulic composition for road |
-
1985
- 1985-11-22 JP JP60263195A patent/JPS62123046A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840234A (en) * | 1971-09-25 | 1973-06-13 | ||
JPS5032927A (en) * | 1973-07-23 | 1975-03-29 | ||
JPS5222332A (en) * | 1975-08-13 | 1977-02-19 | Nippon Steel Corp | Hydraulic roadbed and roadbase material using dregs of hard water |
JPS5544802A (en) * | 1978-08-19 | 1980-03-29 | Rengo Co Ltd | Tool positioning device |
JPS5988503A (en) * | 1982-11-11 | 1984-05-22 | 株式会社中山製鋼所 | Composite rod foundation material and production thereof |
JPS59108996A (en) * | 1982-12-14 | 1984-06-23 | 日立造船株式会社 | Method of processing radioactive waste |
JPS6042698A (en) * | 1983-08-18 | 1985-03-06 | 日立造船株式会社 | Method of vitrifying radioactive waste |
JPS60146199A (en) * | 1984-01-09 | 1985-08-01 | 株式会社神戸製鋼所 | Method of solidifying and treating sodium nitrate |
JPS60250103A (en) * | 1984-05-24 | 1985-12-10 | 株式会社神戸製鋼所 | Hydraulic road material |
JPS6140902A (en) * | 1984-08-01 | 1986-02-27 | 株式会社神戸製鋼所 | Hydraulic composition for road |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0393657A (en) * | 1989-09-05 | 1991-04-18 | Sumikin Kashima Kouka Kk | Hydraulic paving material |
JP2010013315A (en) * | 2008-07-03 | 2010-01-21 | Sumitomo Metal Ind Ltd | Manufacturing method of civil engineering material using steel slag |
JP2011001233A (en) * | 2009-06-19 | 2011-01-06 | Nippon Steel Corp | Non-expansive roadbed material |
JP2019137583A (en) * | 2018-02-10 | 2019-08-22 | Jfeスチール株式会社 | Method for manufacturing steelmaking slag roadbed material |
JP2019137584A (en) * | 2018-02-10 | 2019-08-22 | Jfeスチール株式会社 | Method for manufacturing steelmaking slag roadbed material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7294193B2 (en) | Cementitious materials including slag and geopolymers | |
CN113754398B (en) | Modified phosphogypsum stabilized macadam and preparation method and application thereof | |
KR101372676B1 (en) | Concrete composition with iron and steelmaking slag | |
KR101881077B1 (en) | Cement composition comprising ferronickel slag, and concrete composition comprising the same | |
KR101191620B1 (en) | High strength ascon composition comprising slag ball and method for producing the same | |
JP5158026B2 (en) | Permeable structure material | |
Terrel | Soil Stabilization in Pavement Structures: Mixture design considerations | |
CN105174823A (en) | Asphalt concrete packing and asphalt concrete | |
KR101904172B1 (en) | High Early Cement Composition for Road Pavement and Pavement Method Using Thereof | |
JPS62123046A (en) | Manufacture of hydraulic road bed material | |
KR102485927B1 (en) | Prepartion method of low heated mixed cement using ferro-nickel slag powder and concrete composition prepared using the same | |
JP2003137618A (en) | Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them | |
JPS60250103A (en) | Hydraulic road material | |
KR101275985B1 (en) | Method of manufacturing composite slag for base of road | |
JP4204922B2 (en) | Roadbed material and method for manufacturing the same | |
KR100524461B1 (en) | concrete composite mixed with limestone powder | |
KR101292181B1 (en) | Concrete composition having improved durability | |
KR101797350B1 (en) | High strength conctete composition for psc girder | |
JP3035765B2 (en) | Soil stabilizer and stabilization method of natural soil using this soil stabilizer | |
KR101727728B1 (en) | Blended concrete composite using silica fume and manufacturing method thereof | |
JPH0393657A (en) | Hydraulic paving material | |
JPS642145B2 (en) | ||
JPS6140902A (en) | Hydraulic composition for road | |
JP2003146732A (en) | Method of producing slag hardened body | |
KR101064995B1 (en) | Concrete Compostion with Crushed Admixture Additive For Paving of bridge Deck |