JP2019137584A - Method for manufacturing steelmaking slag roadbed material - Google Patents

Method for manufacturing steelmaking slag roadbed material Download PDF

Info

Publication number
JP2019137584A
JP2019137584A JP2018022591A JP2018022591A JP2019137584A JP 2019137584 A JP2019137584 A JP 2019137584A JP 2018022591 A JP2018022591 A JP 2018022591A JP 2018022591 A JP2018022591 A JP 2018022591A JP 2019137584 A JP2019137584 A JP 2019137584A
Authority
JP
Japan
Prior art keywords
steelmaking slag
slag
particle size
less
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018022591A
Other languages
Japanese (ja)
Other versions
JP6766832B2 (en
Inventor
孝一 市川
Koichi Ichikawa
孝一 市川
克則 ▲高▼橋
克則 ▲高▼橋
Katsunori Takahashi
渡辺 圭児
Keiji Watanabe
圭児 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018022591A priority Critical patent/JP6766832B2/en
Publication of JP2019137584A publication Critical patent/JP2019137584A/en
Application granted granted Critical
Publication of JP6766832B2 publication Critical patent/JP6766832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a method for manufacturing a steelmaking slag roadbed material that has an extremely low expansibility, with high productivity.SOLUTION: Concerning a steelmaking slag a crushed to a grain-size in which the percentage of a grain size of 40 mm or less is 80 mass% or more and followed by applying steam aging at an ordinary pressure, by increasing/decreasing the fine-grain and fine-powder portions under a condition in which (i) concerning a portion of the steelmaking slag a, it is classified with a sieve x having a mesh size of 10 mm or less to reduce the fine-grain and fine-powder portions, followed by mixing with the remainder of the steelmaking slag a, or, (ii) fine-grain and fine-powder portions previously obtained by classifying a steelmaking slag crushed to a grain-size in which the percentage of a grain size of 40 mm or less is 80 mass% or more and following said crushing followed by applying steam aging, with a sieve x having a mesh size of 10 mm or less, are added to steelmaking slag a and mixed, the grain-size distribution of steelmaking slag a is adjusted so as the Fuller index satisfies 0.4 to 0.6 when the grain-size distribution of steelmaking slag a is approximated by Andreazen's curve formula.SELECTED DRAWING: Figure 6

Description

この発明は、製鋼スラグを蒸気エージングして製造される製鋼スラグ路盤材の製造方法に関する。   The present invention relates to a method for producing a steelmaking slag roadbed material produced by steam aging steelmaking slag.

製鋼スラグは、精錬で添加される石灰源やマグネシア源の一部が未溶融或いは他の成分と化合物を形成しないで遊離したまま残留している。このような遊離CaOや遊離MgOが水分と水和反応すると、体積が2倍以上に膨張して周囲の構造物を破壊するため、製鋼スラグを石材や道路路盤材として利用するには、使用前の段階で水和反応を促進して沈静化しておく必要がある。   In the steelmaking slag, some of the lime source and magnesia source added by refining remain unmelted or free without forming a compound with other components. When such free CaO or free MgO hydrates with water, the volume expands more than twice and destroys surrounding structures. Therefore, before using steelmaking slag as a stone or roadbed material, It is necessary to promote hydration and calm down at this stage.

製鋼スラグ中の遊離CaOや遊離MgOを水分と速やかに反応させるのに、昇温と水分供給を同時に行なう蒸気での反応促進(蒸気エージング)が一般的に実施されている。蒸気エージングには、常圧で行われるものと加圧状態で行われるもの(加圧蒸気エージング)があるが、常圧の蒸気エージングは、加圧蒸気エージングに較べて処理速度は小さいが、簡易な設備で大量処理が可能である利点がある(例えば、特許文献1)。   In order to rapidly react free CaO and free MgO in steelmaking slag with moisture, reaction promotion (steam aging) with steam that simultaneously raises temperature and supplies moisture is generally performed. There are two types of steam aging: normal pressure and pressurized pressure (pressurized steam aging). Normal pressure steam aging has a lower processing speed than pressurized steam aging, but is simple. There is an advantage that a large amount of processing is possible with simple equipment (for example, Patent Document 1).

特開昭63−260842号公報JP-A-63-260842

製鋼スラグを蒸気エージングするとスラグ粒子の一部は膨張反応で崩壊するため、粒度分布は細かい側に変化する。膨張を抑制しようとして、常圧での蒸気エージングの時間を長くすると、細粒化は進むが膨張性の安定化は鈍る。そうして、路盤材製品の膨張基準を満たすような安定した路盤材を製造するエージング処理の生産性が落ちる。   When steam aging steelmaking slag, some of the slag particles collapse due to expansion reaction, so the particle size distribution changes to the fine side. If the time of steam aging at normal pressure is lengthened in an attempt to suppress the expansion, the atomization progresses but the expansion stability is slowed down. Thus, the productivity of the aging process for producing a stable roadbed material that satisfies the expansion standard of the roadbed material product is lowered.

したがって本発明の目的は、製鋼スラグを常圧で蒸気エージングして製鋼スラグ路盤材を製造する方法において、膨張性が極めて低い製鋼スラグ路盤材を高い生産性で製造することができる製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a production method capable of producing a steelmaking slag roadbed material having extremely low expansibility with high productivity in a method for producing a steelmaking slag roadbed material by steam aging steelmaking slag at normal pressure. There is to do.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に常圧で蒸気エージングを施した製鋼スラグ(a)について、下記(i)又は(ii)の条件で細粒・微粉分を増減することにより、製鋼スラグ(a)の粒度分布をAndreazenの曲線式で近似した場合に、Fuller指数が0.4〜0.6となるように製鋼スラグ(a)の粒度分布を調整することを特徴とする製鋼スラグ路盤材の製造方法。
(i)製鋼スラグ(a)の一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、製鋼スラグ(a)の残部と混合する。
(ii)以前に、粒径40mm以下の割合が80mass%以上となる粒度に破砕され且つ該破砕後に蒸気エージングが施された製鋼スラグを篩目が10mm以下の篩(x)で分級することで得られている細粒・微粉分を、製鋼スラグ(a)に加えて混合する。
The gist of the present invention for solving the above problems is as follows.
[1] For steelmaking slag (a) that has been crushed to a particle size with a particle size of 40 mm or less of 80 mass% or more and then subjected to steam aging at normal pressure, fine granules and fine powder under the following conditions (i) or (ii) Adjust the particle size distribution of steelmaking slag (a) so that the Fuller index is 0.4 to 0.6 when the particle size distribution of steelmaking slag (a) is approximated by Andreazen's curve formula A method for producing a steelmaking slag roadbed material characterized by comprising:
(I) A part of the steelmaking slag (a) is classified with a sieve (x) having a sieve mesh of 10 mm or less to reduce fine particles and fine powder, and then mixed with the remainder of the steelmaking slag (a).
(Ii) By classifying steelmaking slag that has been previously crushed to a particle size in which the ratio of particle size of 40 mm or less is 80 mass% or more and steam-aged after the crushing, is classified with a sieve (x) having a mesh size of 10 mm or less. The fine particles and fine powder obtained are added to the steelmaking slag (a) and mixed.

[2]上記[1]の製造方法において、製鋼スラグ(a)の少なくとも一部が、塩基度(但し、CaO/SiOの質量比)が3.3以上の製鋼スラグであることを特徴とする製鋼スラグ路盤材の製造方法。
[3]上記[1]又は[2]の製造方法において、製鋼スラグ(a)が同日に同じ精錬設備で発生した脱炭スラグであり、該製鋼スラグ(a)の一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、製鋼スラグ(a)の残部と混合することにより、製鋼スラグ(a)の細粒・微粉分を減少させて粒度分布を調整することを特徴とする製鋼スラグ路盤材の製造方法。
[2] In the production method of [1], at least a part of the steelmaking slag (a) is a steelmaking slag having a basicity (however, a mass ratio of CaO / SiO 2 ) of 3.3 or more. A method for manufacturing steelmaking slag roadbed material.
[3] In the production method of [1] or [2] above, the steelmaking slag (a) is decarburized slag generated in the same refining equipment on the same day, and a part of the steelmaking slag (a) has a mesh size of 10 mm. Fine particles and fines are reduced by classification with the following sieve (x), and then mixed with the remainder of the steelmaking slag (a) to reduce the fines and fines of the steelmaking slag (a). The manufacturing method of the steel-making slag roadbed material characterized by adjusting distribution.

[4]上記[1]又は[2]の製造方法において、製鋼スラグ(a)が2種以上の製鋼スラグからなり、そのなかの1種の製鋼スラグ(a1)の全部又は一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、残りの1種以上の製鋼スラグ(a2)及び製鋼スラグ(a1)の残部(但し、製鋼スラグ(a1)の全部を上記分級した場合を除く。)と混合することにより、製鋼スラグ(a)の細粒・微粉分を減少させて粒度分布を調整することを特徴とする製鋼スラグ路盤材の製造方法。
[5]上記[4]の製造方法において、製鋼スラグ(a1)が同日に同じ精錬設備で発生した脱炭スラグであり、製鋼スラグ(a2)が脱炭スラグ以外の製鋼スラグであることを特徴とする製鋼スラグ路盤材の製造方法。
[4] In the manufacturing method of [1] or [2] above, the steelmaking slag (a) comprises two or more types of steelmaking slag, and all or a part of one type of steelmaking slag (a1) is sieved. Is reduced with a sieve (x) of 10 mm or less to reduce fines and fines, then the remaining one or more types of steelmaking slag (a2) and the remainder of the steelmaking slag (a1) (however, steelmaking slag (a1) The method for producing a steelmaking slag roadbed material is characterized by adjusting the particle size distribution by reducing the fine and fine powder content of the steelmaking slag (a) by mixing with the above.
[5] In the production method of [4], the steelmaking slag (a1) is a decarburized slag generated in the same refining facility on the same day, and the steelmaking slag (a2) is a steelmaking slag other than the decarburized slag. A method for producing steelmaking slag roadbed material.

[6]上記[1]〜[5]のいずれかの製造方法において、篩(x)の篩目が4mm以上6mm以下であることを特徴とする製鋼スラグ路盤材の製造方法。
[7]上記[1]〜[6]のいずれかの製造方法において、粒度分布を調整した後の製鋼スラグ(a)の粒度が、JIS A5015(2013)に粒度範囲が定められているCS−40、CS−30、CS−20、MS−25、HMS−25のいずれかの粒度範囲を満足することを特徴とする製鋼スラグ路盤材の製造方法。
[6] The method for producing a steelmaking slag roadbed material according to any one of the above [1] to [5], wherein the sieve (x) has a mesh size of 4 mm or more and 6 mm or less.
[7] In the production method according to any one of the above [1] to [6], the particle size range of the steelmaking slag (a) after adjusting the particle size distribution is defined in JIS A5015 (2013). 40, CS-30, CS-20, MS-25, HMS-25 any particle size range is satisfied, The manufacturing method of the steel-making slag roadbed material characterized by the above-mentioned.

本発明によれば、適用したエージング条件で到達し得る最低レベルにまで膨張性を低減した製鋼スラグ路盤材を高い生産性で製造することできる。このため膨張性の製鋼スラグを従来と同じエージング条件や蒸気原単位で蒸気エージングした場合でも、より多くの膨張率合格品(路盤材製品)を得ることができる。また、本発明法で製造された製鋼スラグ路盤材は、膨張性が極めて低いだけでなく、密度が高いため締め固め性にも優れている。   ADVANTAGE OF THE INVENTION According to this invention, the steel-making slag roadbed material which reduced the expansibility to the lowest level which can be reached | attained on the applied aging conditions can be manufactured with high productivity. For this reason, even when expandable steelmaking slag is steam-aged under the same aging conditions and steam intensity as before, more expansion rate acceptable products (roadbed material products) can be obtained. Moreover, the steel-making slag roadbed material manufactured by the method of the present invention has not only extremely low expansibility but also excellent compactability because of its high density.

標準92回/層×3層の突き固めを、46回/層×3層、92回/層×3層、184回/層×3層と変化させて製鋼スラグの突き固めを行った各供試体の乾燥密度を示すグラフEach tamping of steelmaking slag was performed by changing the standard 92 times / layer × 3 layers tamping to 46 times / layer × 3 layers, 92 times / layers × 3 layers, and 184 times / layers × 3 layers. Graph showing the dry density of the specimen 図1に示す各供試体について、80℃に保持した水槽に浸漬した水浸試験での膨張率の推移を示すグラフFIG. 1 is a graph showing the transition of the expansion coefficient in a water immersion test immersed in a water tank maintained at 80 ° C. for each specimen shown in FIG. 図1及び図2の供試体が得られた3層の突き固めにおいて、1層だけ突き固めた時点で採取された試料の粒度分布を示すグラフA graph showing the particle size distribution of a sample collected at the time when only one layer was tamped in the tamping of the three layers from which the specimens of FIGS. 1 and 2 were obtained. 常圧で蒸気エージングを施した供試体(製鋼スラグ)の乾燥密度と水浸膨張率との関係を示すグラフGraph showing the relationship between dry density and water immersion expansion rate of specimens (steel slag) subjected to steam aging at normal pressure Andreasenの曲線(積算分布)を示すグラフGraph showing Andreasen's curve (cumulative distribution) 常圧で蒸気エージングを施した種々の製鋼スラグ試料の粒度分布をAndreasenの曲線式で近似した場合のFuller指数qと、各試料の突き固め時の乾燥密度(JIS A1210(2009)に定められたE−bの方法に従い標準92回/層×3層の突き固めを行って得られた乾燥密度)との関係を示すグラフFuller index q in the case of approximating the particle size distribution of various steelmaking slag samples subjected to steam aging at normal pressure by Andreasen's curve formula and the dry density at the time of tamping each sample (specified in JIS A1210 (2009)) Graph showing the relationship with the standard (dry density obtained by tamping 92 times / layer × 3 layers) according to the method of Eb) 常圧で蒸気エージングを施した製鋼スラグの水浸膨張率(80℃一定保持で4日後の膨張率)とFuller指数qとの関係を示すグラフGraph showing the relationship between the water immersion expansion rate (expansion rate after 4 days at 80 ° C.) and the Fuller index q of steel slag that has been steam-aged at normal pressure 塩基度3.3〜3.9の製鋼スラグを常圧で蒸気エージングした場合の粒度分布の変化(蒸気エージング前後での粒度分布の変化)を示すグラフGraph showing changes in particle size distribution (changes in particle size distribution before and after steam aging) when steel slag having a basicity of 3.3 to 3.9 is steam-aged at normal pressure 常圧での蒸気エージング後の製鋼スラグについて、その粒度分布をAndreazenの曲線式で近似し、Fuller指数qを求めた結果の一例を示すグラフGraph showing an example of the result of obtaining Fuller index q for steelmaking slag after steam aging at normal pressure by approximating its particle size distribution with Andreazen's curve formula

以下の説明において、「常圧の蒸気エージング」などという場合のほかに、単に「蒸気エージング」という場合も、特に断りがない限り、常圧(大気圧)で行われる蒸気エージングを意味するものとする。
本発明者は以下のような実験を行った。
路盤材の膨張性評価に用いられる突き固め試験では、条件により突き固め回数が決められている。JIS A1210(2009)に定められたE−bの方法では、内径150mmの円筒容器(CBR試験型枠)に1層につき4.5kgのランマを92回落下させて突き、これを3層で突いて高さ125mmに突き固める。突き固めた供試体の質量が分かれば、事前に調整した含水比を基にして、乾燥時の供試体質量および密度が求められる。
In the following description, in addition to the case of "normal pressure steam aging", the case of simply "steam aging" means steam aging performed at normal pressure (atmospheric pressure) unless otherwise specified. To do.
The inventor conducted the following experiment.
In the tamping test used for the expansibility evaluation of the roadbed material, the number of tamping is determined depending on the conditions. In the E-b method defined in JIS A1210 (2009), a 4.5 kg rammer is dropped 92 times into a cylindrical container (CBR test form) with an inner diameter of 150 mm, and this is thrust into three layers. To a height of 125mm. If the mass of the solidified specimen is known, the specimen mass and density at the time of drying can be determined based on the moisture content adjusted in advance.

標準92回/層×3層の突き固めを、46回/層×3層、92回/層×3層、184回/層×3層と変化させて製鋼スラグの突き固めを行い、突き固めた各供試体の乾燥密度を測定した。その結果を図1に示すが、突き固め回数を増やすと乾燥密度は増大している。一方、突き固めた供試体を80℃に保持した水槽に浸漬して膨張の推移を計測した。図2に、この水浸試験での各供試体の膨張率の推移を示すが、膨張率は密度の小さい順に大きくなっている。すなわち、膨張率は46回/層>92回/層>184回/層となっている。上記3層の突き固めにおいて、1層だけ突き固めた時点の試料を採取し、粒度分布測定した結果を図3に示すが、突き固め回数が184回では粗粒が若干崩壊した様子が分かる。   The standard 92 times / layer x 3 layers tamping is changed to 46 times / layers x 3 layers, 92 times / layers x 3 layers, 184 times / layers x 3 layers, and the steelmaking slag is tamped and tamped. The dry density of each specimen was measured. The results are shown in FIG. 1, and the dry density increases as the number of tamping increases. On the other hand, the tamped specimen was immersed in a water tank maintained at 80 ° C., and the transition of expansion was measured. FIG. 2 shows the transition of the expansion coefficient of each specimen in this water immersion test. The expansion coefficient increases in the order of decreasing density. That is, the expansion coefficient is 46 times / layer> 92 times / layer> 184 times / layer. In the tamping of the three layers, a sample at the time of tamping only one layer was collected, and the result of the particle size distribution measurement is shown in FIG. 3, and it can be seen that the coarse particles slightly collapsed when the number of tamping times was 184.

以上の結果は、数多く突き固めて多少粒子が壊れたとしても、密度が高くなるように充填させた方が膨張は小さくなることを示している。
その他これまで、常圧の蒸気エージングの処理時間を48時間から96時間まで変化させた種々の条件で試験した水浸膨張試験供試体(製鋼スラグ)について乾燥密度と水浸膨張率(ここでは80℃一定保持で4日後の膨張率で比較)を調べた結果では、乾燥密度が小さい供試体ほど膨張性が大きい傾向があった。
The above results show that the expansion is smaller when the particles are packed so as to have a higher density even if the particles are broken to some extent and broken to some extent.
In addition, the dry density and the water expansion coefficient (here, 80%) of the water expansion test specimen (steel slag) which has been tested under various conditions where the treatment time of the normal pressure steam aging was changed from 48 hours to 96 hours. As a result of investigating the expansion rate after 4 days at a constant temperature, the specimen having a lower dry density tended to have a higher expansibility.

図4は、蒸気エージング(処理時間:72±24時間)を施した供試体(製鋼スラグ)の乾燥密度(JIS A1210(2009)に定められたE−bの方法に従い標準92回/層×3層の突き固めを行って得られた乾燥密度)と水浸膨張率との関係を示しているが、上記と同様の傾向が見られる。
一つのスラグ粒子に注目した場合、充填性が高く周囲の粒子からの拘束が大きいと、粒子の亀裂内にある膨張源が反応して膨張し、粒子自体を膨張させようとしても、拘束されて自由には反応が進まない。膨張反応によって粒子をより破壊して亀裂を進展させれば、反応進行中の膨張源や進展した亀裂先端にある未反応膨張源に水分が到達する空間が広げられる。しかし、粒子周辺の拘束が強いと、水分を膨張源に供給するための空間を容易には広げられず、結果として、膨張反応が抑制される。
FIG. 4 shows the dry density of a specimen (steel slag) subjected to steam aging (treatment time: 72 ± 24 hours) (standard 92 times / layer × 3 according to the method of Eb defined in JIS A1210 (2009)). Although the relationship between the dry density obtained by tamping the layer) and the water expansion coefficient is shown, the same tendency as described above is observed.
When focusing on one slag particle, if the filling property is high and the constraint from surrounding particles is large, the expansion source in the crack of the particle reacts and expands, and even if it tries to expand the particle itself, it is restrained. The reaction does not proceed freely. If the particle is further destroyed by the expansion reaction and the crack is advanced, the space in which moisture reaches the expansion source during the reaction and the unreacted expansion source at the advanced crack tip is expanded. However, if the constraint around the particles is strong, the space for supplying moisture to the expansion source cannot be easily expanded, and as a result, the expansion reaction is suppressed.

製鋼スラグの密度を高めるには、粗粒が密に配列し、粗粒間に生じる空隙を細粒が埋め、さらに微粉が細粒間に残る空隙を埋めていくのが望ましい。しかし、空隙を埋めるのに必要以上の細粒、微粉があれば、細粒どうしが接して小さな空隙を多数生じるために、結局、最密な充填からは離れていく。蒸気エージングを長くしても、細粒が必要以上に増えてしまえば、スラグ粒子のパッキングを悪化させて、膨張率の低減化を妨げる。   In order to increase the density of the steelmaking slag, it is desirable to arrange the coarse particles densely, fill the voids formed between the coarse particles with fine particles, and further fill the voids where fine powder remains between the fine particles. However, if there are more fine particles or fine powder than necessary to fill the voids, the fine particles come into contact with each other to form a large number of small voids. Even if the steam aging is lengthened, if the fine particles increase more than necessary, the packing of the slag particles is deteriorated and the reduction of the expansion rate is hindered.

蒸気エージングを施した種々の製鋼スラグの粒度分布について調べたところ、粒度分布にかなりの差があることが判った。
連続粒度分布の表現についてAndreasenの曲線式があり、最大粒径(Dpmax)に対して各中間径(Dp)での通過質量分率についてFuller指数qを用いて下記(1)式のように表す。
U(Dp)=(Dp/Dpmax) …(1)
ここで、Dpは粒径、Dpmaxは最大粒径、U(Dp)は粒径Dpまでの通過質量分率である。(出典:例えば「三輪茂雄、粉体工学、日刊工業新聞社、1981年、p.42」)
このAndreasenの曲線は図5のような積算分布になり、細かい粒子が多いほどFuller指数qは小さい値となる。実験的には、疎充填ではq=1/2で、密充填ではq=1/3で、それぞれ最も密度が高くなるとされている。
When the particle size distribution of various steelmaking slags subjected to steam aging was examined, it was found that there was a considerable difference in the particle size distribution.
There is Andreasen's curve formula for the expression of the continuous particle size distribution, and the passing mass fraction at each intermediate diameter (Dp) with respect to the maximum particle diameter (Dpmax) is expressed as the following formula (1) using the Fuller index q. .
U (Dp) = (Dp / Dpmax) q (1)
Here, Dp is the particle size, Dpmax is the maximum particle size, and U (Dp) is the passing mass fraction up to the particle size Dp. (Source: For example, “Shigeo Miwa, Powder Engineering, Nikkan Kogyo Shimbun, 1981, p. 42”)
This Andreasen curve has an integrated distribution as shown in FIG. 5, and the smaller the number of fine particles, the smaller the Fuller index q. Experimentally, q = 1/2 for sparse filling and q = 1/3 for dense filling, and the density is highest.

最大粒径DpmaxとFuller指数qを変数として、蒸気エージングを施した種々の製鋼スラグ試料の粒度分布をAndreasenの曲線式で近似した。各試料の突き固め時の乾燥密度(JIS A1210(2009)に定められたE−bの方法に従い標準92回/層×3層の突き固めを行って得られた乾燥密度)とFuller指数qの関係を図6に示す。図6によれば、乾燥密度はqが0.4〜0.6で最大となり、その前後は小さくなる傾向がある。細粒・微粉が増えるとqは0.4を下回って、乾燥密度が小さくなる。逆にqが0.6を上回るのは細粒・微粉を試験的に低減した水準であるが、やはり乾燥密度が小さい。これはqに充填に最適な範囲があるということであり、Andreasenの曲線式の傾向にも合致している。   Using the maximum particle size Dpmax and the Fuller index q as variables, the particle size distribution of various steelmaking slag samples subjected to steam aging was approximated by Andreasen's curve formula. The dry density at the time of tamping each sample (dry density obtained by tamping of 92 times / layer × 3 layers in accordance with the method of Eb defined in JIS A1210 (2009)) and the Fuller index q The relationship is shown in FIG. According to FIG. 6, the dry density has a maximum when q is 0.4 to 0.6, and tends to be small before and after that. When fine particles and fine powder increase, q falls below 0.4 and the dry density decreases. On the other hand, q exceeds 0.6 at a level where the fine particles and fine powder were experimentally reduced, but the dry density is still small. This means that q has an optimum range for filling, and is consistent with the tendency of Andreasen's curve formula.

製鋼スラグの実際の破砕プラントにおいて、単純に破砕過程及び分級した粗粒の再破砕を経た製品では、細粒・微粉が例えば鉄鋼スラグ路盤材のJIS規格(JIS A5015)に照らして必要より少ないことはあまりなく、概ね細かく砕きすぎる場合が多いと考えられる。
さきに挙げた図4において乾燥密度が小さく、膨張が大きかった水準は殆んどqが0.4未満である。ちなみに常圧で蒸気エージングを施した製鋼スラグの水浸膨張率(80℃一定保持で4日後の膨張率)とFuller指数qとの関係をみると、図7に示すようにq=0.5に向かって水浸膨張率が低下している。
In an actual crushing plant for steelmaking slag, products that have undergone crushing process and re-crushing coarse particles that have been classified should have less fines and fines than necessary in light of the JIS standard for steel slag roadbed materials (JIS A5015). There are not so many, and it is thought that there are many cases where it is crushed finely.
In FIG. 4 mentioned above, the level at which the dry density is small and the expansion is large is that q is less than 0.4. Incidentally, the relationship between the water immersion expansion rate (expansion rate after 4 days at 80 ° C.) and the Fuller index q of steelmaking slag subjected to steam aging at normal pressure is q = 0.5 as shown in FIG. The water immersion expansion rate is decreasing toward.

Fuller指数qが0.6より大きくなると、粗粒どうしが接触する頻度が高くなり、粗粒間の空隙を埋める細粒が不足して、充填性が低下する。この場合も粒子間の拘束が低くなり、膨張崩壊をより自由に進められる環境になる。さらに、粗粒ばかりの場合は、JIS A5015に規定された水浸膨張試験で、試料粒子を型枠の中に突き固める際に、ランマの衝撃を粗粒が直接受ける確率が増し、かつ粗粒に接触している粒子が低充填で少ないため、周囲に応力を分散できなくなって、衝撃を受けた粗粒が高頻度で崩壊する。そうすると、新しい破面に未反応の膨張源が出現するため、蒸気エージングしたにも拘わらず、水浸膨張試験前に多くの未反応膨張源が反応しやすい状況となって、水浸膨張率を上昇させることになる。したがって、粒度を単純に粗粒化すればよい訳でもない。   When the Fuller index q is larger than 0.6, the frequency with which the coarse particles come into contact with each other increases, and the fine particles that fill the gaps between the coarse particles are insufficient, thereby reducing the filling property. Also in this case, the constraint between the particles becomes low, and an environment in which expansion and collapse can be promoted more freely. Furthermore, in the case of only coarse particles, the probability that the coarse particles are directly subjected to the impact of the Ranma increases when the sample particles are solidified in the mold by the water immersion expansion test specified in JIS A5015. Since there are few particles in contact with the filler, the stress cannot be dispersed to the surroundings, and the impacted coarse particles are frequently broken down. As a result, an unreacted expansion source appears on the new fracture surface.Despite steam aging, many unreacted expansion sources are likely to react before the water immersion expansion test. Will be raised. Therefore, it is not necessary to simply coarsen the particle size.

以上のことから、本発明者は、蒸気エージングを施した製鋼スラグの水浸膨張は粒度分布によっても影響を受けており、粒度分布が不適切であるためにスラグ粒子の充填性が低下すると、水浸膨張が増大していることを見出した。したがって、望まれる蒸気エージングを実施しても、粒度分布が不適切であることによって膨張性が不合格判定になることが相当数起こっているものと考えられる。また、塩基度が高い製鋼スラグの場合、膨張源の遊離CaOがスラグ内に広範に分布しているため、どの破面にも膨張源が現れることとなり、膨張崩壊の連鎖はさらに強くなる。このような現象は、特に塩基度(但し、CaO/SiOの質量比。以下同様)が3.3以上の製鋼スラグで顕著になる。これは、スラグが凝結する高温段階で鉱物相中に3CaO・SiO(トリカルシウムシリケート)が現れるが、それが1250℃を下回るとCaOと2CaO・SiOに分解してフリーのCaOを生成するため、膨張源がスラグ組織に広範に分散してしまうためである。 From the above, the inventor of the present invention, the water immersion expansion of the steel slag subjected to steam aging is also affected by the particle size distribution, and when the filling property of the slag particles is reduced because the particle size distribution is inappropriate, It was found that the water immersion expansion was increased. Therefore, even if the desired steam aging is performed, it is considered that a considerable number of cases where the expansibility is determined to be unacceptable due to an inappropriate particle size distribution. Further, in the case of steelmaking slag having a high basicity, since free CaO as an expansion source is widely distributed in the slag, the expansion source appears on any fracture surface, and the expansion / collapse chain is further strengthened. Such a phenomenon becomes prominent particularly in steelmaking slag having a basicity (however, the mass ratio of CaO / SiO 2 , the same applies hereinafter) of 3.3 or more. This is because 3CaO.SiO 2 (tricalcium silicate) appears in the mineral phase at a high temperature stage where slag is condensed, but when it falls below 1250 ° C., it decomposes into CaO and 2CaO.SiO 2 to produce free CaO. For this reason, the expansion source is widely dispersed in the slag structure.

本発明者は、上記知見に基づきさらに検討を進めた結果、蒸気エージングを施した製鋼スラグに対して、所定の条件で細粒・微粉分を増減することにより、適用したエージング条件で到達し得る最小の膨張率の路盤材が得られることが判った。また、特に塩基度が高い製鋼スラグの場合には、蒸気エージングを施すとスラグ粒度が細粒化してしまうが、このような蒸気エージング後の製鋼スラグでも、上記のように所定の条件で細粒・微粉分を増減することにより、同様に最小の膨張率の路盤材が得られることが判った。具体的には、Fuller指数qが0.4〜0.6となるように粒度分布を調整することが望ましいことが判った。この方法によれば、蒸気エージング後の製鋼スラグの細粒・微粉分を増減するだけでよいため、膨張性が極めて低い製鋼スラグ路盤材を高い生産性で製造することができ、また、製造される製鋼スラグ路盤材は、密度が高いため締め固め性にも優れている。   As a result of further investigation based on the above knowledge, the present inventor can reach the applied aging condition by increasing / decreasing the fine particle / fine powder content under a predetermined condition with respect to the steel slag subjected to steam aging. It was found that a roadbed material with the smallest expansion rate can be obtained. In addition, in the case of steelmaking slag having a particularly high basicity, the slag particle size becomes finer when steam aging is performed, but even in such steelmaking slag after steam aging, fine particles are formed under predetermined conditions as described above.・ It has been found that by increasing or decreasing the fine powder content, a roadbed material with the smallest expansion rate can be obtained. Specifically, it has been found desirable to adjust the particle size distribution so that the Fuller index q is 0.4 to 0.6. According to this method, it is only necessary to increase / decrease the fine particles / fine powder content of the steelmaking slag after steam aging, so that it is possible to produce a steelmaking slag roadbed material with extremely low expansibility with high productivity. The steelmaking slag roadbed material has a high density and is excellent in compaction.

このため本発明では、粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に常圧で蒸気エージングを施した製鋼スラグ(以下、説明の便宜上「製鋼スラグa」という)について、下記(i)又は(ii)の条件で細粒・微粉分を増減することにより、製鋼スラグaの粒度分布をAndreazenの曲線式で近似した場合に、Fuller指数が0.4〜0.6となるように製鋼スラグaの粒度分布を調整する。なお、粒径40mm以下とは篩目が40mm(呼び径)の篩を通過する粒径である。
(i)製鋼スラグaの一部について篩目が10mm以下の篩(以下、説明の便宜上「篩x」という)で分級することで細粒・微粉分を減じた後、製鋼スラグaの残部(有姿粒度の製鋼スラグa)と混合する。
(ii)以前に、粒径40mm以下の割合が80mass%以上となる粒度に破砕され且つ該破砕後に蒸気エージング(常圧での蒸気エージング又は加圧蒸気エージング)が施された製鋼スラグを篩目が10mm以下の篩xで分級することで得られている細粒・微粉分を、製鋼スラグa(有姿粒度の製鋼スラグa)に加えて混合する。
For this reason, in the present invention, the steelmaking slag (hereinafter referred to as “steelmaking slag a” for convenience of explanation) subjected to steam aging at normal pressure after being crushed to a particle size with a particle size of 40 mm or less being 80 mass% or more is described below ( When the particle size distribution of steelmaking slag a is approximated by Andreazen's curve formula by increasing or decreasing the fine grain / fine powder content under the conditions of i) or (ii), the Fuller index is 0.4 to 0.6. The particle size distribution of the steelmaking slag a is adjusted. The particle size of 40 mm or less is a particle size that passes through a sieve having a sieve mesh of 40 mm (nominal diameter).
(I) A part of the steelmaking slag a is classified by a sieve having a sieve mesh of 10 mm or less (hereinafter referred to as “sieve x” for convenience of explanation) to reduce fine particles and fine powder, and then the remainder of the steelmaking slag a ( Mix with solid grain steelmaking slag a).
(Ii) A steelmaking slag that has been previously crushed to a particle size with a particle size of 40 mm or less of 80 mass% or more and that has been subjected to steam aging (steam aging at normal pressure or pressurized steam aging) is sieved. Is added to steelmaking slag a (solid steelmaking slag a) and mixed.

なお、上記(ii)の「以前に・・得られている細粒・微粉分」とは、以前に行われた分級において得られ、ストックされている細粒・微粒分のことである。
製鋼スラグは、鉄鋼製造プロセスの製鋼工程で発生するスラグであり、脱炭スラグ(転炉脱炭スラグ)、溶銑予備処理スラグ(脱珪スラグ、脱燐スラグなど)、造塊スラグ、溶融還元スラグ、電気炉スラグなどがあり、これらの1種以上を用いることができる。なかでも脱炭スラグは一般に塩基度が高いので、製鋼スラグaの一部又は全部が脱炭スラグである場合には、本発明の有用性は特に高いと言える
The “previously obtained fine particles / fine powder” in (ii) above refers to the fine particles / fine particles obtained and classified in the previous classification.
Steelmaking slag is slag generated in the steelmaking process of the steel manufacturing process, including decarburization slag (converter decarburization slag), hot metal pretreatment slag (desiliconization slag, dephosphorization slag, etc.), ingot slag, smelting reduction slag There are electric furnace slags, and one or more of these can be used. Especially, since decarburization slag is generally high in basicity, it can be said that the usefulness of the present invention is particularly high when part or all of the steelmaking slag a is decarburization slag.

本発明において、蒸気エージング前の製鋼スラグaについて、その80mass%以上を占めるスラグの最大粒径を40mmとしたのは、それより大きい径では内部に残留する膨張源が増加するため、蒸気エージングを施しても水浸膨張率のバラツキが大きくなり、膨張性が安定化しないためである。
Andreazenの曲線式で積算篩下の曲線が大きく変化するのは、Fuller指数qが1より小さい領域では粒径が最大粒径の20%以下の部分と考えられる。篩目40mmで80mass%以上通過する粒度分布であれば、最大粒径の20%の粒径は実質的に10mmとなり、それ以下の細粒・微粉分の粒子量を調整することが望ましい。このため本発明では、上記(i)、(ii)のように篩目が10mm以下の篩xで分級することを通じて細粒・微粉分を増減し、粒度分布を調整する。
In the present invention, the maximum particle size of the slag occupying 80 mass% or more of the steelmaking slag a before steam aging is set to 40 mm. This is because even if applied, the variation in the water immersion expansion rate becomes large, and the expansibility is not stabilized.
It is considered that the curve under the integrated sieve greatly changes in Andreazen's curve formula in a region where the particle size is 20% or less of the maximum particle size in the region where the Fuller index q is smaller than 1. If the particle size distribution passes 80 mass% or more at a mesh size of 40 mm, the particle size of 20% of the maximum particle size is substantially 10 mm, and it is desirable to adjust the amount of fine particles and fine powder below that. For this reason, in the present invention, as in (i) and (ii) above, the fine particle / fine powder content is increased / decreased through classification with a sieve x having a sieve mesh of 10 mm or less, and the particle size distribution is adjusted.

また、望まれるFuller指数qの1/2近傍では、積算篩下(粒径Dpまでの通過質量分率)の変化が大きいのは粒径が最大粒径の約10%以下(すなわち約4〜6mm以下)の部分であり、直接的に4〜6mm以下の粒子を増減することが粒度分布を操作しやすい。このため本発明では、上記(i)、(ii)の篩xの篩目を4〜6mmとし、その篩目を通過する粒径4〜6mm以下の細粒・微粉分の増減を行うことが好ましい。例えば、篩xの篩目を5mm(呼び径)とし、その篩目を通過する粒径5mm以下の細粒・微粉分の増減を行うものである(なお、以下の説明において「粒径5mm以下」、「−5mm」とは篩目5mm(呼び径)を通過する粒径のことである。)。すなわち、上記(i)のように細粒・微粉分を減じる場合には、例えば、対象となる製鋼スラグaの山(同日に同じ精錬設備で発生し、粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に蒸気エージングを施した製鋼スラグ)の一部だけ篩目が5mm(呼び径)の篩xで分級することで粒径5mm以下の粒子を分離し、残りの山の部分(製鋼スラグaの残部)は分級することなく有姿粒度のままとし、分級した製鋼スラグaと分級しない有姿粒度のままの製鋼スラグaを混合する。この場合、篩目が5mmの篩xで分級する製鋼スラグaの割合を変えることで、全体での粒径5mm以下の細粒・微粉分の割合を調整できる。一方、5mm以下の粒子が不足し、上記(ii)のように不足する細粒・微粉分を増やす場合には、それ以前の分級で篩い出したストックの−5mm分(粒径40mm以下の割合が80mass%以上となる粒度に破砕され且つ該破砕後に蒸気エージング(常圧での蒸気エージング又は加圧蒸気エージング)が施された製鋼スラグを篩目が5mm(呼び径)の篩xで分級することで得られている細粒・微粉分)を必要なだけ加え、混合する。そして、以上のような粒度分布の調整により、Fuller指数qが0.4〜0.6となるようにする。   In addition, in the vicinity of half of the desired Fuller index q, the change in the total sieve (passing mass fraction up to the particle size Dp) is large because the particle size is about 10% or less of the maximum particle size (that is, about 4 to It is easy to manipulate the particle size distribution by directly increasing or decreasing the particles of 4 to 6 mm or less. For this reason, in this invention, the screen of the sieve x of said (i) and (ii) shall be 4-6 mm, and the increase / decrease of the fine particle and fine powder of the particle size of 4-6 mm or less which pass the screen will be performed. preferable. For example, the screen size of the sieve x is set to 5 mm (nominal diameter), and the fine particle / fine powder component having a particle size of 5 mm or less passing through the sieve screen is increased / decreased (in the following description, “particle size of 5 mm or less) “,“ −5 mm ”means a particle diameter passing through a mesh size of 5 mm (nominal diameter)). That is, in the case of reducing the fine particle / fine powder content as in (i) above, for example, a pile of target steelmaking slag a (generated in the same refining equipment on the same day, the ratio of particle size of 40 mm or less is 80 mass% or more (Part of the steelmaking slag that has been crushed to a particle size and then steam-aged) is separated by a sieve x having a mesh size of 5 mm (nominal diameter) to separate particles with a particle size of 5 mm or less, and the remaining peak portion (The remainder of the steelmaking slag a) is left in the solid particle size without classification, and the classified steelmaking slag a and the steelmaking slag a in the solid particle size not classified are mixed. In this case, by changing the ratio of the steelmaking slag a classified by the sieve x having a sieve mesh of 5 mm, the ratio of fine particles / fine powder having a particle diameter of 5 mm or less as a whole can be adjusted. On the other hand, when there are insufficient particles of 5 mm or less and the amount of fine particles and fines to be insufficient is increased as in (ii) above, -5 mm of the stock screened by the previous classification (ratio of particle size of 40 mm or less) Steelmaking slag that has been crushed to a particle size of 80 mass% or more and that has been subjected to steam aging (steam aging at normal pressure or pressurized steam aging) is classified with sieve x having a mesh size of 5 mm (nominal diameter). Add as much fine particles and fine powder as possible) and mix. Then, by adjusting the particle size distribution as described above, the Fuller index q is set to 0.4 to 0.6.

製鋼スラグ路盤材には2種以上の製鋼スラグを混合して用いることも可能である。このように製鋼スラグaが2種以上の製鋼スラグからなる場合には、そのうちの1種の製鋼スラグa1(粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に蒸気エージングを施した製鋼スラグ)の全部又は一部について篩目が10mm以下の篩x(例えば、篩目が呼び径5mmの篩x)で分級することで細粒・微粉分を減じた後、分級しない有姿粒度のままの残りの1種以上の製鋼スラグa2(粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に蒸気エージングを施した製鋼スラグ)及び製鋼スラグa1の残部(但し、製鋼スラグa1の全部を上記分級した場合を除く。)と混合することにより粒度分布を調整するようにしてもよい。この場合、(1)篩目が10mm以下の篩x(例えば、篩目が呼び径5mmの篩x)で分級する製鋼スラグa1の割合を変えること、(2)製鋼スラグa1と製鋼スラグa2の量比を変えること、のいずれか又は両方により、全体での粒径5mm以下の細粒・微粉分の割合を調整できる。そして、以上のような粒度分布の調整により、Fuller指数qが0.4〜0.6となるようにする。   Two or more kinds of steelmaking slag can be mixed and used for the steelmaking slag roadbed material. Thus, when steelmaking slag a consists of two or more types of steelmaking slag, steam aging was performed after crushing to one of these types of steelmaking slag a1 (the ratio of particle size of 40 mm or less is 80 mass% or more) The whole or part of the steelmaking slag) is classified with a sieve x having a mesh size of 10 mm or less (for example, a sieve x having a nominal diameter of 5 mm), and the fine particle / fine powder content is reduced. Remaining one or more types of steelmaking slag a2 (steelmaking slag that has been subjected to steam aging after being crushed to a particle size with a particle size of 40 mm or less being 80 mass%) and the remainder of steelmaking slag a1 (however, steelmaking slag a1 The particle size distribution may be adjusted by mixing with the above). In this case, (1) changing the ratio of the steelmaking slag a1 classified by a sieve x having a sieve mesh of 10 mm or less (for example, a sieve x having a nominal diameter of 5 mm), (2) the steelmaking slag a1 and the steelmaking slag a2 The ratio of fine particles / fine powder having a particle size of 5 mm or less as a whole can be adjusted by either or both of changing the quantitative ratio. Then, by adjusting the particle size distribution as described above, the Fuller index q is set to 0.4 to 0.6.

上記のように製鋼スラグ路盤材に2種以上の製鋼スラグを混合して用いる場合の代表例は、製鋼スラグa1が同日に同じ精錬設備で発生した脱炭スラグであり、製鋼スラグa2が脱炭スラグ以外の製鋼スラグである場合である。製鋼スラグa1である脱炭スラグは一般に塩基度が高く、塩基度が3.3以上である場合が多い。一方、製鋼スラグa2である脱炭スラグ以外の製鋼スラグは、その種類により種々の塩基度を有する。   A typical example of using two or more types of steelmaking slag mixed with steelmaking slag roadbed material as described above is decarburization slag generated in the same refining equipment on the same day, and steelmaking slag a2 is decarburized. This is the case of steelmaking slag other than slag. The decarburized slag, which is steelmaking slag a1, generally has a high basicity, and the basicity is often 3.3 or more. On the other hand, steelmaking slag other than decarburized slag, which is steelmaking slag a2, has various basicities depending on its type.

本発明において、Fuller指数qが0.4〜0.6となるように粒度分布を調整するのは、蒸気エージング後の製鋼スラグaである。製鋼スラグに蒸気エージングを施すとスラグが細粒化するが、塩基度が高い製鋼スラグ、特に塩基度が3.3以上の製鋼スラグは膨張源の遊離CaOがスラグ内に広範に分布しているため、膨張崩壊の連鎖を生じる傾向が強く、蒸気エージングを施すことにより細粒・微粉化を生じやすい。図8に、塩基度3.3〜3.9の製鋼スラグを蒸気エージングした場合の粒度分布の変化(蒸気エージング前後での粒度分布の変化)を示す。図8に示されるように、製鋼スラグの塩基度が高いほど、蒸気エージング後の細粒・微粉が増加するため、粒度分布の変化が大きくなる。また、精錬各チャージの塩基度自体のバラツキ範囲も拡大し、蒸気エージング後の粒度変化が予測しにくくなる。このため、所望のFuller指数qに調整するには、蒸気エージング後の粒度分布を測定してから粒度調整を行うことが好ましく、これによりFuller指数qを0.4〜0.6の範囲に確実に入れることができる。
また、上記の点からして、本発明法は、製鋼スラグaの一部又は全部が塩基度3.3以上の製鋼スラグである場合に、特に有用性が高いと言える。
In the present invention, it is the steelmaking slag a after steam aging that adjusts the particle size distribution so that the Fuller index q is 0.4 to 0.6. When steam aging is applied to steelmaking slag, the slag becomes finer, but steelmaking slag with a high basicity, especially steelmaking slag with a basicity of 3.3 or more, has a wide distribution of free CaO as the expansion source in the slag. Therefore, there is a strong tendency to generate a chain of expansion / disintegration, and fine particles and fine powder are easily generated by performing steam aging. FIG. 8 shows changes in particle size distribution (changes in particle size distribution before and after steam aging) when steelmaking slag having a basicity of 3.3 to 3.9 is steam-aged. As shown in FIG. 8, the higher the basicity of the steelmaking slag, the more fine particles and fine powders after steam aging increase, and the change in the particle size distribution becomes larger. In addition, the range of variation in the basicity itself of each refining charge is expanded, and it becomes difficult to predict the change in particle size after steam aging. Therefore, in order to adjust to the desired Fuller index q, it is preferable to adjust the particle size after measuring the particle size distribution after steam aging, thereby ensuring that the Fuller index q is in the range of 0.4 to 0.6. Can be put in.
From the above points, it can be said that the method of the present invention is particularly useful when a part or all of the steelmaking slag a is a steelmaking slag having a basicity of 3.3 or more.

蒸気エージングの処理時間は24〜144時間程度が適当である。ここで、処理時間とは、山積みされたスラグベッドの昇温期間(測温している温度計がほぼ100℃に達するまで)が終わってからの約100℃での保温時間をいう。処理時間の望ましい上限を144時間としたのは、処理時間が長すぎると生産性が低下するからである。また、処理時間の望ましい下限を24時間としたのは、蒸気が吹き込まれた山積みスラグが均一に昇温して反応促進するには、最低でも24時間は必要だからである。   The treatment time for steam aging is suitably about 24 to 144 hours. Here, the processing time refers to the heat retention time at about 100 ° C. after the temperature rising period of the stacked slag beds (until the temperature measuring thermometer reaches about 100 ° C.) ends. The reason why the desirable upper limit of the processing time is set to 144 hours is that productivity is lowered when the processing time is too long. The reason why the desirable lower limit of the treatment time is set to 24 hours is that a minimum of 24 hours is required to accelerate the reaction by increasing the temperature of the piled slag into which steam has been blown.

本発明法において、粒度分布を調整した後の製鋼スラグの粒度は、JIS A5015(2013)に粒度範囲が定められているCS−40、CS−30、CS−20、MS−25、HMS−25のいずれかの粒度範囲を満足することが好ましい。これらは道路用鉄鋼スラグの粒度を含めた物性を規定したものであり、規格名の数字は概ねの最大粒径を示している。実用上はこの粒度を満たすものが道路舗装工事に用いられるため、路盤材用途の販売にはこの規格に合格する必要がある。
以上のような本発明法で製造される製鋼スラグ路盤材は、粒度分布をAndreazenの曲線式で近似した場合に、Fuller指数が0.4〜0.6となる粒度分布を有することが好ましい。
本発明により製造された製鋼スラグ路盤材は、単独で使用(施工)してもよいし、他の路盤材料(例えば、他のスラグ路盤材や砕石など)と混合して使用(施工)してもよい。
In the method of the present invention, the particle size of the steelmaking slag after adjusting the particle size distribution is CS-40, CS-30, CS-20, MS-25, HMS-25 whose particle size ranges are defined in JIS A5015 (2013). It is preferable that any one of the particle size ranges is satisfied. These stipulate the physical properties including the grain size of steel slag for roads, and the numbers in the standard names indicate the approximate maximum grain size. In practice, those satisfying this granularity are used for road paving work, so it is necessary to pass this standard to sell roadbed materials.
The steelmaking slag roadbed material manufactured by the method of the present invention as described above preferably has a particle size distribution with a Fuller index of 0.4 to 0.6 when the particle size distribution is approximated by an Andreazen curve formula.
The steelmaking slag roadbed material manufactured according to the present invention may be used (constructed) alone, or used (constructed) by mixing with other roadbed materials (for example, other slag roadbed materials and crushed stones). Also good.

原料となる製鋼スラグは、脱炭スラグと造塊スラグであり、いずれも粒径40mm以下に破砕されたもの(篩目40mm(呼び径)の篩を通過したもの)である。脱炭スラグは、遊離CaO含有量が4.9〜6.1mass%、塩基度が3.3〜4.3であり、造塊スラグは、遊離CaO含有量が1.3mass%、塩基度が2.7〜2.9であった。実施例1及び実施例2では、脱炭スラグとして、未処理状態の有姿粒度のスラグAを常圧で蒸気エージングしたスラグB(粒度0−40mm)と、このスラグBから篩目が5mm(呼び径)の篩で−5mmの粒子を分級・排除したスラグC(粒度5−40mm)を用いた。スラグBとスラグCは同日に同じ精錬設備で発生したスラグである。また、実施例2では、造塊スラグとして、分級されていない有姿粒度であって常圧で蒸気エージングしたスラグD(粒度0−40mm)を用いた。また、実施例3では、脱炭スラグとして、分級されていない有姿粒度であって常圧で蒸気エージングしたスラグE(粒度0−40mm)と、以前に、粒径40mm以下に破砕され且つ該破砕後に常圧で蒸気エージングが施された脱炭スラグを篩目が5mm(呼び径)の篩で分級した際に篩下となり、ストックされていたスラグF(粒度0−5mm)を用いた。なお、スラグEは粒度0−40mmであるが、全体的に粒度が粗く、細粒分が少ない粒度分布のスラグである。   Steelmaking slag used as a raw material is decarburized slag and ingot slag, both of which are crushed to a particle size of 40 mm or less (passed through a sieve having a sieve size of 40 mm (nominal diameter)). The decarburized slag has a free CaO content of 4.9 to 6.1 mass% and a basicity of 3.3 to 4.3, and the ingot slag has a free CaO content of 1.3 mass% and a basicity of It was 2.7 to 2.9. In Example 1 and Example 2, as decarburized slag, slag B (granularity 0-40 mm) obtained by steam aging slag A having an untreated solid particle size at normal pressure, and a mesh size of 5 mm from this slag B ( Slag C (particle size 5-40 mm) obtained by classifying and removing particles of -5 mm with a sieve having a nominal diameter was used. Slag B and slag C are slag generated in the same refining equipment on the same day. Moreover, in Example 2, the slag D (particle size 0-40 mm) which was the solid particle size which is not classified and was steam-aged at normal pressure was used as the ingot slag. Further, in Example 3, as decarburized slag, slag E (grain size 0-40 mm) having a solid particle size that is not classified and steam-aged at normal pressure, and previously crushed to a particle size of 40 mm or less and When decarburized slag that had been subjected to steam aging at normal pressure after crushing was classified with a sieve having a sieve mesh size of 5 mm (nominal diameter), slag F (particle size 0-5 mm) that had been stocked was used. The slag E has a particle size of 0 to 40 mm, but is a slag having a particle size distribution with a coarse particle size overall and a small fine particle content.

スラグA〜Fの粒度分布を測定するとともに、スラグA〜EについてAndreasenの曲線式におけるFuller指数qをグラフソフトの回帰機能を用いて求めた。その一例を図9に示す。その際、通過質量分率100mass%、すなわち全通となる篩目の通過質量分率はデータとせず、通過質量分率100mass%未満の篩目での通過質量分率のみをデータとして近似した。また、スラグA〜Eについて、JIS A5015(2013)附属書2に定めた水浸膨張試験を行い、乾燥密度と水浸膨張率を測定した。
スラグB〜Fのうちの2つのスラグを混合する際には、スラグの混合にホイルローダー等の重機を用い、切り返しを数度繰り返すことで混合を均一化した。
While measuring the particle size distribution of slags A to F, the Fuller index q in Andreasen's curve formula for slags A to E was determined using the regression function of the graph software. An example is shown in FIG. At that time, the passing mass fraction of 100 mass%, that is, the passing mass fraction of the entire mesh was not used as data, and only the passing mass fraction of the mesh with a passing mass fraction of less than 100 mass% was approximated as data. Moreover, the slags A to E were subjected to a water immersion expansion test as defined in JIS A5015 (2013) Annex 2, and the dry density and the water immersion expansion rate were measured.
When mixing two slags out of the slags B to F, a heavy machine such as a wheel loader was used for mixing the slags, and the mixing was made uniform by repeating the turnover several times.

スラグの通過質量分率(粒度分布)を測定するのに、37.5mm(呼び径40mm)、31.5mm、26.5mm、19.0mm、13.0mm、9.5mm(呼び径10mm)、4.75mm(呼び径5mm)、2.36mm、1.18mm、0.6mm、0.425mm、0.3mm、0.15mm、0.075mmの篩を用いた。この篩系列は、骨材粒度を測定する篩系列とスラグ路盤材の粒度を測定する篩系列の折衷となっている。これは、スラグ路盤材の篩系列よりも細粒側の分布を精密に測定するためである。JIS A5015(2013)道路用鉄鋼スラグでは水浸膨張率を1.5%以下と規定しているが、実操業では製品中のバラツキがあることを考慮して、より小さな膨張率にまで安定化することがよく行われる。本実施例では、蒸気エージング後のスラグ単味で水浸膨張率を0.5%以下にまで低減することを目安とした。
蒸気エージングは、1.5m層厚で山積みしたスラグの下方から蒸気を吹き込んで昇温するエージング設備で約100℃に達してから72時間保持する条件で実施した。
37.5 mm (nominal diameter 40 mm), 31.5 mm, 26.5 mm, 19.0 mm, 13.0 mm, 9.5 mm (nominal diameter 10 mm), to measure the passing mass fraction (particle size distribution) of slag, The sieves of 4.75 mm (nominal diameter 5 mm), 2.36 mm, 1.18 mm, 0.6 mm, 0.425 mm, 0.3 mm, 0.15 mm, and 0.075 mm were used. This sieve series is a compromise between the sieve series for measuring the aggregate particle size and the sieve series for measuring the particle size of the slag roadbed material. This is in order to precisely measure the distribution on the finer grain side than the slag roadbed material sieve series. JIS A5015 (2013) The steel slag for roads has a water immersion expansion rate of 1.5% or less, but in actual operation, it is stabilized to a smaller expansion rate in consideration of variations in the product. It is often done. In this example, the standard was to reduce the water expansion coefficient to 0.5% or less with a simple slag after steam aging.
Steam aging was carried out under conditions where the temperature was maintained for 72 hours after reaching about 100 ° C. with an aging facility in which steam was blown from the bottom of the slag piled up with a thickness of 1.5 m to raise the temperature.

[実施例1]
比較例3を除き、−5mmの細粒分を分級・排除したスラグC(脱炭スラグ、粒度5−40mm)と、−5mmの細粒分を分級・排除していない有姿粒度のスラグB(脱炭スラグ、粒度0−40mm)を混合し、所定の粒度分布を有する発明例1〜3及び比較例1、2のスラグ(試料)とした。なお、比較例3は、有姿粒度のスラグB(脱炭スラグ、粒度0−40mm)のみからなるスラグ(試料)である。各スラグについて、上述した方法で粒度分布測定とFuller指数qの算出を行った。また、各スラグについて、JIS A5015(2013)附属書2に定めた水浸膨張試験を行い、乾燥密度と水浸膨張率を測定した。
[Example 1]
Except for Comparative Example 3, slag C (decarburized slag, particle size 5-40 mm) in which -5 mm fine particles are classified and eliminated, and slag B having a solid particle size in which -5 mm fine particles are not classified and eliminated. (Decarburized slag, particle size 0-40 mm) were mixed to obtain slags (samples) of Invention Examples 1 to 3 and Comparative Examples 1 and 2 having a predetermined particle size distribution. In addition, the comparative example 3 is a slag (sample) which consists only of slag B of solid particle size (decarburization slag, particle size 0-40 mm). For each slag, the particle size distribution was measured and the Fuller index q was calculated by the method described above. Further, each slag was subjected to a water immersion expansion test as defined in JIS A5015 (2013) Annex 2 to measure the dry density and the water expansion coefficient.

それらの結果を、スラグA〜C単味での粒度分布、Fuller指数q、水浸膨張率及び乾燥密度とともに表1及び表2に示す。これによれば、Fuller指数qが0.4〜0.6の範囲にある発明例1〜3は、比較例と較べて乾燥密度が高く、水浸膨張率は低い。これに対して、Fuller指数qが0.4よりも小さい比較例2、3と、Fuller指数qが0.6よりも大きい比較例1では、発明例と同じ由来のスラグであるにも関わらず乾燥密度が低く、水浸膨張率は高い。   The results are shown in Tables 1 and 2 together with the particle size distribution of the slags A to C, the Fuller index q, the water immersion expansion rate, and the dry density. According to this, Invention Examples 1-3 in which the Fuller index q is in the range of 0.4 to 0.6 have a higher dry density and a lower water immersion expansion rate than the comparative example. On the other hand, in Comparative Examples 2 and 3 in which the Fuller index q is smaller than 0.4, and in Comparative Example 1 in which the Fuller index q is larger than 0.6, the slag is the same as that of the invention example. Low drying density and high water immersion expansion rate.

Figure 2019137584
Figure 2019137584

Figure 2019137584
Figure 2019137584

[実施例2]
−5mmの細粒分を分級・排除したスラグC(脱炭スラグ、粒度5−40mm)と、−5mmの細粒分を分級・排除していない有姿粒度のスラグD(造塊スラグ、粒度0−40mm)を混合し、所定の粒度分布を有する発明例4及び比較例4のスラグ(試料)とした。各スラグについて、上述した方法で粒度分布測定とFuller指数qの算出を行った。また、各スラグについて、JIS A5015(2013)附属書2に定めた水浸膨張試験を行い、乾燥密度と水浸膨張率を測定した。
[Example 2]
Slag C (decarburized slag, particle size 5-40mm) that classifies and excludes -5mm fine particles, and slag D (agglomerated slag, particle size) that does not classify and exclude -5mm fine particles 0-40 mm) were mixed to obtain slags (samples) of Invention Example 4 and Comparative Example 4 having a predetermined particle size distribution. For each slag, the particle size distribution was measured and the Fuller index q was calculated by the method described above. Further, each slag was subjected to a water immersion expansion test as defined in JIS A5015 (2013) Annex 2 to measure the dry density and the water expansion coefficient.

それらの結果を、スラグC、D単味での粒度分布、Fuller指数q、水浸膨張率及び乾燥密度とともに表3及び表4に示す。これによれば、スラグC(脱炭スラグ、粒度5−40mm)とスラグD(造塊スラグ、粒度0−40mm)を0.75:0.25の割合(質量比)で混合した比較例4は、Fuller指数qが0.6よりも大きい。一方、スラグCとスラグDを0.4:0.6の割合(質量比)で混合した発明例4は、Fuller指数qが0.4〜0.6の範囲内にある。ここで、スラグC、Dをそれぞれ単味で使用した場合をみると、Fuller指数qはともに0.4〜0.6の範囲から外れているが、造塊スラグであるスラグDは遊離CaO量が少ないために、膨張安定化が速やかに起こり、蒸気エージング後の水浸膨張率は0.29%と低い。一方、脱炭スラグであるスラグCは、遊離CaO量がスラグDよりも多く、乾燥密度が低く、水浸膨張率は1.02%と高い。発明例4の場合、乾燥密度が高くなり、水浸膨張率はスラグCとスラグDの重み付けの水浸膨張率平均より低い値となっており、粒度分布の調整による効果が現れている。   The results are shown in Tables 3 and 4 together with the particle size distribution of the slags C and D, the fuller index q, the water immersion expansion rate, and the dry density. According to this, the comparative example 4 which mixed slag C (decarburization slag, particle size 5-40mm) and slag D (ingot forming slag, particle size 0-40mm) in the ratio (mass ratio) of 0.75: 0.25. The Fuller index q is greater than 0.6. On the other hand, Invention Example 4 in which slag C and slag D are mixed at a ratio (mass ratio) of 0.4: 0.6 has a fuller index q in the range of 0.4 to 0.6. Here, when the cases where the slags C and D are respectively used are simple, the Fuller index q is both out of the range of 0.4 to 0.6, but the slag D which is an agglomerated slag is free CaO amount. Therefore, the expansion stabilization is prompt and the water expansion rate after steam aging is as low as 0.29%. On the other hand, slag C which is decarburized slag has a larger amount of free CaO than slag D, a low dry density, and a high water immersion expansion rate of 1.02%. In the case of Invention Example 4, the dry density is high, and the water expansion coefficient is lower than the weighted water expansion coefficient average of the slag C and slag D, and the effect of adjusting the particle size distribution appears.

Figure 2019137584
Figure 2019137584

Figure 2019137584
Figure 2019137584

[実施例3]
−5mmの細粒分を分級・排除していない有姿粒度のスラグE(脱炭スラグ、粒度0−40mm)と篩目5mmの篩下のスラグF(脱炭スラグ、粒度0−5mm)を混合し、所定の粒度分布を有する発明例5のスラグ(試料)とした。このスラグについて、上述した方法で粒度分布測定とFuller指数qの算出を行った。また、同スラグについて、JIS A5015(2013)附属書2に定めた水浸膨張試験を行い、乾燥密度と水浸膨張率を測定した。
[Example 3]
Slag E (decarburized slag, particle size 0-40mm) of solid particle size that does not classify and exclude fine particles of -5mm and slag F (decarburized slag, particle size 0-5mm) under sieve with a mesh size of 5mm The slag (sample) of Invention Example 5 having a predetermined particle size distribution was mixed. About this slag, the particle size distribution measurement and the calculation of the Fuller index q were performed by the method described above. Further, the slag was subjected to a water immersion expansion test as defined in JIS A5015 (2013) Annex 2, and the dry density and the water expansion coefficient were measured.

その結果を、スラグF単味での粒度分布、スラグE単味での粒度分布、Fuller指数q、水浸膨張率及び乾燥密度とともに表5及び表6に示す。これによれば、細粒分がやや少ない有姿粒度のスラグE(脱炭スラグ、粒度0−40mm)はFuller指数qが0.6より大きい。これに対して、有姿粒度のスラグEに細粒のスラグF(脱炭スラグ、粒度0−5mm)を86:14の割合(質量比)で混合した発明例5は、Fuller指数qが0.4〜0.6の範囲内にある。また、発明例5は、スラグEに較べて乾燥密度が高く、水浸膨張率は0.5%を下回っている。   The results are shown in Tables 5 and 6 together with the particle size distribution of slag F alone, the particle size distribution of slag E alone, the Fuller index q, the water immersion expansion rate, and the dry density. According to this, the fuller index q of the slag E (decarburized slag, particle size 0-40 mm) having a solid particle size slightly less than the fine particles is larger than 0.6. On the other hand, in Example 5 in which fine slag F (decarburized slag, particle size 0-5 mm) was mixed at a ratio (mass ratio) of 86:14 to solid slag E, Fuller index q was 0. Within the range of 4-0.6. In addition, Invention Example 5 has a higher dry density than slag E, and the water immersion expansion rate is less than 0.5%.

Figure 2019137584
Figure 2019137584

Figure 2019137584
Figure 2019137584

Claims (7)

粒径40mm以下の割合が80mass%以上となる粒度に破砕した後に常圧で蒸気エージングを施した製鋼スラグ(a)について、下記(i)又は(ii)の条件で細粒・微粉分を増減することにより、製鋼スラグ(a)の粒度分布をAndreazenの曲線式で近似した場合に、Fuller指数が0.4〜0.6となるように製鋼スラグ(a)の粒度分布を調整することを特徴とする製鋼スラグ路盤材の製造方法。
(i)製鋼スラグ(a)の一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、製鋼スラグ(a)の残部と混合する。
(ii)以前に、粒径40mm以下の割合が80mass%以上となる粒度に破砕され且つ該破砕後に蒸気エージングが施された製鋼スラグを篩目が10mm以下の篩(x)で分級することで得られている細粒・微粉分を、製鋼スラグ(a)に加えて混合する。
For steelmaking slag (a) that has been steam-aged at normal pressure after being crushed to a particle size with a particle size of 40 mm or less at 80 mass% or more, the fine and fine powder content is increased or decreased under the following conditions (i) or (ii) By adjusting the particle size distribution of the steelmaking slag (a) so that the Fuller index is 0.4 to 0.6 when the particle size distribution of the steelmaking slag (a) is approximated by the curve formula of Andreazen A method for producing a steelmaking slag roadbed material.
(I) A part of the steelmaking slag (a) is classified with a sieve (x) having a sieve mesh of 10 mm or less to reduce fine particles and fine powder, and then mixed with the remainder of the steelmaking slag (a).
(Ii) By classifying steelmaking slag that has been previously crushed to a particle size in which the ratio of particle size of 40 mm or less is 80 mass% or more and steam-aged after the crushing, is classified with a sieve (x) having a mesh size of 10 mm or less. The fine particles and fine powder obtained are added to the steelmaking slag (a) and mixed.
製鋼スラグ(a)の少なくとも一部が、塩基度(但し、CaO/SiOの質量比)が3.3以上の製鋼スラグであることを特徴とする請求項1に記載の製鋼スラグ路盤材の製造方法。 2. The steelmaking slag roadbed material according to claim 1, wherein at least a part of the steelmaking slag (a) is steelmaking slag having a basicity (however, a mass ratio of CaO / SiO 2 ) of 3.3 or more. Production method. 製鋼スラグ(a)が同日に同じ精錬設備で発生した脱炭スラグであり、該製鋼スラグ(a)の一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、製鋼スラグ(a)の残部と混合することにより、製鋼スラグ(a)の細粒・微粉分を減少させて粒度分布を調整することを特徴とする請求項1又は2に記載の製鋼スラグ路盤材の製造方法。   Steelmaking slag (a) is decarburized slag generated in the same refining equipment on the same day, and a part of the steelmaking slag (a) is classified with a sieve (x) having a sieve mesh of 10 mm or less, so that fine particles and fine powder content 3. The particle size distribution is adjusted by reducing the fine particle / fine powder content of the steelmaking slag (a) by mixing with the remainder of the steelmaking slag (a) after reducing the amount of the steelmaking slag (a). Method for manufacturing steelmaking slag roadbed material. 製鋼スラグ(a)が2種以上の製鋼スラグからなり、そのなかの1種の製鋼スラグ(a1)の全部又は一部について篩目が10mm以下の篩(x)で分級することで細粒・微粉分を減じた後、残りの1種以上の製鋼スラグ(a2)及び製鋼スラグ(a1)の残部(但し、製鋼スラグ(a1)の全部を上記分級した場合を除く。)と混合することにより、製鋼スラグ(a)の細粒・微粉分を減少させて粒度分布を調整することを特徴とする請求項1又は2に記載の製鋼スラグ路盤材の製造方法。   Steelmaking slag (a) is composed of two or more types of steelmaking slag, and all or part of one type of steelmaking slag (a1) is classified with a sieve (x) having a mesh size of 10 mm or less. After reducing the fine powder content, it is mixed with the remaining one or more types of steelmaking slag (a2) and the remainder of the steelmaking slag (a1) (except when all of the steelmaking slag (a1) is classified above). The method for producing a steelmaking slag roadbed material according to claim 1 or 2, wherein the particle size distribution is adjusted by reducing the fine particles and fine powder content of the steelmaking slag (a). 製鋼スラグ(a1)が同日に同じ精錬設備で発生した脱炭スラグであり、製鋼スラグ(a2)が脱炭スラグ以外の製鋼スラグであることを特徴とする請求項4に記載の製鋼スラグ路盤材の製造方法。   The steelmaking slag roadbed material according to claim 4, wherein the steelmaking slag (a1) is decarburized slag generated in the same refining equipment on the same day, and the steelmaking slag (a2) is steelmaking slag other than decarburized slag. Manufacturing method. 篩(x)の篩目が4mm以上6mm以下であることを特徴とする請求項1〜5のいずれかに記載の製鋼スラグ路盤材の製造方法。   The method for producing a steelmaking slag roadbed material according to any one of claims 1 to 5, wherein the sieve (x) has a mesh size of 4 mm or more and 6 mm or less. 粒度分布を調整した後の製鋼スラグ(a)の粒度が、JIS A5015(2013)に粒度範囲が定められているCS−40、CS−30、CS−20、MS−25、HMS−25のいずれかの粒度範囲を満足することを特徴とする請求項1〜6のいずれかに記載の製鋼スラグ路盤材の製造方法。   The particle size of the steelmaking slag (a) after adjusting the particle size distribution is any of CS-40, CS-30, CS-20, MS-25, and HMS-25 whose particle size range is defined in JIS A5015 (2013). The method for producing a steelmaking slag roadbed material according to any one of claims 1 to 6, wherein the particle size range is satisfied.
JP2018022591A 2018-02-10 2018-02-10 Manufacturing method of steelmaking slag roadbed material Active JP6766832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022591A JP6766832B2 (en) 2018-02-10 2018-02-10 Manufacturing method of steelmaking slag roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022591A JP6766832B2 (en) 2018-02-10 2018-02-10 Manufacturing method of steelmaking slag roadbed material

Publications (2)

Publication Number Publication Date
JP2019137584A true JP2019137584A (en) 2019-08-22
JP6766832B2 JP6766832B2 (en) 2020-10-14

Family

ID=67693519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022591A Active JP6766832B2 (en) 2018-02-10 2018-02-10 Manufacturing method of steelmaking slag roadbed material

Country Status (1)

Country Link
JP (1) JP6766832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934302A (en) * 1982-08-20 1984-02-24 大同特殊鋼株式会社 Road foundation material and construction of road foundation
JPS60250103A (en) * 1984-05-24 1985-12-10 株式会社神戸製鋼所 Hydraulic road material
JPS6158849A (en) * 1984-08-28 1986-03-26 株式会社神戸製鋼所 Method and apparatus for accelerating steel slag ageing
JPS62123046A (en) * 1985-11-22 1987-06-04 株式会社神戸製鋼所 Manufacture of hydraulic road bed material
JPH0656487A (en) * 1990-12-27 1994-03-01 Sumitomo Metal Ind Ltd Method for treating converter slag
JPH0762346A (en) * 1993-08-27 1995-03-07 Sumitomo Metal Ind Ltd Production of slag-based base course material
JP2014196218A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method for producing roadbed material
JP2015175175A (en) * 2014-03-17 2015-10-05 日新製鋼株式会社 Civil engineering material and manufacturing method thereof
JP2018024568A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Manufacturing method of steel making slag roadbed material
JP2019026538A (en) * 2017-08-03 2019-02-21 Jfeスチール株式会社 Method for producing steel-making slag roadbed material
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934302A (en) * 1982-08-20 1984-02-24 大同特殊鋼株式会社 Road foundation material and construction of road foundation
JPS60250103A (en) * 1984-05-24 1985-12-10 株式会社神戸製鋼所 Hydraulic road material
JPS6158849A (en) * 1984-08-28 1986-03-26 株式会社神戸製鋼所 Method and apparatus for accelerating steel slag ageing
JPS62123046A (en) * 1985-11-22 1987-06-04 株式会社神戸製鋼所 Manufacture of hydraulic road bed material
JPH0656487A (en) * 1990-12-27 1994-03-01 Sumitomo Metal Ind Ltd Method for treating converter slag
JPH0762346A (en) * 1993-08-27 1995-03-07 Sumitomo Metal Ind Ltd Production of slag-based base course material
JP2014196218A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method for producing roadbed material
JP2015175175A (en) * 2014-03-17 2015-10-05 日新製鋼株式会社 Civil engineering material and manufacturing method thereof
JP2018024568A (en) * 2016-07-29 2018-02-15 Jfeスチール株式会社 Manufacturing method of steel making slag roadbed material
JP2019026538A (en) * 2017-08-03 2019-02-21 Jfeスチール株式会社 Method for producing steel-making slag roadbed material
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Also Published As

Publication number Publication date
JP6766832B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
Mendes et al. Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks
JP6720937B2 (en) Steelmaking slag roadbed material manufacturing method
JP6460169B2 (en) Manufacturing method of steelmaking slag roadbed material
Sua-iam et al. Rheological and mechanical properties of cement–fly ash self-consolidating concrete incorporating high volumes of alumina-based material as fine aggregate
JP6766831B2 (en) Manufacturing method of steelmaking slag roadbed material
CN111393108B (en) Environment-friendly cement-stabilized macadam and application thereof
JP2005097076A (en) Method for stabilization treatment of steel making slag and stabilized steel making slag
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP2019137584A (en) Method for manufacturing steelmaking slag roadbed material
RU2645316C1 (en) Strengthened clay soil
Liu et al. Effects of characteristic hydrates on the pore structure and fracture behavior of CAC bonded alumina-spinel castables
Tian et al. Mechanisms of recycled fine brick aggregate in autogenous shrinkage mitigation, mechanical properties enhancement and microstructure improvement of alkali-activated slag-fly ash mortar
CA2950785C (en) Granulated slag products and processes for their production
Naik et al. Synthesis and characterization of ladle furnace slag on the mechanical properties of self-compacting concrete
JP6143009B2 (en) Pressurized steam aging method for steelmaking slag
CN109071360A (en) Refractory material aggregate, its manufacturing method and the refractory material using the aggregate
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP5668640B2 (en) Steel slag roadbed material and method of manufacturing steel slag roadbed material
JP2007277599A (en) Method for manufacturing dust agglomerate
KR102533807B1 (en) Manufacturing method of sintered ore
JP4274834B2 (en) Slag stability evaluation method
Fumoto et al. Influence of quality of recycled fine aggregate on properties of concrete
JP2019163685A (en) Method for determining granular material, manufacturing method of granular material for roadbed material and manufacturing method of roadbed material
JP2004301694A (en) Slag stability evaluation method
Chaiyaput et al. Lateritic Soil Stabilization by Addition of Steel Slags.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250