JP2004301694A - Slag stability evaluation method - Google Patents

Slag stability evaluation method Download PDF

Info

Publication number
JP2004301694A
JP2004301694A JP2003095498A JP2003095498A JP2004301694A JP 2004301694 A JP2004301694 A JP 2004301694A JP 2003095498 A JP2003095498 A JP 2003095498A JP 2003095498 A JP2003095498 A JP 2003095498A JP 2004301694 A JP2004301694 A JP 2004301694A
Authority
JP
Japan
Prior art keywords
slag
sieve
treatment
hydration
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095498A
Other languages
Japanese (ja)
Other versions
JP4274835B2 (en
Inventor
Naoto Tsutsumi
直人 堤
Masao Nakagawa
雅夫 中川
Eiji Kiso
英滋 木曽
Koichi Endo
公一 遠藤
Hisahiro Matsunaga
久宏 松永
Fumio Kogiku
史男 小菊
Masato Takagi
正人 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
JFE Steel Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Steel Corp filed Critical JFE Steel Corp
Priority to JP2003095498A priority Critical patent/JP4274835B2/en
Publication of JP2004301694A publication Critical patent/JP2004301694A/en
Application granted granted Critical
Publication of JP4274835B2 publication Critical patent/JP4274835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate accurately stability of steel slag subjected to aging treatment such as a blast furnace, converter or electric furnace slag generated in an iron mill or the like. <P>SOLUTION: This slag stability evaluation method has a characteristic wherein the plus-sieve slag from which a fine grain portion is removed by a first sieve mesh is further subjected to hydration acceleration treatment after the aging treatment, dried and sieved by a second sieve mesh smaller than the first sieve mesh, and the value determined by (the slag mass of the minus sieve of the second sieve mesh)/(the slag mass of the first plus sieve before the hydration acceleration treatment)×100% is used as the slag decay rate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄所などで発生する高炉、転炉、電気炉スラグなどの鉄鋼スラグの安定性を評価する方法に関するものである。
【0002】
【従来の技術】
製鉄所などで高炉、転炉、電気炉といった精錬炉から発生する鉄鋼スラグは、省資源、省エネルギーの観点から、環境への負荷を低減させるリサイクル材料として、数々の特性を生かして各方面で利用されている。
【0003】
例えば、高炉スラグや製鋼スラグが水と反応して次第に硬化していく「水硬性」は道路用の路盤材に適しているし、あるいは製鋼スラグの有する「硬質」かつ「耐磨耗」な特性は道路用のアスファルト・コンクリート用骨材に適している。
【0004】
これらの用途に用いられるスラグは長期にわたって安定であることが重要であることから、例えばJIS A5015「道路用鉄鋼スラグ」に規定されるように、スラグを破砕後、数ヶ月の間、空気および水と反応させる「エージング」処理を行い十分に安定化させることが必要とされている。
【0005】
中でも、製鋼スラグは遊離のCaOやMgOなど消化性の物質を含んでおり長期にわたって膨張する現象があることから、エージングによってスラグが十分に安定になったかどうかを評価する方法として、同じくJIS A5015「道路用鉄鋼スラグ」中に附属書2として「水浸膨張試験方法」が規定されている。
【0006】
附属書2に記載された方法は、ある粒度分布に従って粒度調整された試料を規定の容器(モールド)内に突き固めて充填したものを、80℃の温水に6時間保持したのちに放冷させる操作を1日1回、10日間繰り返して養生させ、養生後のモールド内試料の高さを測定してその膨張量からスラグの安定度を評価するものであり、長年、道路用鉄鋼スラグの有効な指標として用いられてきた。
【0007】
また、上記方法ではスラグの安定性評価に10日間という長い時間を有するが、例えばセメントや耐火物など、同じく消化性物質を含む材料の安定性をより迅速に評価する方法として、密封加圧容器と加熱装置からなる「オートクレーブ」装置を用いて100℃以上の高温・高圧下に試料をおいて、比較的、短時間に水和反応をおこさせた後に、例えばASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているように試料の長さを測定する方法や、JIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されているように試料の圧縮強さの低下率を測定する方法、あるいは、非特許文献1に記載されているように、処理後の試料を篩い分けして篩い下重量の割合(粉化率)を測定して材料の安定度を評価するものも知られている。
【0008】
【非特許文献1】
鉄と鋼、第64年(1978)第10号、P−68
【0009】
【発明が解決しようとする課題】
しかし、鉄鋼スラグを、例えば道路用以外の新たな用途に利用しようとする際には、上記の従来技術における安定性評価方法では次のような問題点がある。
【0010】
すなわち、本発明者らはこれらの鉄鋼スラグ、中でも長期膨張性を有する製鋼スラグを上述のように十分なエージング処理を施したものを、他の結合材とともに混ぜ合わせて固める固化体の骨材に用いることができないかと研究開発を行ってきた。ここで、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについては上記の方法を用いてその安定性を評価し、固化体に適用が可能な製鋼スラグの安定化の条件を見出そうと検討を行った。
【0011】
しかしながら、JIS A5015「道路用鉄鋼スラグ」に記載されている「水浸膨張試験方法」においては、モールド内のある容積の製鋼スラグの固まり(群)としての平均的な膨張性が評価できるが、固化体を破壊に至らせるような、構成要素の一つであるスラグ粒の個々の膨張に伴う破壊は測定できないため、膨張率が小さくても固化体が破壊するような現象が見られ、的確にスラグの安定性が評価できていないことが判明した。
【0012】
また、ASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているような試料の長さを測定する方法、 あるいはJIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されている試料の圧縮強さの低下率を測定する方法などは成形体の膨張挙動は評価できるが、個々のスラグ粒の安定性評価は困難である。
【0013】
また、非特許文献1に記載されている粉化率を測定する方法では、水和膨張の結果として生じた粉分だけでは測定値が小さい、あるいはばらつきが大きくて、固化体を破壊に至らせしめるスラグの判別がつきずらく、当該論文中にも「スラグの崩壊性の表示として適当な方法がない」と述べられているように、やはり個々のスラグ粒の安定性を評価するには難しい。
【0014】
本発明の目的は、上記従来技術の問題点を解決しエージング処理を施した鉄鋼スラグの安定性をより精度良く評価する方法を提供することにある。
【0015】
つまり、エージング処理等によって安定化させたスラグ中に残存する、今なお未崩壊の個々のスラグ粒の存在確率を的確に把握することが本発明の目的である。
【0016】
【課題を解決するための手段】
本発明者らは、前述したように、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の安定性促進試験における固化体の破壊状況を調べ、同時にこれら骨材に用いた製鋼スラグについても様々な方法によってその安定性(崩壊性)を測定し、両者の間に定量的な相関が見いだせられないか解析と検討を重ねた結果、以下の発明にて上記の課題が解決される知見を得た。
(1)エージング処理の後、第1の篩い目で細粒分を除去した篩い上のスラグを、さらに水和促進処理し、これを乾燥させたものを、前記第1の篩い目よりも小さな第2の篩い目で篩い分け、(第2の篩い目の篩い下のスラグ質量)/(水和促進処理前の第1の篩い目の篩い上のスラグ質量)×100(%)をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。
(2)水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする前記(1)記載のスラグの安定性評価方法。
(3)第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする前記(1)又は(2)記載のスラグの安定性評価方法。
(4)第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする前記(1)〜(3)の何れか1項に記載のスラグの安定性評価方法。
(5) 50mm以上の粗粒分も除去したスラグを水和促進処理することを特徴とする前記(1)〜(4)の何れか1項に記載のスラグの安定性評価方法。
(6)エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする前記(1)〜(5)の何れか1項に記載のスラグの安定性評価方法。
【0017】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0018】
本発明者らが、エージング処理を施した種々のスラグの安定性を調査した結果、従来、報告されているスラグの膨張性を評価するための「水浸膨張試験」や「オートクレーブ膨張試験」によれば確かにスラグは水和反応が促進され、消化性を有する一部のスラグ粒が水和に伴い膨張、破壊していることは明らかであり、当然のことながらスラグをエージング処理すればするほどこの膨張率が低減することもきちんと評価できることはわかっていた。
【0019】
しかしながら、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについても、上記の膨張率を測定して、固化体に適用が可能な製鋼スラグの条件を見出そうと両者の相関関係を調べてみても、この膨張率は先にも述べたようにある容積のスラグの固まり(群)としての平均的な膨張挙動を評価しており、実際に膨張率が小さくても、中に数個の崩壊するスラグが含まれていれば固化体の破壊をもたらすことが推定された。
【0020】
そこで次に、膨張率ではなく、同じ水和促進処理後のスラグを篩い分けして、篩い下の重量から崩壊率(粉化率)を測定して同じく固化体の破壊状況との相関関係を調べたが、この方法では逆に、様々なエージング処理を施してもスラグの崩壊率が大きくばらつき、やはり正当な評価が難しいという結果となった。
【0021】
しかし、上記の方法によれば、明らかに崩壊した個々のスラグ粒を測定できているはずであり、このスラグの崩壊率が大きくばらつく原因を究明するために、本発明者らがさらに種々の検討を行った結果、スラグの安定性を的確に評価する方法として次のような知見を得た。
【0022】
すなわち、第1の篩い目で分級された篩い上のスラグを水和促進処理後、同じ第1の篩い目でスラグを篩い分けして、篩い下のスラグ粒を詳細に観察したところ、水和処理で崩壊に至った破片状あるいは粉末状のスラグの中に明らかに崩壊していないと見受けられる比較的大きなスラグ粒が混入していることが判明した。
【0023】
この原因としては、これらのスラグは安定性評価のため、水和促進処理の事前に必要とされる粒度以上に分級処理によって細粒分が除去されるが、この際に全ての小さなスラグが完全に篩われるわけではなく、どうしても一部の細粒なスラグが篩い上に残ってしまい、水和促進後の分級処理時にこれらのスラグが篩い下に落ちたものと考えられる。
【0024】
そこで、水和促進処理後のスラグを第1の篩い目よりも小さな第2の篩い目で篩うと、明白なことながら未崩壊のスラグがほぼ完全に除去される結果、水和促進処理で崩壊に至ったスラグだけを測定できることとなり、この真の崩壊率を用いることによって、元々のスラグのエージング処理が十分であればこの崩壊率も減少し、さらにはこの崩壊率が固化体の安定性(破壊状況)に密接に関係することなどを明らかにすることができた。
【0025】
図1は本発明の原理を示す図である。ここでは一例として、事前にエージング処理した10mm以上25mm以下のスラグを測定対象とするため、JIS Z8801−1に規定された呼び寸法(篩い目の1辺の長さ)22.4mm及び9.5mmの篩い目を用いて事前にスラグを分級する。エージング処理としては、大気中で少なくとも1ヶ月放置したのちに、必要に応じて180℃で6時間蒸気エージングを実施した。
【0026】
このスラグを80℃の温水への浸漬(6時間/日×10日)あるいはオートクレーブ(180℃(約20気圧)×6時間)などを用いて水和促進処理を行い乾燥させたのち、JIS Z8801−1に準じて9.5mmの篩い目よりもう1段小さな篩い目である8mmを使って、上記の水和促進処理後のスラグを分級する。なお図中には、この1段小さな篩い目の下のスラグをさらに2mmの篩いで篩って、破片状のスラグと粉状のスラグに分けた例をも示した(W2、W1)。
【0027】
この図から、本発明によれば、真の崩壊率は元のスラグ量W0に対する粉分のW1と破片状のスラグ量W2の和で示されることが自明である。
【0028】
しかしながら、従来は粉分(W1)と破片状分(W2)以外に、8mmから9.5mmの間の未崩壊のスラグの和をもって崩壊率と見なしていたわけである。事前の分級は当然のことながら一定条件で行われていたとしても、9.5mmの篩い目を用いて分級した場合には、本来であれば篩い落とされているはずの8mmから9.5mmの間のスラグは分級の処理時にばらつくため、一部が篩い上に残ってしまうことが容易に想定でき、これが測定値のばらつきをもたらしていたことを本発明者らは知見した。
【0029】
また、崩壊率を一部、粉化率と称する報告があるように、水和処理で生じた粉分W1のみを用いて崩壊率と見なしていた場合もあり、この際には当然のことながら真の崩壊率よりも相当小さく評価していることになる。
【0030】
ここで、分級に用いる篩いとしては、わが国においては、上述のJIS Z 8801−1で規定されるものが一般的である。さらに、事前分級処理に用いた篩い目よりも小さな篩いを用いて分級するのが本発明の特徴であるが、これにはJIS Z 8801−1で規定した1〜2段ほど小さな篩い目を用いることが好ましく、径の小さなスラグの測定ほど1段下の篩い目で十分でなる。事前の分級処理は、例えば大型の分級器で行われるのが一般的であるが、水和促進処理後は崩壊したスラグ量も少なく、精度を高めるためにもロータップ試験機などを用いるのが一般的で、水和促進処理後のスラグを十分に乾燥させたものを、少なくとも3分以上分級したほうが測定精度上、好ましい。
【0031】
スラグの水和促進処理としては、多くの実績があるJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」(80℃温水に10日間)や、短時間で処理が可能なASTMC151−08「ポルトランドセメントの膨張試験方法」に準じた方法が一般的であり、後者であれば180℃で3〜6時間の処理で評価に十分なデータが得られる。
【0032】
本発明はエージング処理を行った後のスラグ崩壊率を評価することが目的であるので、エージング処理後、未崩壊のスラグを分級するため、第2の篩い目で細粒分を除去することは必須である。
【0033】
ここで、元のスラグの粒径が50mm以下、好ましくは25mm以下であれば、粗粒を事前にあえて分級する必要はない。一方、スラグの粒径が50mm超、好ましくは25mm超であれば、混在する地金分の混入をさけるため、これらの粗粒も除去した上で水和促進処理に用いることが好ましい。
【0034】
また、エージング処理としては、消化成分が水和反応するためにも、室温で1か月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置することが好ましい。加圧の上限は特に定めることなく本発明の効果を得ることができるが、特に水和反応の速度が遅いMgOの水和促進効果を効率的かつ経済的に得るためには1〜10気圧で処理することが好ましい。
【0035】
さらに、評価に用いるスラグの量は特に問わないが、スラグの安定化のためにエージング処理を施せば施すほど、スラグの崩壊率は減少してくるので、測定値の精度を高めるためにも、少なくとも5kg以上を用いたほうが良い。
【0036】
また、スラグによっては岩石状に表面がつるつるしたものもあれば、砂岩状にざらついているものもあり、特に後者の場合は粉分がでるので、事前の分級後に水洗いを行って、極力表面の付着粉分を除去したほうが測定精度が良い。
【0037】
【実施例】
(本発明例)
図2は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグを、JIS Z 8801−1で規定される呼び寸法22.4mmならびに9.5mmで篩ったもの(粒度範囲10〜25mm)5kgを、JISA5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間、スラグを浸漬させて水和促進処理を施したのちに110℃24時間乾燥させた上で、図1に示したような方法によってJIS Z 8801−1で規定される呼び寸法8mmの篩いで分級し、(8mmの篩い下のスラグ質量)/(水和促進処理処理前の10〜25mmのスラグ質量)×100%により求めた真の崩壊率と、同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。尚、固化体の破壊率は促進評価により崩壊した試料個数/評価に供した試料個数により求めた。
【0038】
この図から、本発明によるスラグの真の崩壊率が約3%を超えると、該スラグを骨材に用いた固化体の試料も破壊を生じるため、崩壊率3%以下のエージング処理を施したスラグは、固化体の骨材として適していることがわかった。
(比較例1)
図3は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグを、JIS Z 8801−1で規定される呼び寸法22.4mmならびに9.5mmで篩ったもの(粒度範囲10〜25mm)を、JIS A5015「道路用鉄鋼スラグ」中に附属書2として「水浸膨張試験方法」中に規定されている容器(モールド)内に突き固めて充填したものを、80℃の温水に6時間保持したのちに放冷させる操作を1日1回、10日間繰り返して養生させ、養生後のモールド内試料の高さを測定して求めた膨張率と、同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。固化体の破壊率は本発明例と同一の方法により求めた。
【0039】
この図から、従来の評価方法である膨張率を用いても、0.3%以上の範囲になると当該スラグを用いた固化体が破壊したり、破壊しなかったりしており、安定な固化体に適したスラグの条件を見出すことはできなかった。
(比較例2)
図4は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグを、JIS Z 8801−1で規定される呼び寸法22.4mmならびに9.5mmで篩ったもの(粒度範囲10〜25mm)5kgを、JISA5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間、スラグを浸漬させて水和促進処理を施したのちに110℃24時間乾燥させた上で、事前の分級処理に用いたと同じJIS Z 8801−1で規定される呼び寸法9.5mmの篩いで分級した際の(9.5mmの篩い下のスラグ質量)/(水和促進処理前の10〜25mmのスラグ質量)×100%により求めた、いわゆるこれまで言われてきた崩壊率と、同スラグを骨材に用いて他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。固化体の破壊率は本発明例と同一の方法により求めた。
【0040】
この図から、やはり従来の方法によるスラグの崩壊率では、これまで説明してきたように一部未崩壊のスラグ粒が混入していることから、崩壊率が2%以上の範囲になると比較例1と同様に当該スラグを用いた固化体が破壊したり、破壊しなかったりしており、安定な固化体に適したスラグの条件を見出すことはできなかった。
【0041】
【発明の効果】
本発明によれば、鉄鋼スラグ、中でも消化性の成分を有し長期にわたって膨張する性質のある製鋼スラグを、道路用以外の例えば固化体といった新たな用途に利用しようとする際に、エージング処理を施し安定化させたスラグの安定性を精度良く評価することができる。
【図面の簡単な説明】
【図1】本発明の原理を示す。
【図2】本発明によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
【図3】従来技術によるスラグの膨張率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
【図4】従来技術によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating the stability of steel slag such as a blast furnace, a converter, and an electric furnace slag generated in an ironworks.
[0002]
[Prior art]
Steel slag generated from smelting furnaces such as blast furnaces, converters, and electric furnaces at ironworks is used as a recycled material that reduces the burden on the environment from the viewpoint of resource saving and energy saving, and is used in various fields by taking advantage of its many characteristics. Have been.
[0003]
For example, "hydraulic", in which blast furnace slag and steelmaking slag gradually harden by reacting with water, is suitable for roadbed materials, or the "hard" and "wear-resistant" properties of steelmaking slag Is suitable for asphalt and concrete aggregate for roads.
[0004]
Since it is important that the slag used in these applications is stable over a long period of time, air and water are used for several months after the slag is crushed, for example, as specified in JIS A5015 “Steel slag for roads”. There is a need to perform an "aging" treatment for reacting with the compound to sufficiently stabilize it.
[0005]
Among them, steelmaking slag contains digestive substances such as free CaO and MgO and has a phenomenon of expanding for a long time. Therefore, as a method for evaluating whether slag has become sufficiently stable by aging, JIS A5015 “ “Steel slag for roads” defines “Water immersion expansion test method” as Annex 2.
[0006]
According to the method described in Annex 2, a sample whose particle size has been adjusted according to a certain particle size distribution is packed in a prescribed container (mold), and the sample is kept in 80 ° C. hot water for 6 hours and then allowed to cool. The operation is repeated once a day for 10 days for curing, the height of the mold in the mold after curing is measured, and the stability of the slag is evaluated from the expansion amount. Has been used as an important indicator.
[0007]
In addition, although the above method has a long time of 10 days for evaluating the stability of slag, as a method for more quickly evaluating the stability of a material containing a digestible substance, such as cement or refractory, a sealed pressurized container is used. A sample is placed under a high temperature and high pressure of 100 ° C. or more using an “autoclave” device including a heating device and a hydration reaction is caused in a relatively short time, and then, for example, ASTMC151-08 “Expansion of Portland cement” As described in "Test Methods", the method of measuring the length of a sample, and as described in JIS R2211 "Test method for digestibility of basic refractory bricks", the rate of decrease in compressive strength of a sample is measured. A method of measurement or, as described in Non-Patent Document 1, sieving of a treated sample and measuring the ratio of the weight under the sieve (powdering rate) to evaluate the stability of the material Some do.
[0008]
[Non-patent document 1]
Iron and Steel, 64th (1978) No. 10, P-68
[0009]
[Problems to be solved by the invention]
However, when attempting to use steel slag for a new purpose other than, for example, road use, the above-described stability evaluation method in the related art has the following problems.
[0010]
In other words, the present inventors have made these steel slags, in particular, those obtained by subjecting steel slag having a long-term expansion property to a sufficient aging treatment as described above to a solidified aggregate that is mixed with other binders and solidified. I have been conducting research and development to see if it can be used. Here, in order to estimate the long-term stability of a solidified body using steelmaking slag subjected to various aging treatments as aggregate, the stability promotion test of the solidified body itself was performed to examine the destruction state of the solidified body, and at the same time, The stability of steelmaking slag, which is the aggregate used in the above, was evaluated using the method described above, and a study was conducted to find conditions for stabilization of steelmaking slag applicable to the solidified body.
[0011]
However, in the “water immersion expansion test method” described in JIS A5015 “iron and steel slag for roads”, it is possible to evaluate the average expansibility as a mass (group) of a certain volume of steelmaking slag in a mold. Since it is not possible to measure the destruction of the slag particles, which are one of the constituent elements, which would cause the destruction of the solidified product, it is impossible to measure the destruction. It was found that the stability of the slag could not be evaluated.
[0012]
Also, a method for measuring the length of a sample as described in ASTM C151-08 “Testing method for expansion of Portland cement”, or a sample described in JIS R2211 “Testing method for digestibility of basic refractory brick” Although the expansion behavior of a molded article can be evaluated by a method for measuring the rate of decrease in the compressive strength of the slag, it is difficult to evaluate the stability of each slag particle.
[0013]
Further, in the method of measuring the powdering rate described in Non-Patent Document 1, the measured value is small or the dispersion is large only with the powder component generated as a result of hydration swelling, and the solidified body is broken. It is difficult to discriminate slag, and it is also difficult to evaluate the stability of individual slag grains, as described in the article, "There is no suitable method for indicating the disintegration of slag."
[0014]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for more accurately evaluating the stability of an aged steel slag.
[0015]
That is, it is an object of the present invention to accurately grasp the existence probability of individual slag grains that have not yet been collapsed and remain in the slag stabilized by the aging treatment or the like.
[0016]
[Means for Solving the Problems]
As described above, the present inventors investigated the state of destruction of the solidified body in a stability promotion test of the solidified body using various aging-treated steelmaking slags as an aggregate, and at the same time, used the steelmaking slag used for these aggregates. The stability (disintegration) of slag was also measured by various methods, and the analysis and examination were repeated as to whether a quantitative correlation was found between the two. As a result, the above-mentioned problems were solved by the following invention. Knowledge was obtained.
(1) After the aging treatment, the slag on the sieve from which fine particles have been removed by the first sieve is further subjected to a hydration accelerating treatment, and the dried slag is smaller than the first sieve. Sieving with the second sieve, (slag mass under the second sieve) / (mass of slag on the first sieve before the hydration acceleration treatment) x 100 (%) slag collapse A method for evaluating slag stability, characterized in that the slag is a ratio.
(2) The hydration accelerating treatment is a treatment described in JIS A5015 “Steel slag for road” “Water swelling test method” or ASTMC151-08 “Portland cement expansion test method”. (1) The slag stability evaluation method described in (1).
(3) The method for evaluating slag stability according to (1) or (2), wherein the first sieve is coarser than the second sieve by one or two stages in accordance with JIS Z8801-1. .
(4) The method for evaluating slag stability according to any one of (1) to (3), wherein the first sieve is 9.5 mm, and the second sieve is 8 mm. .
(5) The method for evaluating slag stability according to any one of (1) to (4), wherein the slag from which coarse particles of 50 mm or more are also removed is subjected to a hydration promoting treatment.
(6) Any of the above (1) to (5), wherein the aging treatment is a treatment in which the aging treatment is left at least for one month or more in the atmosphere or for six hours or more under normal pressure or pressurized steam. 2. The method for evaluating slag stability according to claim 1.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0018]
The present inventors have investigated the stability of various slags subjected to aging treatment, and as a result, conventionally, to evaluate the slag expandability reported in the "water immersion expansion test" and "autoclave expansion test" According to the results, it is clear that the slag promotes the hydration reaction, and it is clear that some of the digestible slag granules expand and break with hydration. It was known that the more the expansion coefficient was reduced, the more it could be evaluated.
[0019]
However, in order to estimate the long-term stability of the solidified body using steelmaking slag that has been subjected to various aging treatments as aggregate, the stability promotion test of the solidified body itself was conducted to examine the fracture state of the solidified body, and at the same time, Regarding the steelmaking slag that is the aggregate used, the expansion rate was measured by measuring the above-mentioned expansion rate and examining the correlation between the two to find out the conditions of steelmaking slag applicable to the solidified body. As mentioned earlier, the average expansion behavior of a certain volume of slag as a lump (group) is evaluated. Even if the expansion rate is actually small, several collapsed slags are contained in the slag. It was presumed that this would lead to the destruction of the solidified body.
[0020]
Then, instead of the expansion rate, the slag after the same hydration accelerating treatment is sieved, and the disintegration rate (powder rate) is measured from the weight under the sieve, and the correlation with the destruction state of the solidified body is also determined. According to this method, on the contrary, even if various aging treatments were performed, the slag collapse rate greatly fluctuated, and as a result, it was difficult to properly evaluate the slag.
[0021]
However, according to the above-mentioned method, it should have been possible to measure the individual slag particles that have clearly collapsed, and in order to investigate the cause of the large variation in the slag collapse rate, the present inventors conducted further various studies. As a result, the following findings were obtained as a method for accurately evaluating the stability of slag.
[0022]
That is, after the slag on the sieve classified by the first sieve was subjected to the hydration promoting treatment, the slag was sieved by the same first sieve, and the slag particles under the sieve were observed in detail. It was found that relatively large slag particles which seemed to have not collapsed were mixed in the slag or powdery slag which had collapsed by the treatment.
[0023]
The reason for this is that for the sake of stability evaluation, these slags are removed by a classification treatment to a particle size larger than that required in advance of the hydration accelerating treatment. It is considered that some fine slag was inevitably left on the sieve, and the slag fell under the sieve during the classification treatment after the promotion of hydration.
[0024]
Then, when the slag after the hydration accelerating treatment is sieved with the second sieve smaller than the first sieve, the undisintegrated slag is clearly and almost completely removed, and as a result, the slag is disintegrated by the hydration accelerating treatment. Can be measured, and by using this true decay rate, the decay rate can be reduced if the aging treatment of the original slag is sufficient. The situation of destruction).
[0025]
FIG. 1 is a diagram showing the principle of the present invention. Here, as an example, in order to measure a slag of 10 mm or more and 25 mm or less that has been aged in advance, the nominal dimensions (length of one side of a sieve) specified in JIS Z8801-1 are 22.4 mm and 9.5 mm. Classify the slag in advance using a sieve. As the aging treatment, after leaving in the air for at least one month, steam aging was performed at 180 ° C. for 6 hours as needed.
[0026]
The slag is immersed in hot water at 80 ° C. (6 hours / day × 10 days) or subjected to a hydration promoting treatment using an autoclave (180 ° C. (about 20 atm) × 6 hours) and dried, and then JIS Z8801. The slag after the above-mentioned hydration accelerating treatment is classified by using 8 mm which is one step smaller than the 9.5 mm sieve according to -1. The figure also shows an example in which the slag under the one-stage smaller sieve is further sieved with a 2 mm sieve to separate the slag into fragmentary slag and powdery slag (W2, W1).
[0027]
From this figure, it is obvious that according to the present invention, the true decay rate is represented by the sum of the powder content W1 and the fragmentary slag amount W2 with respect to the original slag amount W0.
[0028]
However, conventionally, in addition to the powder content (W1) and the shard-like content (W2), the sum of undisintegrated slag between 8 mm and 9.5 mm was regarded as the collapse rate. Even if the preliminary classification is performed under a certain condition, if the classification is performed by using a 9.5 mm sieve, it is necessary to reduce the size from 8 mm to 9.5 mm, which should be sieved. The present inventors have found that since the slag between the samples varies during the classification process, a part of the slag can easily be left on the sieve, which results in a variation in measured values.
[0029]
In addition, as reported in some cases, the disintegration rate was referred to as the powdering rate, in some cases, the disintegration rate was regarded as the disintegration rate using only the powder component W1 generated by the hydration treatment. In other words, the evaluation is much smaller than the true collapse rate.
[0030]
Here, the sieve used for classification is generally specified in JIS Z 8801-1 as described above in Japan. Further, the feature of the present invention is that classification is performed using a sieve smaller than the sieve used in the pre-classification treatment. For this, a sieve smaller by about 1 to 2 stages specified in JIS Z 8801-1 is used. It is preferable that the measurement of the slag having a small diameter is sufficient with the sieve below one stage. Prior classification is generally performed, for example, with a large classifier, but after the hydration acceleration treatment, the amount of collapsed slag is small, and it is common to use a low-tap tester or the like to increase the accuracy. It is preferable from the viewpoint of measurement accuracy that the slag after the hydration accelerating treatment is sufficiently dried and classified for at least 3 minutes or more.
[0031]
As slag hydration accelerating treatment, JIS A5015 “Steel for road slag”, which has many achievements, “water immersion expansion test method” (10 days in hot water at 80 ° C.) and ASTM C151-08 which can be treated in a short time. In general, a method according to the “Portland cement expansion test method” is used. In the latter case, treatment at 180 ° C. for 3 to 6 hours can provide sufficient data for evaluation.
[0032]
Since the purpose of the present invention is to evaluate the slag collapse rate after performing the aging treatment, after aging treatment, to classify the undisintegrated slag, it is not possible to remove fine particles with the second sieve. Required.
[0033]
Here, if the original slag has a particle size of 50 mm or less, preferably 25 mm or less, there is no need to classify coarse particles in advance. On the other hand, if the particle size of the slag is more than 50 mm, preferably more than 25 mm, it is preferable to remove the coarse particles and use the slag for the hydration promoting treatment in order to avoid the incorporation of the ingot.
[0034]
In addition, as the aging treatment, it is preferable that the digestion component is left at room temperature for one month or more, or under normal pressure or pressurized steam for 6 hours or more so that the digestion component undergoes a hydration reaction. The effect of the present invention can be obtained without particular limitation on the upper limit of pressurization. However, in order to efficiently and economically obtain the hydration accelerating effect of MgO, which has a slow hydration rate, 1 to 10 atmospheres is required. Processing is preferred.
[0035]
Furthermore, the amount of slag used for evaluation is not particularly limited, but the more the aging treatment is performed for stabilizing the slag, the more the slag collapse rate decreases, so in order to improve the accuracy of the measured value, It is better to use at least 5 kg or more.
[0036]
In addition, some slags have a smooth surface in the shape of a rock, while others have a rough surface in the form of sandstone.Especially in the case of the latter, powder is generated. The measurement accuracy is better when the attached powder is removed.
[0037]
【Example】
(Example of the present invention)
FIG. 2 shows a steelmaking slag stabilized by an aging treatment left at room temperature for at least one month and sieved at nominal sizes 22.4 mm and 9.5 mm specified in JIS Z 8801-1 (particle size range: 10 to 10 mm). 25 mm) 5 kg was immersed in hot water at 80 ° C. for 10 days in accordance with JIS A5015 “Steel slag for roads” “Water swelling test method”, subjected to hydration accelerating treatment, and then dried at 110 ° C. for 24 hours. After sieving, classified by a sieve having a nominal size of 8 mm specified by JIS Z 8801-1 by a method as shown in FIG. 1, and (slag mass under a sieve of 8 mm) / (before hydration acceleration treatment) (10-25 mm slag mass) × 100%, the true decay rate, and solidification using the same slag as an aggregate and other blast furnace slag fine powder mixed as the main binder (Diameter 100 mm * height 200 mm), is a graph showing a correlation between accelerated evaluation (4 weeks immersion in 80 ° C. warm water) was during solidification of the rate of destruction for confirmation Likewise stability and slag. In addition, the destruction rate of the solidified body was determined by the number of samples collapsed by the accelerated evaluation / the number of samples subjected to the evaluation.
[0038]
From this figure, it can be seen that when the true decay rate of the slag according to the present invention exceeds about 3%, the sample of the solidified body using the slag as an aggregate also breaks down. The slag was found to be suitable as a solidified aggregate.
(Comparative Example 1)
FIG. 3 shows a steelmaking slag stabilized by an aging treatment left at room temperature for at least one month and sieved at nominal sizes 22.4 mm and 9.5 mm specified in JIS Z 8801-1 (particle size range: 10 to 10 mm). 25 mm) in a container (mold) specified in JIS A5015 “Steel slag for roads” in “Method of water immersion expansion test” as annex 2 in Annex 2, and filled with hot water at 80 ° C. After holding for 6 hours, the operation of allowing to cool is repeated once a day for 10 days for curing, and the expansion rate obtained by measuring the height of the sample in the mold after curing and the same slag as an aggregate. In addition, a blast furnace slag fine powder was mixed as a main binder and the solidified material (diameter 100 mm * height 200 mm) was subjected to accelerated evaluation for stability confirmation in the same manner as slag (4 weeks in hot water at 80 ° C) Is a graph showing the correlation between destruction rate of the solidified body when the pickles). The destruction rate of the solidified body was determined by the same method as in the present invention.
[0039]
From this figure, it can be seen that the solidified body using the slag is broken or not broken when the expansion ratio is 0.3% or more, even if the expansion coefficient, which is a conventional evaluation method, is used. Slag conditions suitable for slag could not be found.
(Comparative Example 2)
FIG. 4 shows a steelmaking slag stabilized by an aging treatment left at room temperature for at least one month and sieved at nominal sizes 22.4 mm and 9.5 mm specified in JIS Z 8801-1 (particle size range: 10 to 10 mm). 25 mm) 5 kg was immersed in hot water at 80 ° C. for 10 days in accordance with JIS A5015 “Steel slag for roads” “Water swelling test method”, subjected to hydration accelerating treatment, and then dried at 110 ° C. for 24 hours. (Slag mass under a 9.5 mm sieve) / (hydration promotion) when classified with a sieve having a nominal size of 9.5 mm specified in JIS Z 8801-1 as used in the pre-classification process. The so-called decay rate, which was determined by the (slag mass of 10 to 25 mm before treatment) x 100%, and the slag as the aggregate, and the blast furnace slag fine powder was mainly combined Of the solidified body (diameter 100 mm * height 200 mm), which was mixed and hardened, as in the case of slag, was subjected to an accelerated evaluation for stability confirmation (immersed in 80 ° C warm water for 4 weeks). It is a graph showing the correlation. The destruction rate of the solidified body was determined by the same method as in the present invention.
[0040]
From this figure, the slag decay rate according to the conventional method also shows that the undecayed slag particles are partially mixed as described above, so that when the decay rate becomes 2% or more, Comparative Example 1 is obtained. Similarly, the solidified body using the slag was broken or did not break, and it was not possible to find slag conditions suitable for a stable solidified body.
[0041]
【The invention's effect】
According to the present invention, steel slag, especially steelmaking slag that has a digestible component and has the property of expanding over a long period of time, when aging treatment is to be used for new applications other than road use, such as solidified bodies, The stability of the applied and stabilized slag can be accurately evaluated.
[Brief description of the drawings]
FIG. 1 illustrates the principle of the present invention.
FIG. 2 shows the relationship between the slag collapse rate according to the present invention and the destruction rate of a solidified body using the slag as an aggregate.
FIG. 3 shows the relationship between the expansion rate of slag according to the prior art and the destruction rate of a solidified body using the slag as an aggregate.
FIG. 4 shows the relationship between the slag collapse rate according to the prior art and the destruction rate of a solidified body using the slag as an aggregate.

Claims (6)

エージング処理の後、第1の篩い目で細粒分を除去した篩い上のスラグを、さらに水和促進処理し、これを乾燥させたものを、前記第1の篩い目よりも小さな第2の篩い目で篩い分け、(第2の篩い目の篩い下のスラグ質量)/(水和促進処理前の第1の篩い目の篩い上のスラグ質量)×100(%)をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。After the aging treatment, the slag on the sieve from which fine particles have been removed by the first sieve is further subjected to a hydration accelerating treatment, and the dried slag is subjected to a second slag smaller than the first sieve. Sieving with a sieve, and (slag mass under the second sieve under the second sieve) / (mass of slag on the first sieve before the hydration acceleration treatment) x 100 (%) is defined as the slag collapse rate. A method for evaluating slag stability, characterized in that: 水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする請求項1記載のスラグの安定性評価方法。The hydration accelerating treatment is a treatment described in JIS A5015 "Steel slag for roads" "Water immersion expansion test method" or ASTM C151-08 "Portland cement expansion test method". Slag stability evaluation method. 第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする請求項1又は2記載のスラグの安定性評価方法。The slag stability evaluation method according to claim 1 or 2, wherein the first sieve is coarser by one or two stages in accordance with JIS Z8801-1 than the second sieve. 第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする請求項1〜3の何れか1項に記載のスラグの安定性評価方法。The slag stability evaluation method according to any one of claims 1 to 3, wherein the first sieve is 9.5 mm and the second sieve is 8 mm. 50mm以上の粗粒分も除去したスラグを水和促進処理することを特徴とする請求項1〜4の何れか1項に記載のスラグの安定性評価方法。The method for evaluating slag stability according to any one of claims 1 to 4, wherein the slag from which coarse particles of 50 mm or more have been removed is subjected to a hydration promoting treatment. エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする請求項1〜5の何れか1項に記載のスラグの安定性評価方法。The aging treatment is a treatment that is left at least for one month or more in the atmosphere, or for six hours or more under normal pressure or pressurized steam, according to any one of claims 1 to 5, Slag stability evaluation method.
JP2003095498A 2003-03-31 2003-03-31 Slag stability evaluation method Expired - Lifetime JP4274835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095498A JP4274835B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095498A JP4274835B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Publications (2)

Publication Number Publication Date
JP2004301694A true JP2004301694A (en) 2004-10-28
JP4274835B2 JP4274835B2 (en) 2009-06-10

Family

ID=33407814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095498A Expired - Lifetime JP4274835B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Country Status (1)

Country Link
JP (1) JP4274835B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281842A (en) * 2008-05-22 2009-12-03 Jfe Steel Corp Expansivity evaluating method for sorting roadbed material
JP2012047450A (en) * 2010-08-24 2012-03-08 Tokiwa Kogyo Co Ltd Method of promoting asphalt mixture separation
CN107942009A (en) * 2017-12-30 2018-04-20 扬州大学 A kind of device and evaluation method of quantitative assessment decoking efficiency
CN113670764A (en) * 2021-07-27 2021-11-19 宝武环科武汉金属资源有限责任公司 Hydrothermal accelerated experiment method for batch safety detection of stability of steel slag granules

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281842A (en) * 2008-05-22 2009-12-03 Jfe Steel Corp Expansivity evaluating method for sorting roadbed material
JP2012047450A (en) * 2010-08-24 2012-03-08 Tokiwa Kogyo Co Ltd Method of promoting asphalt mixture separation
CN107942009A (en) * 2017-12-30 2018-04-20 扬州大学 A kind of device and evaluation method of quantitative assessment decoking efficiency
CN107942009B (en) * 2017-12-30 2020-07-14 扬州大学 Device and method for quantitatively evaluating decoking efficiency
CN113670764A (en) * 2021-07-27 2021-11-19 宝武环科武汉金属资源有限责任公司 Hydrothermal accelerated experiment method for batch safety detection of stability of steel slag granules
CN113670764B (en) * 2021-07-27 2024-03-15 宝武环科武汉金属资源有限责任公司 Hydrothermal acceleration experiment method for safely detecting stability of steel slag particles in batches

Also Published As

Publication number Publication date
JP4274835B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP2004292295A (en) Hardened body of slag
Polanco et al. Strength and Durability of Concrete Made with Electric Steelmaking Slag.
JP3828897B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
JPH10152364A (en) Hydration curing product utilizing steel-making slag
Cyr et al. Reduction of ASR-expansion using powders ground from various sources of reactive aggregates
JP4608382B2 (en) Slag granulation method and granulated slag
Fu et al. Internal pore evolution and early hydration characterization of fly ash cement backfill
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
JP6156659B2 (en) Ultra high strength concrete
JP4274834B2 (en) Slag stability evaluation method
JP2010013315A (en) Manufacturing method of civil engineering material using steel slag
JP2004301694A (en) Slag stability evaluation method
US5792251A (en) Method of producing metakaolin
Chen et al. Effect of ultrafine recycled brick powder on the properties of blended cement: Hydration kinetics, microstructure evolution and properties development
JP2019095401A (en) Method for predicting strength of artificial lightweight aggregate
JP4357199B2 (en) Slag stability evaluation method
JP2019026538A (en) Method for producing steel-making slag roadbed material
JP3828895B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
JP2009281842A (en) Expansivity evaluating method for sorting roadbed material
Ayininuola et al. Bone ash influence on soil consolidation
JP6766832B2 (en) Manufacturing method of steelmaking slag roadbed material
KR20170040821A (en) A fine powder for concrete from Fe-Ni slag and method for making the same
TWI827233B (en) Evaluation method of stabilization treatment for basic-oxygen-furnace slag
Turgunbayeva et al. Investigation of mechanical activation of steelmaking slag and obtaining fine filler
Ahmed et al. Effects of microstructure on fracture behavior of hardened cement paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R151 Written notification of patent or utility model registration

Ref document number: 4274835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term