JP4357199B2 - Slag stability evaluation method - Google Patents

Slag stability evaluation method Download PDF

Info

Publication number
JP4357199B2
JP4357199B2 JP2003096443A JP2003096443A JP4357199B2 JP 4357199 B2 JP4357199 B2 JP 4357199B2 JP 2003096443 A JP2003096443 A JP 2003096443A JP 2003096443 A JP2003096443 A JP 2003096443A JP 4357199 B2 JP4357199 B2 JP 4357199B2
Authority
JP
Japan
Prior art keywords
slag
sieve
treatment
hydration
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003096443A
Other languages
Japanese (ja)
Other versions
JP2004301747A (en
Inventor
直人 堤
雅夫 中川
英滋 木曽
公一 遠藤
久宏 松永
史男 小菊
正人 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
JFE Steel Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Steel Corp filed Critical JFE Steel Corp
Priority to JP2003096443A priority Critical patent/JP4357199B2/en
Publication of JP2004301747A publication Critical patent/JP2004301747A/en
Application granted granted Critical
Publication of JP4357199B2 publication Critical patent/JP4357199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は製鉄所などで発生する高炉、転炉、電気炉スラグなどの鉄鋼スラグの安定性を評価する方法に関するものである。
【0002】
【従来の技術】
製鉄所などで高炉、転炉、電気炉といった精錬炉から発生する鉄鋼スラグは、省資源、省エネルギーの観点から、環境への負荷を低減させるリサイクル材料として、数々の特性を生かして各方面で利用されている。
【0003】
例えば、高炉スラグや製鋼スラグが水と反応して次第に硬化していく「水硬性」は道路用の路盤材に適しているし、あるいは製鋼スラグの有する「硬質」かつ「高耐磨耗」な特性は道路用のアスファルト・コンクリート用骨材に適している。
【0004】
これらの用途に用いられるスラグは長期にわたって安定であることが重要であることから、例えばJIS A5015「道路用鉄鋼スラグ」に規定されるように、スラグを破砕後、数ヶ月の間、空気および水と反応させる「エージング」処理を行い十分に安定化させることが必要とされている。
【0005】
中でも、製鋼スラグは遊離のCaOやMgOなど消化性の物質を含んでおり長期にわたって膨張する現象があることから、エージングによってスラグが十分に安定になったかどうかを評価する方法として、同じくJIS A5015「道路用鉄鋼スラグ」中に附属書2として「水浸膨張試験方法」が規定されている。
【0006】
附属書2に記載された方法は、ある粒度分布に従って粒度調整された試料を規定の容器(モールド)内に突き固めて充填したものを、80℃の温水に6時間保持したのちに放冷させる操作を1日1回、10日間繰り返して養生させ、養生後のモールド内試料の高さを測定してその膨張量からスラグの安定度を評価するものであり、長年、道路用鉄鋼スラグの有効な指標として用いられてきた。
【0007】
また、上記方法ではスラグの安定性評価に10日間という長い時間を有するが、例えばセメントや耐火物など、同じく消化性物質を含む材料の安定性をより迅速に評価する方法として、密封加圧容器と加熱装置からなる「オートクレーブ」装置を用いて100℃以上の高温・高圧下に試料をおいて、比較的、短時間に水和反応をおこさせた後に、例えばASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているように試料の長さを測定する方法や、JIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されているように試料の圧縮強さの低下率を測定する方法、あるいは、非特許文献1に記載されているように、処理後の試料を篩い分けして篩い下重量の割合(粉化率)を測定して材料の安定度を評価するものも知られている。
【0008】
【非特許文献1】
鉄と鋼、第64年(1978)第10号、P−68
【0009】
【発明が解決しようとする課題】
しかし、鉄鋼スラグを、例えば道路用以外の新たな用途に利用しようとする際には、上記の従来技術における安定性評価方法では次のような問題点がある。
【0010】
すなわち、本発明者らはこれらの鉄鋼スラグ、中でも長期膨張性を有する製鋼スラグを上述のように十分なエージング処理を施したものを、他の結合材とともに混ぜ合わせて固める固化体の骨材に用いることができないかと研究開発を行ってきた。ここで、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについては上記の方法を用いてその安定性を評価し、固化体に適用が可能な製鋼スラグの安定化の条件を見出そうと検討を行った。
【0011】
ここで、JIS A5015「道路用鉄鋼スラグ」に記載されている「水浸膨張試験方法」においては、モールド内のある容積の製鋼スラグの固まり(群)としての平均的な膨張性が評価できるが、固化体を破壊に至らせるような、構成要素の一つであるスラグ粒の個々の膨張に伴う破壊は測定できないため、膨張率が小さくても固化体が破壊するような現象が見られ、的確にスラグの安定性が評価できていないことが判明した。
【0012】
また、ASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているような試料の長さを測定する方法、あるいはJIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されている試料の圧縮強さの低下率を測定する方法などは成形体の膨張挙動は評価できるが、個々のスラグ粒の安定性評価は困難である。
【0013】
また、非特許文献1に記載されている粉化率を測定する方法では、水和膨張の結果として生じた粉分だけでは測定値が小さい、あるいはばらつきが大きくて、固化体を破壊に至らせしめるスラグの判別がつきずらく、当該論文中にも「スラグの崩壊性の表示として適当な方法がない」と述べられているように、やはり個々のスラグ粒の安定性を評価するには難しい。
【0014】
本発明の目的は、上記従来技術の問題点を解決しエージング処理を施した鉄鋼スラグの安定性をより精度良く評価する方法を提供することにある。
【0015】
つまり、エージング処理等によって安定化させたスラグ中に残存する、今なお未崩壊の個々のスラグ粒の存在確率を的確に把握することが本発明の目的である。
【0016】
【課題を解決するための手段】
本発明者らは、前述したように、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の安定性促進試験における固化体の破壊状況を調べ、同時にこれら骨材に用いた製鋼スラグについても様々な方法によってその安定性(崩壊性)を測定し、両者の間に定量的な相関が見いだせられないか解析と検討を重ねた結果、以下の発明にて上記の課題が解決される知見を得た。
(1)エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分けた際の、{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)}
を「エージング処理後スラグの細粒分比率(%)とし、
次に、前記エージング処理したスラグをさらに水和促進処理し、これを乾燥させたものを、前記第1の篩い目で篩い、さらにこの篩い下を前記第2の篩い目で篩い分け、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前且つ分級前のエージング処理後のスラグ質量)×100(%)
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージング処理後スラグの細粒分比率」
をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。
(2)水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする前記(1)記載のスラグの安定性評価方法。
(3)第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする前記(1)又は(2)記載のスラグの安定性評価方法。
(4)第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする前記(1)〜(3)の何れか1項に記載のスラグの安定性評価方法。
(5)エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする前記(1)〜(4)の何れか1項に記載のスラグの安定性評価方法。
【0017】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0018】
本発明者らが、エージング処理を施した種々のスラグの安定性を調査した結果、従来、報告されているスラグの膨張性を評価するための「水浸膨張試験」や「オートクレーブ膨張試験」によれば確かにスラグは水和反応が促進され、消化性を有する一部のスラグ粒が水和に伴い膨張、破壊していることは明らかであり、当然のことながらスラグをエージング処理すればするほどこの膨張率が低減することもきちんと評価できることはわかっていた。
【0019】
しかしながら、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについても、上記の膨張率を測定して、固化体に適用が可能な製鋼スラグの条件を見出そうと両者の相関関係を調べてみても、この膨張率は先にも述べたようにある容積のスラグの固まり(群)としての平均的な膨張挙動を評価しており、実際に膨張率が小さくても、中に数個の崩壊するスラグが含まれていれば固化体の破壊をもたらすことが推定された。
【0020】
そこで次に、膨張率ではなく、エージング処理したスラグを篩い分け、
{(エージング処理後の篩い下のスラグ質量)/(エージング処理後のスラグ質量)×100(%)}
をエージング処理後のスラグの細粒分比率(%)として予め求め、次に、最初にエージング処理したスラグ全体を分級しないままさらに水和促進試験を行い、水和促進処理後のスラグを先の篩い目と同じ粗さで篩い分けして、
{(水和促進処理後の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100(%)}
を水和促進処理後のスラグの細粒分比率(%)として求めて、
この「水和促進処理後のスラグの細粒分比率」−「エージング処理後のスラグの細粒分比率」(%)
をスラグ崩壊率として、同じく固化体の破壊状況との相関関係を調べたが、この方法では逆に、様々なエージング処理を施してもスラグ崩壊率が大きくばらつき、やはり正当な評価が難しいという結果となった。
【0021】
しかし、上記の方法によれば、明らかに崩壊した個々のスラグ粒を測定できているはずであり、このスラグ崩壊率が大きくばらつく原因を究明するために、本発明者らがさらに種々の検討を行った結果、スラグの安定性を的確に評価する方法として次のような知見を得た。
【0022】
すなわち、水和促進処理後のスラグを篩い分けして、篩い下のスラグ粒を詳細に観察したところ、水和処理で崩壊に至った破片状あるいは粉末状のスラグの中に明らかに崩壊していないと見受けられる比較的大きなスラグ粒が混入していることが判明した。
【0023】
正確なスラグ崩壊率を求めるには、この篩い下に含まれる、明らかに崩壊していないと見受けられる比較的大きなスラグ粒を除去する必要がある。これは、水和促進処理後の真に崩壊したスラグ粒を含む細粒分比率だけでなく、エージング処理後のスラグ細粒分比率を求める際にも同様の問題である。
そこで、エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分け、
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)
を「エージング処理後スラグの細粒分比率(%)として予め求め、次に水和促進処理後のスラグを乾燥させたものを、エージング処理後スラグの細粒分比率を求めた篩い目と同じ粗さの第1の篩い目で篩い、この篩い下を第1の篩い目よりも小さな第2の篩い目でさらに篩い分ければ、明白なことながら未崩壊のスラグがほぼ完全に除去される結果、水和促進処理で崩壊に至ったスラグだけを測定できることとなり、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前且つ分級前エージング処理後スラグ質量×100(%
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージング処理後スラグの細粒分比率」
をもって真のスラグ崩壊率とすることによって、元々のスラグのエージング処理が十分であればこの崩壊率も減少し、さらにはこの崩壊率が固化体の安定性(破壊状況)に密接に関係することなどを明らかにすることができた。
【0024】
図1は本発明の原理を示す図である。本発明では、事前にエージング処理したスラグを測定対象とするが、エージング処理としては、大気中で少なくとも1ヶ月放置したのちに、必要に応じて180℃で6時間蒸気エージングを実施した。
【0025】
エージング処理後のスラグの細粒分比率を求めるために、エージング処理した一定量のスラグを、JIS Z8801−1に準じて9.5mmの篩い目で分級し、さらに、この篩い下をJIS Z8801−1に準じてもう1段小さな篩い目である8mmを使って分級し、未崩壊の比較的大きなスラグ粒(W2)を除去して、篩い下としてエージング処理後のスラグの細粒分を得る(W1)。ここで
{(第2の篩い目の篩い下のスラグ質量=W1)/(分級前のエージング処理後スラグ質量=W0)×100(%)
を「エージング処理後スラグの細粒分比率(%)」として算出する。
【0026】
次に、最初にエージング処理したスラグ全体を分級しないで80℃の温水への浸漬(6時間/日×10日)あるいはオートクレーブ(180℃(約20気圧)×6時間)などを用いてさらに水和促進処理を行い乾燥させたのち、同様に、JIS Z8801−1に準じて9.5mmの篩い目で分級し、この篩い下を更にJIS Z8801−1に準じてもう1段小さな篩い目である8mmを使って分級し、未崩壊の比較的大きなスラグ粒(W2’)を除去して、篩い下としてエージング処理後のスラグの細粒分を得て(W1’)、
水和促進処理後の第2の篩い目の篩い下のスラグ質量=W1’/( 水和促進処理前且つ分級前エージング処理後スラグ質量=W0)×100(%)
を「水和促進処理後スラグの細粒分比率(%)」とする。
【0027】
この図から、真のスラグ崩壊率が下記のように求められる。
【0028】
真のスラグ崩壊率
=「水和促進処理後スラグの細粒分比率(%)」−「エージング処理後スラグの細粒分比率(%)」
従来はスラグの崩壊率を評価する場合、エージング処理スラグの第1の篩い下分のスラグ分(W1とW2の和)、と水和促進処理後の第1の篩い下のスラグ分、すなわち水和促進処理によって崩壊したスラグならびに未崩壊スラグの和(W1'+W2')の差分をもって崩壊率と見なしていたわけである。事前の分級は当然のことながら一定条件で行われていたとしても、本来であれば篩い落とされているはずのスラグW2、W2'は処理時にばらつくことが容易に想定でき、これが測定値のばらつきをもたらしていたことを本発明者らは知見した。
【0029】
ここで、分級に用いる篩いとしては、わが国においては、上述のJIS Z 8801−1で規定されるものが一般的である。さらに、事前分級処理に用いた篩い目よりも小さな篩いを用いて最終分級するのが本発明の特徴であるが、これにはJIS Z 8801−1で規定した1〜2段ほど小さな篩い目を用いることが好ましく、径の小さなスラグの測定ほど1段下の篩い目で十分である。
【0030】
スラグの水和促進処理としては、多くの実績があるJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」(80℃温水に10日間)や、短時間で処理が可能なASTMC151−08「ポルトランドセメントの膨張試験方法」に準じた方法が一般的であり、後者であれば180℃で3〜6時間の処理で評価に十分なデータが得られる。
【0031】
本発明はエージング処理を行った後のスラグ崩壊率を評価することが目的であるので、エージング処理後、未崩壊のスラグを分級するため、第1の篩い目で細粒分を除去することは必須である。
【0032】
また、エージング処理としては、消化成分が水和反応するためにも、室温で1か月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置することが好ましい。加圧の上限は特に定めることなく本発明の効果を得ることができるが、特に水和反応の速度が遅いMgOの水和促進効果を効率的かつ経済的に得るためには1〜10気圧で処理することが好ましい。
【0033】
さらに、評価に用いるスラグの量は特に問わないが、スラグの安定化のためにエージング処理を施せば施すほど、スラグの崩壊率は減少してくるので、測定値の精度を高めるためにも、少なくとも5kg以上を用いたほうが良い。
【0034】
また、スラグによっては岩石状に表面がつるつるしたものもあれば、砂岩状にざらついているものもあり、特に後者の場合は粉分がでるので、事前の分級後に水洗いを行って、極力表面の付着粉分を除去したほうが測定精度は向上する。
【0035】
【実施例】
(本発明例)
図2は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグ(粒度範囲100mm以下)5kgを、JIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)を用いて分級し、その篩い下をJIS Z8801−1に規定された呼び寸法8mmの篩い(第2の篩い目)でさらに分級し、
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)
をエージング処理後スラグの細粒分比率として予め求め、次に、上記のエージング処理後のスラグ(粒度範囲100mm以下)5kgを、JIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間浸漬させて水和促進処理を施したのちに、110℃24時間乾燥させた上で、図1に示したような方法によってJIS Z 8801−1で規定される呼び寸法9.5mmの篩い目を用いて分級し、その篩い下をJIS Z8801−1に規定された呼び寸法8mmの篩いでさらに分級し、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前且つ分級前エージング処理後スラグ質量)×100(%)}
を水和促進処理後のスラグの細粒分比率として求めた上で
(水和促進処理後スラグの細粒分比率)−(エージング処理後スラグの細粒分比率)(%)
として求めた真のスラグ崩壊率と、同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。尚、固化体の破壊率は促進評価により崩壊した試料個数/評価に供した試料個数により求めた。
【0036】
この図から、本発明によるスラグの真の崩壊率が約3%を超えると、該スラグを骨材に用いた固化体の試料も破壊を生じるため、崩壊率3%以下のエージング処理を施したスラグは、固化体の骨材として適していることがわかった。
(比較例)
図3は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグ(粒度範囲100mm以下)5kgを、JIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)のみを用いて分級し、
{(第1篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)}
をエージング処理後スラグの細粒分比率(%)として予め求め、次に、上記のエージング処理後のスラグ(粒度範囲100mm以下)5kgを、JIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間、スラグを浸漬させて水和促進処理を施したのちに110℃24時間乾燥させた上で、図1に示したような方法によってJIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)のみを用いて分級し、
{(水和促進処理後の第1の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100(%)}
を水和促進処理後スラグの細粒分比率として求め、
(水和促進処理後スラグの細粒分比率)−(エージング処理後スラグの細粒分比率)(%)
として求めたいわゆるこれまで言われてきたスラグの崩壊率と同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。固化体の破壊率は本発明と同一の方法により求めた。
【0037】
この図から、やはり従来の方法によるスラグ崩壊率では、これまで説明してきたように、一部の未崩壊スラグ粒が混入していることから、崩壊率が2%以上の範囲になると、当該スラグを用いた固化体が破壊したり、破壊しなかったりしており、安定な固化体に適したスラグの条件を見出すことはできなかった。
【0038】
【発明の効果】
本発明によれば、鉄鋼スラグ、中でも消化性の成分を有し長期にわたって膨張する性質のある製鋼スラグを、道路用以外の例えば固化体といった新たな用途に利用しようとする際に、エージング処理を施し安定化させたスラグの安定性を精度良く評価することができる。
【図面の簡単な説明】
【図1】本発明の原理を示す。(W0〜W2はエージング処理後のスラグ質量、W1'、W2'は水和促進処理後のスラグ質量を示す。)
【図2】本発明によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
【図3】従来技術によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the stability of steel slag such as blast furnaces, converters, and electric furnace slag generated in steelworks.
[0002]
[Prior art]
Steel slag generated from smelting furnaces such as blast furnaces, converters, and electric furnaces at steelworks is used in various fields as a recycled material that reduces environmental burden from the viewpoint of resource saving and energy saving. Has been.
[0003]
For example, “hydraulicity” in which blast furnace slag and steelmaking slag gradually harden by reacting with water is suitable for roadbed materials, or “hard” and “high wear resistance” of steelmaking slag. The property is suitable for asphalt and concrete aggregate for roads.
[0004]
Since it is important that the slag used in these applications is stable over a long period of time, air and water are used for several months after the slag is crushed, for example, as defined in JIS A5015 “Steel Slag for Roads”. It is necessary to sufficiently stabilize by performing an “aging” treatment for reacting with azobenzene.
[0005]
Among them, steelmaking slag contains digestible substances such as free CaO and MgO and has a phenomenon of expanding over a long period of time. Therefore, as a method for evaluating whether slag has been sufficiently stabilized by aging, JIS A5015 “ The “water immersion expansion test method” is defined as Annex 2 in “Steel Slag for Roads”.
[0006]
In the method described in Annex 2, a sample whose particle size is adjusted according to a certain particle size distribution is packed into a specified container (mold) and held in hot water at 80 ° C. for 6 hours, and then allowed to cool. The operation is repeated once a day for 10 days, the height of the sample in the mold after curing is measured, and the stability of the slag is evaluated from the amount of expansion. Has been used as a good indicator.
[0007]
In the above method, the slag stability evaluation has a long time of 10 days. For example, as a method for more quickly evaluating the stability of materials containing digestible substances such as cement and refractory, a sealed pressurized container is used. A sample is placed under a high temperature and high pressure of 100 ° C. or higher using an “autoclave” apparatus consisting of a heating device and a hydration reaction in a relatively short time. For example, ASTM C151-08 “Expanding Portland cement” The method of measuring the length of the sample as described in "Test method" and the rate of decrease in the compressive strength of the sample as described in JIS R2211 "Test method of digestibility of basic refractory bricks" Method of measurement, or as described in Non-Patent Document 1, sieving the treated sample and measuring the weight ratio (pulverization rate) under the sieve to evaluate the stability of the material What to do is also known.
[0008]
[Non-Patent Document 1]
Iron and steel, 64th (1978) No. 10, P-68
[0009]
[Problems to be solved by the invention]
However, when steel slag is to be used for new uses other than for roads, for example, the above-described conventional stability evaluation method has the following problems.
[0010]
In other words, the present inventors used these steel slags, especially steelmaking slags having long-term expansibility, which have been subjected to sufficient aging treatment as described above, together with other binders to solidify aggregates to be solidified. Research and development has been carried out to see if it can be used. Here, in order to estimate the long-term stability of the solidified body using steelmaking slag that has been subjected to various aging treatments, the stability of the solidified body itself is investigated by examining the stability of the solidified body. The steelmaking slag, which is the aggregate used in the above, was evaluated for its stability using the above-mentioned method, and a study was conducted to find out the conditions for stabilizing the steelmaking slag that can be applied to the solidified body.
[0011]
Here, in the “water immersion expansion test method” described in JIS A5015 “steel slag for roads”, the average expansibility as a mass (group) of a certain volume of steelmaking slag in the mold can be evaluated. , Because it is not possible to measure the damage caused by the individual expansion of the slag grains, which is one of the components, leading to the destruction of the solidified body, a phenomenon that the solidified body is broken even if the expansion coefficient is small, It was found that the slag stability could not be evaluated accurately.
[0012]
Further, a method for measuring the length of a sample as described in ASTM C151-08 “Method for testing the expansion of Portland cement”, or a sample described in JIS R2211 “Test method for digestibility of basic refractory brick” Although the method of measuring the rate of decrease in the compressive strength can evaluate the expansion behavior of the molded body, it is difficult to evaluate the stability of individual slag grains.
[0013]
Further, in the method for measuring the pulverization rate described in Non-Patent Document 1, the measured value is small or the variation is large only with the powder produced as a result of hydration expansion, and the solidified body is destroyed. Slag discrimination is difficult, and it is difficult to evaluate the stability of individual slag grains, as it is stated in the paper that “There is no suitable method for indicating the slag disintegration”.
[0014]
An object of the present invention is to provide a method for more accurately evaluating the stability of steel slag that has been subjected to the aging treatment by solving the problems of the prior art.
[0015]
That is, it is an object of the present invention to accurately grasp the existence probability of individual slag grains that remain in the slag stabilized by aging treatment or the like and are still uncollapsed.
[0016]
[Means for Solving the Problems]
As described above, the present inventors investigated the fracture state of the solidified body in the stability promotion test of the solidified body using steelmaking slag subjected to various aging treatments as an aggregate, and at the same time, steelmaking used in these aggregates. The stability (disintegration) of slag was also measured by various methods, and as a result of repeated analysis and examination of whether a quantitative correlation could be found between them, the above problems were solved by the following invention. I got the knowledge.
(1) When the slag subjected to aging treatment is sieved with a first sieve mesh, and further under the sieve, a second sieve mesh smaller than the first sieve mesh, {(second sieve mesh Slag mass under sieve) / (Slag mass after aging treatment before classification) × 100 (%)}
Is the fine particle ratio (%) of slag after aging treatment,
Next, the aging-treated slag is further subjected to hydration promotion treatment, and the dried slag is sieved with the first sieve, and further, the sieve is screened under the sieve with the second sieve,
{(Mass of slag under sieving after hydration promotion treatment) / (Mass of slag before hydration promotion treatment and before aging treatment) × 100 ( %) }
Is defined as "fine slag fraction ratio (%) after hydration promotion treatment"
"Fine grain ratio of slag after hydration promotion treatment"-"Fine grain ratio of slag after aging treatment "
A method for evaluating the stability of slag, characterized in that the slag collapse rate is used.
(2) The hydration accelerating treatment is a treatment described in “Water immersion expansion test method” of JIS A5015 “Steel slag for road” or ASTM C151-08 “Expansion test method of Portland cement”. (1) The stability evaluation method of slag as described.
(3) The slag stability evaluation method according to (1) or (2) above, wherein the first sieve mesh is rougher by one or two stages in accordance with JIS Z8801-1 than the second sieve mesh. .
(4) The slag stability evaluation method according to any one of (1) to (3) above, wherein the first sieve is 9.5 mm and the second sieve is 8 mm. .
(5) Any of the above (1) to (4), wherein the aging treatment is a treatment which is allowed to stand for at least 1 month in the atmosphere or at least 6 hours under normal pressure or pressurized steam. The slag stability evaluation method according to claim 1.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0018]
As a result of investigating the stability of various slags that have been subjected to aging treatment, the present inventors have heretofore reported the "water immersion expansion test" and "autoclave expansion test" for evaluating the expansion of slag. According to the slag, it is clear that the hydration reaction is promoted, and that some of the digestible slag grains are expanded and destroyed as a result of hydration. It was known that the reduction in the expansion rate can be properly evaluated.
[0019]
However, in order to estimate the long-term stability of the solidified body using steelmaking slag that has been subjected to various aging treatments, the stability of the solidified body itself is examined by examining the stability of the solidified body, and at the same time, Even for steelmaking slag, which is the aggregate used, even if we measured the above expansion coefficient and investigated the correlation between them to find out the conditions for steelmaking slag applicable to solidified bodies, this expansion coefficient is As mentioned earlier, we are evaluating the average expansion behavior as a group (group) of slag of a certain volume, and even if the expansion rate is actually small, several slags that collapse are included. It was estimated that this would cause destruction of the solidified body.
[0020]
Therefore, the slag that has been aged is screened instead of the expansion rate,
{(Slag mass under sieve after aging treatment) / (Slag mass after aging treatment) × 100 (%)}
Is obtained in advance as the fine particle fraction (%) of the slag after the aging treatment, and then a hydration promotion test is further conducted without classifying the entire slag that was initially aged, and the slag after the hydration promotion treatment Sift with the same roughness as the sieve mesh,
{(Slag mass under sieving after hydration promotion treatment) / (Slag mass before hydration promotion treatment) × 100 (%)}
Is obtained as the fine particle fraction (%) of the slag after the hydration promotion treatment,
This "ratio of slag fine particles after hydration promotion treatment"-"ratio of slag fine particles after aging treatment" (%)
As the slag decay rate, the correlation with the fracture state of the solidified body was also investigated, but in this method, on the contrary, the slag decay rate varies greatly even after various aging treatments, and it is still difficult to make a valid evaluation It became.
[0021]
However, according to the above-described method, it should have been possible to measure individual slag grains that have clearly collapsed, and in order to investigate the cause of the large variation in the slag collapse rate, the present inventors have conducted various further studies. As a result, the following knowledge was obtained as a method for accurately evaluating the stability of slag.
[0022]
That is, the slag after the hydration promotion treatment was sieved and the slag grains under the sieving were observed in detail. As a result, the slag was clearly broken down into the fragmented or powdered slag that was destroyed by the hydration treatment. It was found that relatively large slag grains that seemed to be absent were mixed.
[0023]
In order to obtain an accurate slag disintegration rate, it is necessary to remove relatively large slag grains, which are apparently not disintegrated, contained under the sieve. This is the same problem when determining not only the fine particle ratio including the truly disintegrated slag particles after the hydration promotion treatment but also the slag fine particle fraction ratio after the aging treatment.
Therefore, the slag after aging treatment is sieved with a first sieve, and further, the lower sieve is sieved with a second sieve smaller than the first sieve,
{(Slag mass under sieve of second sieve) / (Slag mass after aging treatment before classification) × 100 (%) }
The slag after aging treatment was obtained in advance as the fine particle ratio (%) of the slag after aging treatment , and the slag after the hydration promotion treatment was dried, Sifting with a first sieve of the same roughness and further sieving under this sieve with a second sieve smaller than the first sieve will obviously remove the undisintegrated slag almost completely. As a result, only slag that has collapsed due to hydration promotion treatment can be measured,
{(Mass of slag under the second sieve after hydration promotion treatment) / (Mass of slag after aging treatment before hydration promotion treatment and before classification ) × 100 (% ) }
Is defined as "fine slag fraction ratio (%) after hydration promotion treatment"
"Fine grain ratio of slag after hydration promotion treatment"-"Fine grain ratio of slag after aging treatment "
If the original slag aging treatment is sufficient, the decay rate will decrease, and this decay rate is closely related to the stability of the solidified body (fracture state). I was able to clarify.
[0024]
FIG. 1 is a diagram showing the principle of the present invention. In the present invention, slag that has been aged in advance is used as a measurement target. As the aging treatment, after being left in the atmosphere for at least one month, steam aging was performed at 180 ° C. for 6 hours as necessary.
[0025]
In order to obtain the fine particle fraction of the slag after aging treatment, a certain amount of slag after aging treatment was classified with a 9.5 mm sieve according to JIS Z8801-1, and further under this sieve was JIS Z8801-1. In accordance with the above, classification is performed using 8 mm, which is one step smaller sieving mesh, and undisintegrated relatively large slag grains (W2) are removed to obtain a fine slag fraction after aging treatment under sieving (W1 ). Where {(slag mass under second sieve = W1) / (slag mass after aging treatment before classification = W0) × 100 (%)
Is calculated as “the ratio of fine particles of slag after aging treatment (%)”.
[0026]
Next, without classifying the whole slag that was initially aged, water was further added by using immersion in 80 ° C. warm water (6 hours / day × 10 days) or autoclave (180 ° C. (about 20 atmospheres) × 6 hours). After performing the sum promotion treatment and drying, similarly, classification is performed with a 9.5 mm sieve according to JIS Z8801-1, and the sieve under this sieve is further one stage smaller according to JIS Z8801-1. Classification using 8 mm, removing undisintegrated relatively large slag grains (W2 ′), and obtaining slag fine grains after aging treatment under sieving (W1 ′),
{ ( Mass of slag under the second sieve after hydration promotion treatment = W1 ′ ) / (Mass of slag before hydration promotion treatment and before aging treatment after aging treatment = W0) × 100 (%) }
Is defined as “the ratio of fine particles of slag after hydration promotion treatment (%)”.
[0027]
From this figure, the true slag collapse rate is obtained as follows.
[0028]
True slag disintegration rate = “Slag fraction ratio after hydration promotion treatment (%)”-“Slag fraction ratio after aging treatment (%)”
Conventionally, when evaluating the decay rate of slag, the slag content (the sum of W1 and W2) of the first sieving slag of the aging treatment slag, and the slag content of the first sieving after the hydration promotion treatment, that is, water The difference between the sum (W1 ′ + W2 ′) of the slag collapsed by the sum promotion process and the uncollapsed slag was regarded as the collapse rate. Even if the prior classification is performed under certain conditions, it is easy to assume that the slags W2 and W2 ', which should have been sieved out, will vary during processing, which is a variation in measured values. The present inventors have found out that
[0029]
Here, as a sieve used for classification, what is prescribed in the above-mentioned JIS Z 8801-1 is generally used in Japan. Furthermore, the final classification using a sieve smaller than the sieve used in the pre-classification process is a feature of the present invention. This includes a sieve having a size smaller by 1 to 2 stages as defined in JIS Z8801-1. It is preferable to use a slag having a small diameter, and a sieve mesh that is one step lower is sufficient.
[0030]
As the hydration accelerating treatment of slag, JIS A5015 “steel slag for roads” “water immersion expansion test method” (10 days in hot water at 80 ° C.) or ASTM C151-08 which can be processed in a short time The method according to “Portland cement expansion test method” is generally used. In the latter case, sufficient data for evaluation can be obtained by treatment at 180 ° C. for 3 to 6 hours.
[0031]
Since the purpose of the present invention is to evaluate the slag disintegration rate after performing the aging treatment, after the aging treatment, to classify the undisintegrated slag, it is necessary to remove fine particles with the first sieve mesh. It is essential.
[0032]
In addition, as the aging treatment, it is preferable that the digestive component is allowed to stand for 1 month or more at room temperature or for 6 hours or more under normal pressure or pressurized steam in order to cause a hydration reaction. The effect of the present invention can be obtained without any particular limitation on the upper limit of the pressurization. However, in order to efficiently and economically obtain the hydration promoting effect of MgO, which has a particularly slow hydration reaction rate, it is 1 to 10 atm. It is preferable to process.
[0033]
Furthermore, the amount of slag used for the evaluation is not particularly limited, but the more the aging treatment is performed for the stabilization of the slag, the more the slag disintegration rate decreases. It is better to use at least 5kg.
[0034]
Some slags have a rocky surface, and some have a sandstone texture. Especially in the latter case, powder is formed. The measurement accuracy improves when the adhered powder is removed.
[0035]
【Example】
(Example of the present invention)
FIG. 2 shows that 5 kg of a steelmaking slag (particle size range of 100 mm or less) stabilized by an aging treatment that is allowed to stand at room temperature for at least one month is a sieve having a nominal size of 9.5 mm defined by JIS Z8801-1 (first And further classify under the sieve with a sieve having a nominal size of 8 mm (second sieve) defined in JIS Z8801-1,
{(Slag mass under sieve of second sieve) / (Slag mass after aging treatment before classification) × 100 (%) }
Is obtained in advance as the fine-grain fraction ratio of the slag after aging treatment, and then 5 kg of the slag (grain size range of 100 mm or less) after the above aging treatment is applied to the “water immersion expansion test method” of JIS A5015 “steel slag for roads”. In accordance with JIS Z 8801-1 according to the method shown in FIG. 1 after immersing in warm water at 80 ° C. for 10 days to give hydration promotion treatment and drying at 110 ° C. for 24 hours. Classification is carried out using a sieve having a nominal size of 9.5 mm, and further classification is carried out with a sieve having a nominal size of 8 mm specified in JIS Z8801-1.
{(Mass of slag under sieve of second sieve after hydration promotion treatment) / (Mass of slag after aging treatment before hydration promotion treatment and before classification ) × 100 (%)}
Is calculated as the fine particle ratio of slag after hydration promotion treatment (fine particle ratio of slag after hydration promotion treatment)-(fine particle ratio of slag after aging treatment) (%)
The slag is a solidified body (diameter: 100 mm * height: 200 mm), which is a solid slag collapse rate obtained as follows, and the slag is used as an aggregate and mixed with blast furnace slag fine powder as a main binder It is the graph which showed the correlation with the fracture rate of the solidified body at the time of accelerated evaluation for a stability confirmation (immersion in 80 degreeC warm water for 4 weeks) similarly. The fracture rate of the solidified body was determined by the number of samples disintegrated by accelerated evaluation / the number of samples used for evaluation.
[0036]
From this figure, when the true collapse rate of the slag according to the present invention exceeds about 3%, the solidified sample using the slag as an aggregate also breaks down, so that an aging treatment with a collapse rate of 3% or less was performed. Slag was found to be suitable as an aggregate for solidified bodies.
(Comparative example)
FIG. 3 shows that 5 kg of steelmaking slag (particle size range of 100 mm or less) stabilized by aging treatment that is allowed to stand at room temperature for at least one month is sieved with a nominal size of 9.5 mm defined by JIS Z8801-1 (first Classify using only (sieving eyes),
{(Slag mass under sieve of first sieve) / (Slag mass after aging treatment before classification) × 100 (%)}
Is obtained in advance as the fine particle fraction (%) of the slag after aging treatment, and then 5 kg of the slag (grain size range of 100 mm or less) after the above aging treatment is subjected to a “water immersion expansion test of JIS A5015“ steel slag for roads ”. According to the “method”, slag was immersed in warm water at 80 ° C. for 10 days, subjected to hydration promotion treatment, dried at 110 ° C. for 24 hours, and then subjected to JIS Z 8801- by the method shown in FIG. Classification using only a sieve mesh having a nominal size of 9.5 mm (first sieve mesh) defined in 1.
{(Mass of slag under the first sieve after hydration promotion treatment) / (Mass of slag before hydration promotion treatment) × 100 (%)}
Is obtained as the fine-grain fraction of slag after hydration promotion treatment,
(Fine particle ratio of slag after hydration promotion treatment)-(Fine particle ratio of slag after aging treatment) (%)
The so-called slag decay rate and so-called slag that have been said to be used as an aggregate, and solidified blast furnace slag powder as a main binder (diameter 100 mm * height 200 mm) ) Is a graph showing the correlation with the fracture rate of the solidified body at the time of accelerated evaluation for confirming stability (immersion in warm water at 80 ° C. for 4 weeks) in the same manner as slag. The fracture rate of the solidified body was determined by the same method as in the present invention.
[0037]
From this figure, the slag decay rate according to the conventional method is mixed with some undegraded slag grains as described above, so when the decay rate is in the range of 2% or more, the slag As a result, the solidified product using slag was broken or not broken, and it was not possible to find the slag conditions suitable for a stable solidified product.
[0038]
【The invention's effect】
According to the present invention, when steel slag, particularly steelmaking slag having a digestible component and having a property of expanding over a long period of time, is used for a new application such as a solidified material other than for roads, an aging treatment is performed. It is possible to accurately evaluate the stability of the slag that has been applied and stabilized.
[Brief description of the drawings]
FIG. 1 illustrates the principle of the present invention. (W0 to W2 are slag masses after aging treatment, and W1 ′ and W2 ′ are slag masses after hydration promotion treatment.)
FIG. 2 shows the relationship between the decay rate of slag according to the present invention and the fracture rate of a solidified body using the slag as an aggregate.
FIG. 3 shows the relationship between the collapse rate of slag according to the prior art and the fracture rate of a solidified body using the slag as an aggregate.

Claims (5)

エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分けた際の
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)}を「エージング処理後スラグの細粒分比率(%)」とし、
次に、前記エージング処理したスラグをさらに水和促進処理し、これを乾燥させたものを前記第1の篩い目で篩い、さらにこの篩い下を前記第2の篩い目で篩い分け、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前且つ分級前のエージング処理後スラグ質量)×100(%)
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージング処理後スラグの細粒分比率」
をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。
When the aged slag is sieved with the first sieve mesh, and the screen under the sieve sieve is screened with a second sieve mesh smaller than the first sieve mesh, {(slag under the second sieve mesh) Mass) / (mass of slag after aging treatment before classification) × 100 (%)} is defined as “the fine particle ratio (%) of slag after aging treatment ”,
Next, the aging-treated slag is further subjected to hydration promotion treatment, and the dried slag is sieved with the first sieve, and further the sieve is screened with the second sieve,
{(Water second sieve of sieve under slag weight after sum promoting treatment) / (slag mass after hydration promoting pretreatment and before the classification of the aging process) × 10 0 (%)}
Is defined as "fine slag fraction ratio (%) after hydration promotion treatment"
"Fine grain ratio of slag after hydration promotion treatment"-"Fine grain ratio of slag after aging treatment "
A method for evaluating the stability of slag, characterized in that the slag collapse rate is used.
水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする請求項1記載のスラグの安定性評価方法。  The hydration accelerating treatment is a treatment described in "Water immersion expansion test method" of JIS A5015 "Steel slag for road" or ASTM C151-08 "Expansion test method of Portland cement". Slag stability evaluation method. 第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする請求項1又は2記載のスラグの安定性評価方法。  The slag stability evaluation method according to claim 1 or 2, wherein the first sieve is rougher by one or two stages in accordance with JIS Z8801-1 than the second sieve. 第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする請求項1〜3の何れか1項に記載のスラグの安定性評価方法。  The slag stability evaluation method according to any one of claims 1 to 3, wherein the first sieve is 9.5 mm and the second sieve is 8 mm. エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする請求項1〜4の何れか1項に記載のスラグの安定性評価方法。  5. The aging treatment is a treatment that is allowed to stand for at least 1 month in the atmosphere or at least 6 hours in a normal pressure or pressurized steam. 5. Slag stability evaluation method.
JP2003096443A 2003-03-31 2003-03-31 Slag stability evaluation method Expired - Lifetime JP4357199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096443A JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096443A JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Publications (2)

Publication Number Publication Date
JP2004301747A JP2004301747A (en) 2004-10-28
JP4357199B2 true JP4357199B2 (en) 2009-11-04

Family

ID=33408513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096443A Expired - Lifetime JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Country Status (1)

Country Link
JP (1) JP4357199B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157639B2 (en) * 2008-05-22 2013-03-06 Jfeスチール株式会社 Expandability evaluation method for sorting roadbed materials
JP5177159B2 (en) * 2010-03-25 2013-04-03 新日鐵住金株式会社 Slag particulate identification method
JP5177160B2 (en) * 2010-03-25 2013-04-03 新日鐵住金株式会社 Slag particulate identification method and carbonation treatment apparatus

Also Published As

Publication number Publication date
JP2004301747A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4438307B2 (en) How to select steelmaking slag for hardened slag
Lura et al. On the origin of eigenstresses in lightweight aggregate concrete
Muhit et al. Influence of crushed coarse aggregates on properties of concrete
Lee et al. Influence of coarse aggregate angularity on the mechanical performance of cement-based materials
Poloju et al. Properties of concrete as influenced by shape and texture of fine aggregate
JP4357199B2 (en) Slag stability evaluation method
JP4274834B2 (en) Slag stability evaluation method
Liao et al. In-depth investigation of pore structure and fracture behavior of CAC bonded alumina-spinel castables treated at 110∼ 1600° C
JP4274835B2 (en) Slag stability evaluation method
Kukadia et al. Influence of aggregate’s treatment on properties of recycled aggregate concrete
Onoue et al. Fatigue characteristics of steel-making slag concrete under compression in submerged condition
Pavlík et al. MSWI bottom ash as eco-aggregate in cement mortar design
JP2009281842A (en) Expansivity evaluating method for sorting roadbed material
Piro et al. Slump monitoring and electrical resistivity comparison in concrete modified with steel slag as fine aggregate replacement
JP2019095401A (en) Method for predicting strength of artificial lightweight aggregate
JP2015189643A (en) Sorting method for steel slag, steel slag and sorting apparatus for steel slag
JP2011207647A (en) Method for recovering limestone macadam from concrete
TWI827233B (en) Evaluation method of stabilization treatment for basic-oxygen-furnace slag
Kamińska et al. Effect of mechanical reclamation cycle on strength parameters of loose self-hardening sands based on furfuryl resin
Tavares et al. Statistical analysis of impact-fracture characteristics and microstructure of industrial Portland cement clinkers
Ameh et al. Prospect of Lateritic Sand and Periwinkle Shell as Aggregates in Concrete.
KR100419621B1 (en) Manufacturing method of concrete aggregate having excellent compressive strength
Lianasari et al. The Effect of Alkali Activator Ratio on Mechanical Properties Geopolymer Concrete Based on Ground Granulated Blast Furnace Slag
Mokuolu et al. Evaluation of Calcium Carbide Residue Waste As a Partial Replacement for Cement in Concrete
JP2011027568A (en) Compressive strength control method of coarse aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4357199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term