JP2004301747A - Slag stability evaluation method - Google Patents

Slag stability evaluation method Download PDF

Info

Publication number
JP2004301747A
JP2004301747A JP2003096443A JP2003096443A JP2004301747A JP 2004301747 A JP2004301747 A JP 2004301747A JP 2003096443 A JP2003096443 A JP 2003096443A JP 2003096443 A JP2003096443 A JP 2003096443A JP 2004301747 A JP2004301747 A JP 2004301747A
Authority
JP
Japan
Prior art keywords
slag
sieve
treatment
hydration
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096443A
Other languages
Japanese (ja)
Other versions
JP4357199B2 (en
Inventor
Naoto Tsutsumi
直人 堤
Masao Nakagawa
雅夫 中川
Eiji Kiso
英滋 木曽
Koichi Endo
公一 遠藤
Hisahiro Matsunaga
久宏 松永
Fumio Kogiku
史男 小菊
Masato Takagi
正人 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
JFE Steel Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Steel Corp filed Critical JFE Steel Corp
Priority to JP2003096443A priority Critical patent/JP4357199B2/en
Publication of JP2004301747A publication Critical patent/JP2004301747A/en
Application granted granted Critical
Publication of JP4357199B2 publication Critical patent/JP4357199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate accurately stability of steel slag subjected to aging treatment such as a blast furnace, converter or electric furnace slag generated in an iron mill or the like. <P>SOLUTION: In this slag stability evaluation method, the slag subjected to the aging treatment is sieved by a first sieve mesh, and the value determined, when the particles of minus sieve in the above sieving are sieved again by a second sieve mesh smaller than the first sieve mesh, by (the slag mass of the minus sieve of the second sieve mesh)/(the slag mass after the aging treatment before classification)×100% is used as 'the fine grain portion ratio (%) of the slag after the aging treatment'. Then, the slag subjected to the aging treatment is further subjected to hydration acceleration treatment, dried and sieved by the first sieve mesh, and the particles of minus sieve are sieved again by the second sieve mesh, and the value determined by (the slag mass of the minus sieve of the second sieve mesh after the hydration acceleration treatment)/(the slag mass before the hydration acceleration treatment)×100% is used as 'the fine grain portion ratio (%) of the slag after the hydration acceleration treatment'. The value determined by subtracting 'the fine grain portion ratio of the aging slag' from 'the fine grain portion ratio of the slag after the hydration acceleration treatment' is used as the slag decay rate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は製鉄所などで発生する高炉、転炉、電気炉スラグなどの鉄鋼スラグの安定性を評価する方法に関するものである。
【0002】
【従来の技術】
製鉄所などで高炉、転炉、電気炉といった精錬炉から発生する鉄鋼スラグは、省資源、省エネルギーの観点から、環境への負荷を低減させるリサイクル材料として、数々の特性を生かして各方面で利用されている。
【0003】
例えば、高炉スラグや製鋼スラグが水と反応して次第に硬化していく「水硬性」は道路用の路盤材に適しているし、あるいは製鋼スラグの有する「硬質」かつ「高耐磨耗」な特性は道路用のアスファルト・コンクリート用骨材に適している。
【0004】
これらの用途に用いられるスラグは長期にわたって安定であることが重要であることから、例えばJIS A5015「道路用鉄鋼スラグ」に規定されるように、スラグを破砕後、数ヶ月の間、空気および水と反応させる「エージング」処理を行い十分に安定化させることが必要とされている。
【0005】
中でも、製鋼スラグは遊離のCaOやMgOなど消化性の物質を含んでおり長期にわたって膨張する現象があることから、エージングによってスラグが十分に安定になったかどうかを評価する方法として、同じくJIS A5015「道路用鉄鋼スラグ」中に附属書2として「水浸膨張試験方法」が規定されている。
【0006】
附属書2に記載された方法は、ある粒度分布に従って粒度調整された試料を規定の容器(モールド)内に突き固めて充填したものを、80℃の温水に6時間保持したのちに放冷させる操作を1日1回、10日間繰り返して養生させ、養生後のモールド内試料の高さを測定してその膨張量からスラグの安定度を評価するものであり、長年、道路用鉄鋼スラグの有効な指標として用いられてきた。
【0007】
また、上記方法ではスラグの安定性評価に10日間という長い時間を有するが、例えばセメントや耐火物など、同じく消化性物質を含む材料の安定性をより迅速に評価する方法として、密封加圧容器と加熱装置からなる「オートクレーブ」装置を用いて100℃以上の高温・高圧下に試料をおいて、比較的、短時間に水和反応をおこさせた後に、例えばASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているように試料の長さを測定する方法や、JIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されているように試料の圧縮強さの低下率を測定する方法、あるいは、非特許文献1に記載されているように、処理後の試料を篩い分けして篩い下重量の割合(粉化率)を測定して材料の安定度を評価するものも知られている。
【0008】
【非特許文献1】
鉄と鋼、第64年(1978)第10号、P−68
【0009】
【発明が解決しようとする課題】
しかし、鉄鋼スラグを、例えば道路用以外の新たな用途に利用しようとする際には、上記の従来技術における安定性評価方法では次のような問題点がある。
【0010】
すなわち、本発明者らはこれらの鉄鋼スラグ、中でも長期膨張性を有する製鋼スラグを上述のように十分なエージング処理を施したものを、他の結合材とともに混ぜ合わせて固める固化体の骨材に用いることができないかと研究開発を行ってきた。ここで、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについては上記の方法を用いてその安定性を評価し、固化体に適用が可能な製鋼スラグの安定化の条件を見出そうと検討を行った。
【0011】
ここで、JIS A5015「道路用鉄鋼スラグ」に記載されている「水浸膨張試験方法」においては、モールド内のある容積の製鋼スラグの固まり(群)としての平均的な膨張性が評価できるが、固化体を破壊に至らせるような、構成要素の一つであるスラグ粒の個々の膨張に伴う破壊は測定できないため、膨張率が小さくても固化体が破壊するような現象が見られ、的確にスラグの安定性が評価できていないことが判明した。
【0012】
また、ASTMC151−08「ポルトランドセメントの膨張試験方法」に記載されているような試料の長さを測定する方法、あるいはJIS R2211「塩基性耐火れんがの消化性の試験方法」に記載されている試料の圧縮強さの低下率を測定する方法などは成形体の膨張挙動は評価できるが、個々のスラグ粒の安定性評価は困難である。
【0013】
また、非特許文献1に記載されている粉化率を測定する方法では、水和膨張の結果として生じた粉分だけでは測定値が小さい、あるいはばらつきが大きくて、固化体を破壊に至らせしめるスラグの判別がつきずらく、当該論文中にも「スラグの崩壊性の表示として適当な方法がない」と述べられているように、やはり個々のスラグ粒の安定性を評価するには難しい。
【0014】
本発明の目的は、上記従来技術の問題点を解決しエージング処理を施した鉄鋼スラグの安定性をより精度良く評価する方法を提供することにある。
【0015】
つまり、エージング処理等によって安定化させたスラグ中に残存する、今なお未崩壊の個々のスラグ粒の存在確率を的確に把握することが本発明の目的である。
【0016】
【課題を解決するための手段】
本発明者らは、前述したように、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の安定性促進試験における固化体の破壊状況を調べ、同時にこれら骨材に用いた製鋼スラグについても様々な方法によってその安定性(崩壊性)を測定し、両者の間に定量的な相関が見いだせられないか解析と検討を重ねた結果、以下の発明にて上記の課題が解決される知見を得た。
(1)エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分けた際の、
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージングスラグ質量)×100(%)}
を「エージング処理後スラグの細粒分比率(%)とし、
次に、前記エージング処理したスラグをさらに水和促進処理し、これを乾燥させたものを、前記第1の篩い目で篩い、さらにこの篩い下を前記第2の篩い目で篩い分け、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100}(%)
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージングスラグの細粒分比率」
をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。
(2)水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする前記(1)記載のスラグの安定性評価方法。
(3)第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする前記(1)又は(2)記載のスラグの安定性評価方法。
(4)第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする前記(1)〜(3)の何れか1項に記載のスラグの安定性評価方法。
(5)エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする前記(1)〜(4)の何れか1項に記載のスラグの安定性評価方法。
【0017】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0018】
本発明者らが、エージング処理を施した種々のスラグの安定性を調査した結果、従来、報告されているスラグの膨張性を評価するための「水浸膨張試験」や「オートクレーブ膨張試験」によれば確かにスラグは水和反応が促進され、消化性を有する一部のスラグ粒が水和に伴い膨張、破壊していることは明らかであり、当然のことながらスラグをエージング処理すればするほどこの膨張率が低減することもきちんと評価できることはわかっていた。
【0019】
しかしながら、様々なエージング処理を施した製鋼スラグを骨材に用いた固化体の長期安定性を推定するため、固化体そのものの安定性促進試験を行って固化体の破壊状況を調べ、同時にこれらに用いた骨材である製鋼スラグについても、上記の膨張率を測定して、固化体に適用が可能な製鋼スラグの条件を見出そうと両者の相関関係を調べてみても、この膨張率は先にも述べたようにある容積のスラグの固まり(群)としての平均的な膨張挙動を評価しており、実際に膨張率が小さくても、中に数個の崩壊するスラグが含まれていれば固化体の破壊をもたらすことが推定された。
【0020】
そこで次に、膨張率ではなく、エージング処理したスラグを篩い分け、
{(エージング処理後の篩い下のスラグ質量)/(エージング処理後のスラグ質量)×100(%)}
をエージング処理後のスラグの細粒分比率(%)として予め求め、次に、最初にエージング処理したスラグ全体を分級しないままさらに水和促進試験を行い、水和促進処理後のスラグを先の篩い目と同じ粗さで篩い分けして、
{(水和促進処理後の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100(%)}
を水和促進処理後のスラグの細粒分比率(%)として求めて、
この「水和促進処理後のスラグの細粒分比率」−「エージング処理後のスラグの細粒分比率」(%)
をスラグ崩壊率として、同じく固化体の破壊状況との相関関係を調べたが、この方法では逆に、様々なエージング処理を施してもスラグ崩壊率が大きくばらつき、やはり正当な評価が難しいという結果となった。
【0021】
しかし、上記の方法によれば、明らかに崩壊した個々のスラグ粒を測定できているはずであり、このスラグ崩壊率が大きくばらつく原因を究明するために、本発明者らがさらに種々の検討を行った結果、スラグの安定性を的確に評価する方法として次のような知見を得た。
【0022】
すなわち、水和促進処理後のスラグを篩い分けして、篩い下のスラグ粒を詳細に観察したところ、水和処理で崩壊に至った破片状あるいは粉末状のスラグの中に明らかに崩壊していないと見受けられる比較的大きなスラグ粒が混入していることが判明した。
【0023】
正確なスラグ崩壊率を求めるには、この篩い下に含まれる、明らかに崩壊していないと見受けられる比較的大きなスラグ粒を除去する必要がある。これは、水和促進処理後の真に崩壊したスラグ粒を含む細粒分比率だけでなく、エージング処理後のスラグ細粒分比率を求める際にも同様の問題である。
そこで、エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分け、
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)
を「エージング処理後スラグの細粒分比率(%)として予め求め、次に水和促進処理後のスラグを乾燥させたものを、エージング処理後スラグの細粒分比率を求めた篩い目と同じ粗さの第1の篩い目で篩い、この篩い下を第1の篩い目よりも小さな第2の篩い目でさらに篩い分ければ、明白なことながら未崩壊のスラグがほぼ完全に除去される結果、水和促進処理で崩壊に至ったスラグだけを測定できることとなり、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量×100)
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージングスラグの細粒分比率」
をもって真のスラグ崩壊率とすることによって、元々のスラグのエージング処理が十分であればこの崩壊率も減少し、さらにはこの崩壊率が固化体の安定性(破壊状況)に密接に関係することなどを明らかにすることができた。
【0024】
図1は本発明の原理を示す図である。本発明では、事前にエージング処理したスラグを測定対象とするが、エージング処理としては、大気中で少なくとも1ヶ月放置したのちに、必要に応じて180℃で6時間蒸気エージングを実施した。
【0025】
エージング処理後のスラグの細粒分比率を求めるために、エージング処理した一定量のスラグを、JIS Z8801−1に準じて9.5mmの篩い目で分級し、さらに、この篩い下をJIS Z8801−1に準じてもう1段小さな篩い目である8mmを使って分級し、未崩壊の比較的大きなスラグ粒(W2)を除去して、篩い下としてエージング処理後のスラグの細粒分を得る(W1)。ここで
{(第2の篩い目の篩い下のスラグ質量=W1)/(分級前のエージング処理後スラグ質量=W0)×100(%)
を「エージング処理後スラグの細粒分比率(%)」として算出する。
【0026】
次に、最初にエージング処理したスラグ全体を分級しないで80℃の温水への浸漬(6時間/日×10日)あるいはオートクレーブ(180℃(約20気圧)×6時間)などを用いてさらに水和促進処理を行い乾燥させたのち、同様に、JIS Z8801−1に準じて9.5mmの篩い目で分級し、この篩い下を更にJIS Z8801−1に準じてもう1段小さな篩い目である8mmを使って分級し、未崩壊の比較的大きなスラグ粒(W2’)を除去して、篩い下としてエージング処理後のスラグの細粒分を得て(W1’)、
{水和促進処理後の第2の篩い目の篩い下のスラグ質量=W1’}/(水和促進処理前のスラグ質量=W0)×100(%)
を「水和促進処理後スラグの細粒分比率(%)」とする。
【0027】
この図から、真のスラグ崩壊率が下記のように求められる。
【0028】
真のスラグ崩壊率
=「水和促進処理後スラグの細粒分比率(%)」−「エージング処理後スラグの細粒分比率(%)」
従来はスラグの崩壊率を評価する場合、エージング処理スラグの第1の篩い下分のスラグ分(W1とW2の和)、と水和促進処理後の第1の篩い下のスラグ分、すなわち水和促進処理によって崩壊したスラグならびに未崩壊スラグの和(W1’+W2’)の差分をもって崩壊率と見なしていたわけである。事前の分級は当然のことながら一定条件で行われていたとしても、本来であれば篩い落とされているはずのスラグW2、W2’は処理時にばらつくことが容易に想定でき、これが測定値のばらつきをもたらしていたことを本発明者らは知見した。
【0029】
ここで、分級に用いる篩いとしては、わが国においては、上述のJIS Z 8801−1で規定されるものが一般的である。さらに、事前分級処理に用いた篩い目よりも小さな篩いを用いて最終分級するのが本発明の特徴であるが、これにはJIS Z 8801−1で規定した1〜2段ほど小さな篩い目を用いることが好ましく、径の小さなスラグの測定ほど1段下の篩い目で十分である。
【0030】
スラグの水和促進処理としては、多くの実績があるJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」(80℃温水に10日間)や、短時間で処理が可能なASTMC151−08「ポルトランドセメントの膨張試験方法」に準じた方法が一般的であり、後者であれば180℃で3〜6時間の処理で評価に十分なデータが得られる。
【0031】
本発明はエージング処理を行った後のスラグ崩壊率を評価することが目的であるので、エージング処理後、未崩壊のスラグを分級するため、第1の篩い目で細粒分を除去することは必須である。
【0032】
また、エージング処理としては、消化成分が水和反応するためにも、室温で1か月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置することが好ましい。加圧の上限は特に定めることなく本発明の効果を得ることができるが、特に水和反応の速度が遅いMgOの水和促進効果を効率的かつ経済的に得るためには1〜10気圧で処理することが好ましい。
【0033】
さらに、評価に用いるスラグの量は特に問わないが、スラグの安定化のためにエージング処理を施せば施すほど、スラグの崩壊率は減少してくるので、測定値の精度を高めるためにも、少なくとも5kg以上を用いたほうが良い。
【0034】
また、スラグによっては岩石状に表面がつるつるしたものもあれば、砂岩状にざらついているものもあり、特に後者の場合は粉分がでるので、事前の分級後に水洗いを行って、極力表面の付着粉分を除去したほうが測定精度は向上する。
【0035】
【実施例】
(本発明例)
図2は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグ(粒度範囲100mm以下)5kgを、JIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)を用いて分級し、その篩い下をJIS Z8801−1に規定された呼び寸法8mmの篩い(第2の篩い目)でさらに分級し、
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)
をエージング処理後スラグの細粒分比率として予め求め、次に、上記のエージング処理後のスラグ(粒度範囲100mm以下)5kgを、JIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間浸漬させて水和促進処理を施したのちに、110℃24時間乾燥させた上で、図1に示したような方法によってJIS Z 8801−1で規定される呼び寸法9.5mmの篩い目を用いて分級し、その篩い下をJIS Z8801−1に規定された呼び寸法8mmの篩いでさらに分級し、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100(%)}
を水和促進処理後のスラグの細粒分比率として求めた上で
(水和促進処理後スラグの細粒分比率)−(エージング処理後スラグの細粒分比率)(%)
として求めた真のスラグ崩壊率と、同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。尚、固化体の破壊率は促進評価により崩壊した試料個数/評価に供した試料個数により求めた。
【0036】
この図から、本発明によるスラグの真の崩壊率が約3%を超えると、該スラグを骨材に用いた固化体の試料も破壊を生じるため、崩壊率3%以下のエージング処理を施したスラグは、固化体の骨材として適していることがわかった。
(比較例)
図3は、室温で少なくとも1ヶ月放置するエージング処理によって安定化させた製鋼スラグ(粒度範囲100mm以下)5kgを、JIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)のみを用いて分級し、{(第1篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)}
をエージング処理後スラグの細粒分比率(%)として予め求め、次に、上記のエージング処理後のスラグ(粒度範囲100mm以下)5kgを、JIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」に準じて80℃の温水に10日間、スラグを浸漬させて水和促進処理を施したのちに110℃24時間乾燥させた上で、図1に示したような方法によってJIS Z 8801−1で規定される呼び寸法9.5mmの篩い目(第1の篩い目)のみを用いて分級し、
{(水和促進処理後の第1の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100(%)}
を水和促進処理後スラグの細粒分比率として求め、
(水和促進処理後スラグの細粒分比率)−(エージング処理後スラグの細粒分比率)(%)
として求めたいわゆるこれまで言われてきたスラグの崩壊率と同スラグを骨材に用いて、他に高炉スラグ微粉末を主な結合材として混ぜ合わせて固めた固化体(直径100mm*高さ200mm)を、スラグと同様に安定性確認のための促進評価(80℃の温水に4週間浸漬)した際の固化体の破壊率との相関を示したグラフである。固化体の破壊率は本発明と同一の方法により求めた。
【0037】
この図から、やはり従来の方法によるスラグ崩壊率では、これまで説明してきたように、一部の未崩壊スラグ粒が混入していることから、崩壊率が2%以上の範囲になると、当該スラグを用いた固化体が破壊したり、破壊しなかったりしており、安定な固化体に適したスラグの条件を見出すことはできなかった。
【0038】
【発明の効果】
本発明によれば、鉄鋼スラグ、中でも消化性の成分を有し長期にわたって膨張する性質のある製鋼スラグを、道路用以外の例えば固化体といった新たな用途に利用しようとする際に、エージング処理を施し安定化させたスラグの安定性を精度良く評価することができる。
【図面の簡単な説明】
【図1】本発明の原理を示す。(W0〜W2はエージング処理後のスラグ質量、W1’、W2’は水和促進処理後のスラグ質量を示す。)
【図2】本発明によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
【図3】従来技術によるスラグの崩壊率と当該スラグを骨材に用いた固化体の破壊率との関係を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating the stability of steel slag such as blast furnaces, converters, and electric furnace slag generated in steelworks.
[0002]
[Prior art]
Steel slag generated from smelting furnaces such as blast furnaces, converters, and electric furnaces at ironworks is used as a recycled material that reduces the burden on the environment from the viewpoint of resource saving and energy saving, and is used in various fields by taking advantage of its many characteristics. Have been.
[0003]
For example, the "hydraulic property" in which blast furnace slag and steelmaking slag gradually harden by reacting with water is suitable for roadbed materials, or the "hard" and "high wear resistance" of steelmaking slag. Characteristics are suitable for asphalt and concrete aggregate for roads.
[0004]
Since it is important that the slag used in these applications is stable over a long period of time, air and water are used for several months after the slag is crushed, for example, as specified in JIS A5015 “Steel slag for roads”. There is a need to perform an "aging" treatment for reacting with the compound to sufficiently stabilize it.
[0005]
Among them, steelmaking slag contains digestive substances such as free CaO and MgO and has a phenomenon of expanding for a long time. Therefore, as a method for evaluating whether slag has become sufficiently stable by aging, JIS A5015 “ “Steel slag for roads” defines “Water immersion expansion test method” as Annex 2.
[0006]
According to the method described in Annex 2, a sample whose particle size has been adjusted according to a certain particle size distribution is packed in a prescribed container (mold), and the sample is kept in 80 ° C. hot water for 6 hours and then allowed to cool. The operation is repeated once a day for 10 days for curing, the height of the mold in the mold after curing is measured, and the stability of the slag is evaluated from the expansion amount. Has been used as an important indicator.
[0007]
In addition, although the above method has a long time of 10 days for evaluating the stability of slag, as a method for more quickly evaluating the stability of a material containing a digestible substance, such as cement or refractory, a sealed pressurized container is used. A sample is placed under a high temperature and high pressure of 100 ° C. or more using an “autoclave” device including a heating device and a hydration reaction is caused in a relatively short time, and then, for example, ASTMC151-08 “Expansion of Portland cement” As described in "Test Methods", the method of measuring the length of a sample, and as described in JIS R2211 "Test method for digestibility of basic refractory bricks", the rate of decrease in compressive strength of a sample is measured. A method of measurement or, as described in Non-Patent Document 1, sieving of a treated sample and measuring the ratio of the weight under the sieve (powdering rate) to evaluate the stability of the material Some do.
[0008]
[Non-patent document 1]
Iron and Steel, 64th (1978) No. 10, P-68
[0009]
[Problems to be solved by the invention]
However, when attempting to use steel slag for a new purpose other than, for example, road use, the above-described stability evaluation method in the related art has the following problems.
[0010]
In other words, the present inventors have made these steel slags, in particular, those obtained by subjecting steel slag having a long-term expansion property to a sufficient aging treatment as described above to a solidified aggregate that is mixed with other binders and solidified. I have been conducting research and development to see if it can be used. Here, in order to estimate the long-term stability of a solidified body using steelmaking slag subjected to various aging treatments as aggregate, the stability promotion test of the solidified body itself was performed to examine the destruction state of the solidified body, and at the same time, The stability of steelmaking slag, which is the aggregate used in the above, was evaluated using the method described above, and a study was conducted to find conditions for stabilization of steelmaking slag applicable to the solidified body.
[0011]
Here, in the "water immersion expansion test method" described in JIS A5015 "iron and steel slag for roads", it is possible to evaluate the average expandability of a mass (group) of steelmaking slag of a certain volume in a mold. Since the fracture accompanying the individual expansion of the slag grains, which is one of the constituent elements, which can lead to the fracture of the solidified body cannot be measured, a phenomenon that the solidified body is broken even if the expansion rate is small is seen, It turned out that the stability of the slag could not be evaluated accurately.
[0012]
Also, a method for measuring the length of a sample as described in ASTM C151-08 “Expansion test method for Portland cement” or a sample described in JIS R2211 “Test method for digestibility of basic refractory brick” Although the expansion behavior of a molded article can be evaluated by a method for measuring the rate of decrease in the compressive strength of the slag, it is difficult to evaluate the stability of each slag particle.
[0013]
Further, in the method of measuring the powdering rate described in Non-Patent Document 1, the measured value is small or the dispersion is large only with the powder component generated as a result of hydration swelling, and the solidified body is broken. It is difficult to discriminate slag, and it is also difficult to evaluate the stability of individual slag grains, as described in the article, "There is no suitable method for indicating the disintegration of slag."
[0014]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for more accurately evaluating the stability of an aged steel slag.
[0015]
That is, it is an object of the present invention to accurately grasp the existence probability of individual slag grains that have not yet been collapsed and remain in the slag stabilized by the aging treatment or the like.
[0016]
[Means for Solving the Problems]
As described above, the present inventors investigated the state of destruction of the solidified body in a stability promotion test of the solidified body using various aging-treated steelmaking slags as an aggregate, and at the same time, used the steelmaking slag used for these aggregates. The stability (disintegration) of slag was also measured by various methods, and the analysis and examination were repeated as to whether a quantitative correlation was found between the two. As a result, the above-mentioned problems were solved by the following invention. Knowledge was obtained.
(1) When the slag subjected to the aging treatment is sieved with a first sieve, and the slag under the sieve is further sieved with a second sieve smaller than the first sieve,
{(Slag mass under the second sieve) / (Aging slag mass before classification) × 100 (%)}
Is the ratio of fine particles of slag after aging treatment (%),
Next, the aging-treated slag is further subjected to a hydration accelerating treatment, and the dried slag is sieved with the first sieve and further sieved under the second sieve with the second sieve.
{(Slag mass under the second sieve after hydration acceleration treatment) / (Slag mass before hydration acceleration treatment) × 100} (%)
Is defined as “fine-grain fraction (%) of slag after hydration acceleration treatment”
"Fine particle ratio of slag after hydration acceleration treatment"-"Fine particle ratio of aging slag"
A slag decay rate, and a method for evaluating slag stability.
(2) The hydration accelerating treatment is a treatment described in JIS A5015 “Steel slag for road” “Water swelling test method” or ASTMC151-08 “Portland cement expansion test method”. (1) The slag stability evaluation method described in (1).
(3) The method for evaluating slag stability according to (1) or (2), wherein the first sieve is coarser than the second sieve by one or two stages in accordance with JIS Z8801-1. .
(4) The method for evaluating slag stability according to any one of (1) to (3), wherein the first sieve is 9.5 mm, and the second sieve is 8 mm. .
(5) Any one of the above (1) to (4), wherein the aging treatment is a treatment in which the aging treatment is left for at least one month in the atmosphere or for six hours or more under normal pressure or pressurized steam. 2. The method for evaluating slag stability according to claim 1.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0018]
The present inventors have investigated the stability of various slags subjected to aging treatment, and as a result, conventionally, to evaluate the slag expandability reported in the "water immersion expansion test" and "autoclave expansion test" According to the results, it is clear that the slag promotes the hydration reaction, and it is clear that some of the digestible slag granules expand and break with hydration. It was known that the more the expansion coefficient was reduced, the more it could be evaluated.
[0019]
However, in order to estimate the long-term stability of the solidified body using steelmaking slag that has been subjected to various aging treatments as aggregate, the stability promotion test of the solidified body itself was conducted to examine the fracture state of the solidified body, and at the same time, Regarding the steelmaking slag that is the aggregate used, the expansion rate was measured by measuring the above-mentioned expansion rate and examining the correlation between the two to find out the conditions of steelmaking slag applicable to the solidified body. As mentioned earlier, the average expansion behavior of a certain volume of slag as a lump (group) is evaluated. Even if the expansion rate is actually small, several collapsed slags are contained in the slag. It was presumed that this would lead to the destruction of the solidified body.
[0020]
Therefore, next, not the expansion coefficient, sieved the slag that has been aged,
{(Slag mass under sieve after aging treatment) / (Slag mass after aging treatment) × 100 (%)}
Is determined in advance as the fine-grain fraction (%) of the slag after the aging treatment. Next, a hydration acceleration test is further performed without classifying the entire slag that has been subjected to the aging treatment first. Sieve with the same roughness as the sieve,
{(Slag mass under sieve after hydration acceleration treatment) / (Slag mass before hydration acceleration treatment) × 100 (%)}
Is determined as the fine grain fraction (%) of the slag after the hydration accelerating treatment,
This “Ratio of fine particles of slag after hydration acceleration treatment” − “Ratio of fine particles of slag after aging treatment” (%)
The correlation between the slag decay rate and the state of destruction of the solidified body was also investigated, but conversely, with this method, the slag decay rate greatly fluctuated even after various aging treatments, and the result was that it was also difficult to evaluate properly It became.
[0021]
However, according to the above-mentioned method, it should have been possible to measure the individual slag particles that have clearly collapsed, and in order to determine the cause of the large variation in the slag collapse rate, the present inventors have conducted various studies. As a result, the following knowledge was obtained as a method for accurately evaluating the stability of slag.
[0022]
That is, the slag after the hydration promoting treatment was sieved and the slag particles under the sieving were observed in detail. It was found that relatively large slag particles that seem to be absent were mixed.
[0023]
In order to determine an accurate slag decay rate, it is necessary to remove relatively large slag particles that are apparently not collapsed and that are contained under the sieve. This is the same problem when calculating not only the fine grain fraction including the truly disintegrated slag grains after the hydration promoting treatment but also the slag fine grain fraction after the aging treatment.
Therefore, the slag that has undergone the aging treatment is sieved with a first sieve, and further below the sieve is sieved with a second sieve smaller than the first sieve.
{(Mass of slag under the second sieve under sieving) / (mass of slag after aging treatment before classification) × 100 (%)
Is determined in advance as the fine-grain fraction (%) of the slag after the aging treatment, and then the dried slag after the hydration promoting treatment is the same as the sieve for which the fine-grain fraction of the slag after the aging treatment was determined. Sieving with a first sieve of roughness and further sieving under this sieve with a second sieve smaller than the first sieve results in the apparently complete removal of undisintegrated slag In this way, only slag that has collapsed due to hydration acceleration treatment can be measured,
{(Mass of slag under the second sieve after hydration promoting treatment) / (mass of slag before hydration promoting treatment × 100)
Is defined as “fine-grain fraction (%) of slag after hydration acceleration treatment”
"Fine particle ratio of slag after hydration acceleration treatment"-"Fine particle ratio of aging slag"
By setting the true slag decay rate as described above, this decay rate is reduced if the aging treatment of the original slag is sufficient, and furthermore, this decay rate is closely related to the stability (destruction situation) of the solidified body. And so on.
[0024]
FIG. 1 is a diagram showing the principle of the present invention. In the present invention, the slag that has been subjected to aging treatment in advance is a measurement target. As the aging treatment, after leaving in the air for at least one month, steam aging was performed at 180 ° C. for 6 hours as needed.
[0025]
In order to determine the fine particle fraction of the slag after the aging treatment, a certain amount of the slag subjected to the aging treatment is classified with a 9.5 mm sieve in accordance with JIS Z8801-1, and the slag under the sieve is further classified according to JIS Z8801-. Classification is performed using 8 mm which is another smaller sieve according to 1 to remove undisintegrated comparatively large slag particles (W2) and obtain fine particles of slag after aging treatment under the sieve ( W1). Here, {(mass of slag under the second sieve under sieving = W1) / (mass of slag after aging treatment before classification = W0) × 100 (%)
Is calculated as the “slag fine particle fraction (%) after aging treatment”.
[0026]
Next, the entire slag that has been aged first is not classified, but is further immersed in warm water at 80 ° C. (6 hours / day × 10 days) or further subjected to water treatment using an autoclave (180 ° C. (about 20 atm) × 6 hours). After performing the sum accelerating treatment and drying, it is similarly classified with a 9.5 mm sieve according to JIS Z8801-1, and another lower sieve is further below the sieve according to JIS Z8801-1. Classifying using 8 mm, removing relatively large unsoiled slag particles (W2 ′), obtaining fine particles of slag after aging treatment under a sieve (W1 ′),
{Slag mass under the second sieve after hydration promotion treatment = W1 '} / (slag mass before hydration promotion treatment = W0) x 100 (%)
Is defined as “fine-grain fraction (%) of slag after hydration acceleration treatment”.
[0027]
From this figure, the true slag collapse rate is determined as follows.
[0028]
True slag decay rate = "fine-grain fraction (%) of slag after hydration promoting treatment"-"fine-grain fraction (%) of slag after aging treatment"
Conventionally, when evaluating the slag disintegration rate, the slag content (sum of W1 and W2) under the first sieve of the aging slag and the slag content under the first sieve after the hydration promoting treatment, that is, water The difference between the sum (W1 '+ W2') of the slag collapsed by the sum promotion treatment and the undegraded slag was regarded as the collapse rate. Even if the preliminary classification is performed under certain conditions, it is easy to assume that the slags W2 and W2 ', which should have been sieved out, vary during processing, and this is the variation in measured values. The present inventors have found that
[0029]
Here, the sieve used for classification is generally specified in JIS Z 8801-1 as described above in Japan. Furthermore, it is a feature of the present invention that the final classification is performed using a sieve smaller than the sieve used in the pre-classification treatment. For this, a sieve smaller by about 1 to 2 steps specified in JIS Z 8801-1 is used. It is preferable to use slag having a smaller diameter for measurement of slag having a smaller diameter.
[0030]
As slag hydration accelerating treatment, JIS A5015 “Steel for road slag”, which has many achievements, “water immersion expansion test method” (10 days in hot water at 80 ° C.) and ASTM C151-08 which can be treated in a short time. In general, a method according to the “Portland cement expansion test method” is used. In the latter case, treatment at 180 ° C. for 3 to 6 hours can provide sufficient data for evaluation.
[0031]
Since the purpose of the present invention is to evaluate the slag decay rate after performing the aging treatment, after aging treatment, to classify undisintegrated slag, it is not possible to remove fine particles with the first sieve. Required.
[0032]
In addition, as the aging treatment, it is preferable that the digestion component is left at room temperature for one month or more, or under normal pressure or pressurized steam for 6 hours or more so that the digestion component undergoes a hydration reaction. The effect of the present invention can be obtained without particular limitation on the upper limit of pressurization. However, in order to efficiently and economically obtain the hydration accelerating effect of MgO, which has a slow hydration rate, 1 to 10 atmospheres is required. Processing is preferred.
[0033]
Furthermore, the amount of slag used for evaluation is not particularly limited, but the more the aging treatment is performed for stabilizing the slag, the more the slag collapse rate decreases, so in order to improve the accuracy of the measured value, It is better to use at least 5 kg or more.
[0034]
In addition, some slags have a smooth surface in the shape of a rock, while others have a rough surface in the form of sandstone.Especially in the case of the latter, powder is generated. The measurement accuracy is improved by removing the adhered powder.
[0035]
【Example】
(Example of the present invention)
FIG. 2 shows that 5 kg of a steelmaking slag (particle size range: 100 mm or less) stabilized by an aging treatment left at room temperature for at least one month is sieved to a nominal size of 9.5 mm specified by JIS Z 8801-1 (first type). And classified under a sieve having a nominal size of 8 mm (second sieve) specified in JIS Z8801-1.
{(Mass of slag under the second sieve under sieving) / (mass of slag after aging treatment before classification) × 100 (%)
Is determined in advance as the fine-grain fraction of the slag after the aging treatment, and then 5 kg of the aging slag (particle size range of 100 mm or less) is subjected to the “water immersion expansion test method” of JIS A5015 “Road steel slag”. After being immersed in warm water of 80 ° C. for 10 days to perform hydration accelerating treatment, and then dried at 110 ° C. for 24 hours, it is specified by JIS Z 8801-1 by the method shown in FIG. Classifying using a sieve with a nominal size of 9.5 mm, and further classifying under the sieve with a sieve with a nominal size of 8 mm specified in JIS Z8801-1,
{(Slag mass under the second sieve after hydration acceleration treatment) / (Slag mass before hydration acceleration treatment) × 100 (%)}
Is determined as the fine grain fraction of the slag after the hydration promoting treatment, (the fine grain fraction of the slag after the hydration promoting treatment) − (the fine grain fraction of the slag after the aging treatment) (%).
The solid slag (diameter 100 mm * height 200 mm) obtained by mixing the true slag collapse rate obtained as Similarly, it is a graph showing a correlation with a destruction rate of a solidified body when accelerated evaluation (immersion in warm water of 80 ° C. for 4 weeks) for confirming stability. In addition, the destruction rate of the solidified body was determined by the number of samples collapsed by the accelerated evaluation / the number of samples subjected to the evaluation.
[0036]
From this figure, it can be seen that when the true decay rate of the slag according to the present invention exceeds about 3%, the sample of the solidified body using the slag as an aggregate also breaks down. The slag was found to be suitable as a solidified aggregate.
(Comparative example)
FIG. 3 shows that 5 kg of a steelmaking slag (particle size range: 100 mm or less) stabilized by an aging treatment that is left at room temperature for at least one month is sieved with a nominal size of 9.5 mm specified by JIS Z 8801-1 (first type). Classification using only the sieve) and {(mass of slag under the first sieve) / (mass of slag after aging treatment before classification) × 100 (%)}
Is determined in advance as the fine-grain fraction (%) of the slag after the aging treatment. Then, 5 kg of the slag (the particle size range of 100 mm or less) after the aging treatment is subjected to the “water immersion expansion test” of JIS A5015 “Steel slag for roads”. The slag is immersed in warm water at 80 ° C. for 10 days according to the “method”, subjected to a hydration promoting treatment, dried at 110 ° C. for 24 hours, and then JIS Z8801- according to the method shown in FIG. Classifying using only the sieve with a nominal size of 9.5 mm (first sieve) specified in 1,
{(Slag mass under the first sieve after hydration acceleration treatment) / (Slag mass before hydration acceleration treatment) × 100 (%)}
Is determined as the fine-grain fraction of the slag after the hydration acceleration treatment,
(Ratio of fine particles in slag after hydration acceleration treatment)-(Ratio of fine particles in slag after aging treatment) (%)
The solidified material (diameter 100 mm * height 200 mm) obtained by using the same slag as the aggregate and the blast furnace slag fine powder as the main binder, and then solidifying 7) is a graph showing the correlation with the destruction rate of the solidified body when accelerated evaluation (immersion in hot water at 80 ° C. for 4 weeks) for confirming the stability as in the case of slag. The fracture rate of the solidified body was determined by the same method as in the present invention.
[0037]
As can be seen from this figure, the slag decay rate by the conventional method is, as described above, because some undisintegrated slag particles are mixed. The solidified body using crushed or not broken, and slag conditions suitable for a stable solidified body could not be found.
[0038]
【The invention's effect】
According to the present invention, steel slag, especially steelmaking slag that has a digestible component and has the property of expanding over a long period of time, when aging treatment is to be used for new applications other than road use, such as solidified bodies, The stability of the applied and stabilized slag can be accurately evaluated.
[Brief description of the drawings]
FIG. 1 illustrates the principle of the present invention. (W0 to W2 indicate slag mass after aging treatment, and W1 ′ and W2 ′ indicate slag mass after hydration promotion treatment.)
FIG. 2 shows the relationship between the slag collapse rate according to the present invention and the destruction rate of a solidified body using the slag as an aggregate.
FIG. 3 shows the relationship between the slag collapse rate according to the prior art and the destruction rate of a solidified body using the slag as an aggregate.

Claims (5)

エージング処理したスラグを第1の篩い目で篩い、さらにこの篩い下を前記第1の篩い目よりも小さな第2の篩い目で篩い分けた際の
{(第2の篩い目の篩い下のスラグ質量)/(分級前のエージング処理後スラグ質量)×100(%)}を「エージングスラグの細粒分比率(%)」とし、
次に、前記エージング処理したスラグをさらに水和促進処理し、これを乾燥させたものを前記第1の篩い目で篩い、さらにこの篩い下を前記第2の篩い目で篩い分け、
{(水和促進処理後の第2の篩い目の篩い下のスラグ質量)/(水和促進処理前のスラグ質量)×100}(%)
を「水和促進処理後スラグの細粒分比率(%)」とし、
「水和促進処理後スラグの細粒分比率」−「エージングスラグの細粒分比率」をスラグ崩壊率とすることを特徴とするスラグの安定性評価方法。
The slag that has undergone the aging treatment is sieved with a first sieve, and the slag under this sieve is sieved with a second sieve smaller than the first sieve (the slag under the second sieve). Mass) / (mass of slag after aging treatment before classification) × 100 (%) is defined as “fine slag fine particle fraction (%)”,
Next, the aging-treated slag is further subjected to a hydration accelerating treatment, and the dried slag is sieved with the first sieve and further sieved under the second sieve with the second sieve.
{(Slag mass under the second sieve after hydration acceleration treatment) / (Slag mass before hydration acceleration treatment) × 100} (%)
Is defined as “fine-grain fraction (%) of slag after hydration acceleration treatment”
A method for evaluating slag stability, wherein the ratio of fine particles of slag after hydration acceleration treatment-the ratio of fine particles of aging slag is a slag collapse rate.
水和促進処理がJIS A5015「道路用鉄鋼スラグ」の「水浸膨張試験方法」、又はASTMC151−08「ポルトランドセメントの膨張試験方法」に記載された処理であることを特徴とする請求項1記載のスラグの安定性評価方法。The hydration accelerating treatment is a treatment described in JIS A5015 "Steel slag for roads" "Water immersion expansion test method" or ASTM C151-08 "Portland cement expansion test method". Slag stability evaluation method. 第1の篩い目が、第2の篩い目よりJIS Z8801−1の規定において1段又は2段粗いことを特徴とする請求項1又は2記載のスラグの安定性評価方法。The slag stability evaluation method according to claim 1 or 2, wherein the first sieve is coarser by one or two stages in accordance with JIS Z8801-1 than the second sieve. 第1の篩い目を9.5mmとし、第2の篩い目を8mmとすることを特徴とする請求項1〜3の何れか1項に記載のスラグの安定性評価方法。The slag stability evaluation method according to any one of claims 1 to 3, wherein the first sieve is 9.5 mm and the second sieve is 8 mm. エージング処理が、少なくとも大気下にて1ヶ月以上、又は常圧若しくは加圧の蒸気下にて6時間以上放置する処理であることを特徴とする請求項1〜4の何れか1項に記載のスラグの安定性評価方法。The aging treatment is a treatment that is left at least for one month or more in the atmosphere or for six hours or more under normal pressure or pressurized steam. Slag stability evaluation method.
JP2003096443A 2003-03-31 2003-03-31 Slag stability evaluation method Expired - Lifetime JP4357199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096443A JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096443A JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Publications (2)

Publication Number Publication Date
JP2004301747A true JP2004301747A (en) 2004-10-28
JP4357199B2 JP4357199B2 (en) 2009-11-04

Family

ID=33408513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096443A Expired - Lifetime JP4357199B2 (en) 2003-03-31 2003-03-31 Slag stability evaluation method

Country Status (1)

Country Link
JP (1) JP4357199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281842A (en) * 2008-05-22 2009-12-03 Jfe Steel Corp Expansivity evaluating method for sorting roadbed material
JP2011203120A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating slag fine particles, and carbonation treatment apparatus
JP2011203119A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating slag fine particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281842A (en) * 2008-05-22 2009-12-03 Jfe Steel Corp Expansivity evaluating method for sorting roadbed material
JP2011203120A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating slag fine particles, and carbonation treatment apparatus
JP2011203119A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for discriminating slag fine particles

Also Published As

Publication number Publication date
JP4357199B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
Roslan et al. Performance of steel slag and steel sludge in concrete
JP2004292295A (en) Hardened body of slag
Nazari et al. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles
Polanco et al. Strength and Durability of Concrete Made with Electric Steelmaking Slag.
JPH10152364A (en) Hydration curing product utilizing steel-making slag
Jiang et al. Strength and microstructural evolution of alkali-activated slag-based cemented paste backfill: Coupled effects of activator composition and temperature
Liu et al. Effectiveness of saturated coral aggregate and shrinkage reducing admixture on the autogenous shrinkage of ultrahigh performance concrete
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
JP5126524B2 (en) Manufacturing method for civil engineering materials using steel slag
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
Hassan et al. Effects of sawdust and rice husk additives on properties of local refractory clay
Liu et al. Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture
JP4274834B2 (en) Slag stability evaluation method
Wang et al. Using autoclave pulverization technology to evaluate the expansion potentiality of electric arc furnace oxidizing slag
JP2019095401A (en) Method for predicting strength of artificial lightweight aggregate
JP4274835B2 (en) Slag stability evaluation method
JP2004301747A (en) Slag stability evaluation method
Chen et al. Effect of ultrafine recycled brick powder on the properties of blended cement: Hydration kinetics, microstructure evolution and properties development
Bandara et al. Enhance the properties of concrete using pre-developed burnt clay chips as internally curing concrete aggregate
Ayininuola et al. Bone ash influence on soil consolidation
JP6218369B2 (en) Method for producing concrete and method for preparing fine aggregate for concrete production
CN104729917A (en) Pelletized blast furnace slag hydraulicity detection method
Xiang et al. Investigating the potential for porous ceramics as bacterial carrier in self-healing cemented paste backfill
Oyelade et al. Effect of elevated temperature on the compressive strength of concrete produced with pulverized steel mill scale
Tan et al. Preparation and performance evaluation of high-strength phosphogypsum aggregates by compaction and hydration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4357199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term