JP2011027568A - Compressive strength control method of coarse aggregate - Google Patents

Compressive strength control method of coarse aggregate Download PDF

Info

Publication number
JP2011027568A
JP2011027568A JP2009174104A JP2009174104A JP2011027568A JP 2011027568 A JP2011027568 A JP 2011027568A JP 2009174104 A JP2009174104 A JP 2009174104A JP 2009174104 A JP2009174104 A JP 2009174104A JP 2011027568 A JP2011027568 A JP 2011027568A
Authority
JP
Japan
Prior art keywords
coarse aggregate
strength
compressive strength
measuring
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009174104A
Other languages
Japanese (ja)
Other versions
JP5340846B2 (en
Inventor
Masashi Sakashita
坂下雅司
Minoru Yoshimoto
吉本稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009174104A priority Critical patent/JP5340846B2/en
Publication of JP2011027568A publication Critical patent/JP2011027568A/en
Application granted granted Critical
Publication of JP5340846B2 publication Critical patent/JP5340846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of calculating compressive strength of coarse aggregate for concrete simply and accurately without measuring it by a compressive strength testing machine, after boring a sample from ore, and coring it or forming a molded body therefrom. <P>SOLUTION: A determination method of compressive strength of coarse aggregate for concrete includes processes for: measuring the compressive strength of a sample cut out beforehand from coarse aggregate ore; crushing the coarse aggregate ore to form coarse aggregate, and measuring a point loading strength of a plurality of specimens on a fraction cut by 1 mm with a particle size of 10-15 mm; generating a correlation expression between a measured value of the compressive strength and a measured value of the point loading strength; and measuring the point loading strength of the coarse aggregate which is a selection object within a range of the fraction, and determining the compressive strength value of the coarse aggregate which is the selection object from the correlation expression. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コンクリート用粗骨材の圧縮強度の管理方法に関する。 The present invention relates to a method for managing the compressive strength of coarse aggregate for concrete.

近年、建築物の高層化に伴い、高強度あるいは超高強度コンクリートの需要が増加している。普通コンクリートにおいては粗骨材の圧縮強度、静弾性係数等の強度特性はほとんど問われないが、高強度あるいは超高強度コンクリートにおいては、既往の研究等において粗骨材の強度特性がコンクリートの強度特性に影響を及ぼすことが報告されている。 In recent years, the demand for high-strength or ultra-high-strength concrete has increased with the rise of buildings. In ordinary concrete, the strength characteristics such as compressive strength and static elastic modulus of coarse aggregate are almost unquestioned. However, in high-strength or ultra-high-strength concrete, the strength characteristics of coarse aggregate are It has been reported to affect properties.

コンクリート用粗骨材の圧縮強度は、原石からのコア抜き供試体の圧縮強度試験により測定している。しかし、原石である岩石そのものからコア抜き供試体を作成するのは、確実な方法であるが、コア抜き工程を要し、簡便な方法とはいえない。 The compressive strength of the coarse aggregate for concrete is measured by the compressive strength test of the core-free specimen from the raw stone. However, creating a cored specimen from the original rock itself is a reliable method, but it requires a cored process and is not a simple method.

従って、コンクリート用粗骨材の圧縮強度を簡便に正確に推定できる方法が、実現できればきわめて有益である。 Therefore, it would be extremely beneficial if a method capable of simply and accurately estimating the compressive strength of the coarse aggregate for concrete could be realized.

一方、コンクリート用粗骨材の点載荷試験方法については、地盤工学会基準「岩石の点載荷試験方法」(JGS 3421−2005)に記載されている。しかし、成形供試体又はコア抜き供試体を用いた点載荷試験方法によるデータであって、コンクリート用粗骨材そのものの試験結果は見あたらない。したがって、これを用いたコンクリート用粗骨材の圧縮強度推定方法自体は検討の端緒にも至っていない。 On the other hand, the spot loading test method for the coarse aggregate for concrete is described in the Geotechnical Society Standard “Spot Loading Test Method for Rock” (JGS 3421-2005). However, it is data by a point loading test method using a molded specimen or a core-free specimen, and the test result of the coarse aggregate for concrete itself is not found. Therefore, the method for estimating the compressive strength of concrete coarse aggregate using this has not yet begun.

地盤工学会基準(JGS 3421−2005)Geotechnical Society Standard (JGS 3421-2005)

コンクリート用粗骨材の圧縮強度を、原石からボーリングして、コア抜きし、又はこれの成形体とし、圧縮強度試験機にかけて測定しなくても、簡便に精度良く、算出できる方法を実現することを目的とする。 To realize a method that can easily and accurately calculate the compressive strength of coarse aggregate for concrete without boring from the rough stone, removing the core, or forming it into a compact, and measuring with a compressive strength tester. With the goal.

本願発明の対象は、コンクリート用粗骨材であり、通常の土木用語で、質量の90%以上が粒径5mm網ふるいに留まる骨材である。したがって、通常の粗砕による製造で、粗砕機の形式、粗砕方法によって粒径分布に変化はあるが、大半が、粒径5mm以上30mm以下となる。 The object of the present invention is coarse aggregate for concrete, and is an aggregate in which 90% or more of the mass remains on a 5 mm particle size mesh sieve in ordinary civil engineering terms. Therefore, in the production by normal crushing, the particle size distribution varies depending on the type of the crusher and the crushing method, but most of the particle size is 5 mm or more and 30 mm or less.

コンクリート用粗骨材の圧縮強度の決定方法であって、予め粗骨材原石から切り出した試料で圧縮強度を測定する工程と、前記粗骨材原石を粗砕して、粗骨材とし、粒径10mm〜15mmの1mm刻みの分画にある複数の供試体の点載荷強度を測定する工程と、前記圧縮強度の測定値と前記点載荷強度の測定値との相関式を作成する工程と、選定対象の粗骨材の点載荷強度を前記分画の範囲で測定して、選定対象の粗骨材の圧縮強度値を前記相関式から決定する工程と、を含むコンクリート用粗骨材の圧縮強度の決定方法、を提供する。 A method for determining the compressive strength of a coarse aggregate for concrete, the step of measuring the compressive strength with a sample previously cut out from the coarse aggregate raw stone, and crushing the coarse aggregate raw stone to obtain a coarse aggregate, A step of measuring the point load strength of a plurality of specimens in a 1 mm increment of a diameter of 10 mm to 15 mm, a step of creating a correlation formula between the measured value of the compressive strength and the measured value of the point load strength, Measuring the point load strength of the coarse aggregate to be selected in the range of the fraction, and determining the compression strength value of the coarse aggregate to be selected from the correlation equation, and compressing the coarse aggregate for concrete A method for determining strength.

また、10mm〜15mmの粒径の範囲で1mm刻みの分画から選定対象の粗骨材をサンプリングして点載荷強度を測定し、相関式 y=12.445x−22.651 (y:骨材の圧縮強度 x:点載荷強度)から粗骨材の圧縮強度を決定するコンクリート用粗骨材の圧縮強度の決定方法、を提供する。 In addition, the coarse loading material to be selected is sampled from the fraction in increments of 1 mm within the particle size range of 10 mm to 15 mm, and the point load strength is measured, and the correlation equation y = 12.445x-22.651 (y: aggregate The compressive strength of the coarse aggregate for concrete is determined from the compressive strength of the concrete.

原石の粗砕は、通常の粉砕機を用いることができる。原石の大きさに応じて、二段以上の粉砕工程とすることも好ましい。粉砕機は、クラッシャー、ハンマーミル、パルベライザー、ボールミル、竪型ミル等を用いることができる。ここで、粗骨材の粒径は、5mm以上30mm以下である。 An ordinary crusher can be used for rough crushing of the rough. Depending on the size of the raw stone, it is also preferable to use two or more pulverization steps. As the pulverizer, a crusher, a hammer mill, a pulverizer, a ball mill, a vertical mill or the like can be used. Here, the particle size of the coarse aggregate is not less than 5 mm and not more than 30 mm.

粗骨材原石も通常用いられる安山岩、砂岩、石灰石、石英粗面岩でよい。粗骨材例の物理的性質および化学成分を表1に示す。 Coarse aggregate ore may also be commonly used andesite, sandstone, limestone, or quartz rough rock. Table 1 shows the physical properties and chemical components of the coarse aggregate examples.

本発明では、粗砕前の原石からのコア抜きを必要とせず、製品であるコンクリート用粗骨材そのものを供試体とし、所定の粒径分画の粗骨材を複数個選定し、その点載荷強度を測定するものである。例えば、測定対象を粒径10mmから15mmの粗骨材に限定し、更に複数の所定粒径の分画から、複数個を篩い分け等で、採取する。例えば、10.0から1mm刻みで15mmまで同数のサンプリングをおこなう。その際、サンプルの目視検査で、亀裂が認められるもの、極端に扁平形状のものは除外する。 In the present invention, it is not necessary to remove the core from the rough ore before crushing, the product is a coarse aggregate for concrete itself, and a plurality of coarse aggregates having a predetermined particle size fraction are selected. It measures the loading strength. For example, the measurement object is limited to coarse aggregate having a particle diameter of 10 mm to 15 mm, and a plurality of fractions having a predetermined particle diameter are collected by sieving or the like. For example, the same number of sampling is performed from 10.0 to 15 mm in increments of 1 mm. At that time, samples with cracks or extremely flat shapes are excluded by visual inspection of samples.

こうして得られた代表性の良い複数個の所定サンプルをJGS 3421−2005に準拠した点載荷試験に供する。具体的には、試験装置として載荷コーン、載荷フレーム、油圧ジャッキ等から構成される載荷部と破壊荷重Pを測定できる荷重測定装置を用いる。 A plurality of predetermined samples with good representativeness thus obtained are subjected to a point loading test in accordance with JGS 3421-2005. Specifically, a load measuring device that can measure the loading load and the breaking load P, which includes a loading cone, a loading frame, a hydraulic jack, and the like, is used as a test device.

次いで、供試体を試験装置にセットし、供試体を上下方向からコーンで支持し、載荷点間隔(D)、載荷点距離(L)、供試体幅(W)を測定する。このとき、0.5D<L<1.5Dかつ 0.3W<D<W の条件を満たす場合のみ載荷試験で強度試験を行う。前記条件を満たさない場合は別の供試体に差し替える。ついで、次式により、点載荷強度 Isを算出する。 Next, the specimen is set in a test apparatus, the specimen is supported by a cone from above and below, and the loading point interval (D), loading point distance (L), and specimen width (W) are measured. At this time, the strength test is performed in the loading test only when the conditions of 0.5D <L <1.5D and 0.3W <D <W are satisfied. If the above conditions are not met, replace with another specimen. Next, the point load strength Is is calculated by the following equation.

Is=0.9P/De^2 ここで、Deは、等価コア径であり、二つの載荷点を含む供試体の最小断面積の断面と等しい面積を有する円の直径をいう。本願方法では、Deは、Dに等しい。 Is = 0.9P / De ^ 2 Here, De is an equivalent core diameter, which is the diameter of a circle having an area equal to the cross section of the minimum cross-sectional area of the specimen including two loading points. In the present method, De is equal to D.

例えば、複数個の上記サンプルについての、点載荷試験による強度試験結果の平均値(N/mm2)をx軸とし、別途測定した、原石からのコア抜き供試体による圧縮強度(N/mm2)をy軸とする平面座標にプロットする。 For example, the average value (N / mm2) of the strength test result by the point loading test for a plurality of the above samples is taken as the x axis, and the compressive strength (N / mm2) by the core-free specimen from the raw stone is measured separately. Plot in the plane coordinates with y-axis.

点載荷試験による強度試験結果の平均値(N/mm2)と上記原石からのコア抜き供試体による圧縮強度(N/mm2)は良い相関を示した。例えば、相関係数R2は、0.9以上の相関関係にあった。 The average value (N / mm2) of the strength test result by the point loading test and the compressive strength (N / mm2) of the core-extracted specimen from the raw stone showed a good correlation. For example, the correlation coefficient R2 has a correlation of 0.9 or more.

圧縮強度の未知の原石から得られた粗骨材について、上記点載荷試験によって得られた点載荷強度を上記相関式に当てはめることによって、粗骨材原石の圧縮強度が推定できた。 By applying the point loading strength obtained by the above point loading test to the above-mentioned correlation formula for the coarse aggregate obtained from the raw stone of unknown compressive strength, the compressive strength of the coarse aggregate raw stone could be estimated.

こうして、予め、粗骨材原石から切り出した試料で圧縮強度を測定し、前記粗骨材原石を粗砕して、粗骨材とし、前記粗骨材の粒径10mm〜15mmの1mm刻みの分画にある複数の供試体の点載荷強度を測定して平均値を算出する工程と、前記圧縮強度の測定値と前記点載荷強度の測定値との相関式を作成しておき、選定対象の粗骨材の点載荷強度を前記分画の範囲で測定して、選定対象の粗骨材の圧縮強度値を前記相関式から決定して、コンクリート用粗骨材の圧縮強度を決定することができる。 Thus, the compressive strength is measured in advance with a sample cut out from the coarse aggregate raw stone, the coarse aggregate raw stone is crushed into coarse aggregate, and the coarse aggregate has a particle size of 10 mm to 15 mm in increments of 1 mm. A step of measuring the point load strength of a plurality of specimens in the image and calculating an average value, and creating a correlation formula between the measured value of the compressive strength and the measured value of the point load strength, Measuring the point load strength of the coarse aggregate in the range of the fraction, determining the compressive strength value of the coarse aggregate to be selected from the correlation equation, and determining the compressive strength of the coarse aggregate for concrete it can.

また、具体的には、10mm〜15mmの粒径の分画の範囲で選定対象の粗骨材の点載荷強度を測定し、相関式 y=12.445−22.651 (y:骨材の圧縮強度 x:点載荷強度)から粗骨材の圧縮強度を決定するコンクリート用粗骨材の圧縮強度が決定できる。 Specifically, the point load strength of the coarse aggregate to be selected is measured in the range of the particle size of 10 mm to 15 mm, and the correlation equation y = 12.445-22.651 (y: aggregate The compressive strength of the coarse aggregate for concrete which determines the compressive strength of the coarse aggregate can be determined from the compressive strength x: point load strength).

本発明は、粗骨材製品を使用した場合の点載荷強度から骨材の圧縮強度を予測し、管理するもので、圧縮強度をその都度、骨材原石から切り出した試験体を用いて測定しなくても、これと強い相関があり、骨材サンプルそのものから測定可能な点載荷強度を指標として、特にコンクリートの圧縮強度に応じて、これに適した粗骨材を簡易に、精度よく選定でき、建設工程管理が容易に精度良く行うことができる。 The present invention predicts and manages the compressive strength of the aggregate from the point load strength when using coarse aggregate products, and the compressive strength is measured using a specimen cut out from the raw aggregate stone each time. Even if it is not, there is a strong correlation with this, and using the point load strength measurable from the aggregate sample itself as an index, it is possible to easily and accurately select a coarse aggregate suitable for this, particularly according to the compressive strength of concrete. Construction process management can be easily and accurately performed.

粗骨材の圧縮強度と点載荷強度(粒径分画10〜15mm)の平均値の相関図である。It is a correlation diagram of the average value of the compressive strength of coarse aggregate, and point load strength (particle size fraction 10-15mm). 粗骨材の圧縮強度と点載荷強度(粒径分画5〜20mm)の平均値の相関図である。It is a correlation diagram of the average value of the compressive strength of coarse aggregate, and point load strength (particle size fraction 5-20 mm). 粗骨材の圧縮強度と点載荷強度(粒径分画5〜10mm)の平均値の相関図である。It is a correlation diagram of the average value of the compressive strength of coarse aggregate, and point load strength (particle size fraction 5-10 mm). 粗骨材の圧縮強度と点載荷強度(粒径分画15〜20mm)の平均値の相関図である。It is a correlation diagram of the average value of the compressive strength of coarse aggregate, and point load strength (particle size fraction 15-20mm).

以下に本発明の形態について、詳細に説明する。これによって、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail. This does not limit the invention.

粗骨材は砕石場で製造されたものを使用した。砕石場で、表土除去を完了させた後、クローラドリルで発破孔をさく孔し、硝安油剤爆薬で爆破して、起砕石を得た。次いで、パワーショベルにて、立坑に投入した。立坑に投入された原石は、坑内で1次クラッシャーを用いて、破砕した。坑内ベルトコンベヤで坑外に搬出したのち、更にコーンクラッシャー又は、インパクトクラッシャーで破砕し、篩で5〜20mmに調整した。 Coarse aggregate used in the quarry was used. After completing the topsoil removal at the quarry, the blasting holes were drilled with a crawler drill and blasted with a smelting oil explosive to obtain crushed stones. Then, it was thrown into the shaft with a power shovel. The rough ore put into the shaft was crushed using a primary crusher in the shaft. After carrying it out of the mine by an underground belt conveyor, it was further crushed with a cone crusher or an impact crusher and adjusted to 5 to 20 mm with a sieve.

試料の乾燥は、予備乾燥(105℃)後、ドライアイス−メタノール温度のトラップを付帯した真空乾燥を行い、恒量とした試料を用いた。 The sample was dried by preliminary drying (105 ° C.) followed by vacuum drying with a trap of dry ice-methanol temperature to obtain a constant weight sample.

次いで、乾燥した試料について、点載荷試験に供した。 The dried sample was then subjected to a point loading test.

使用した粗骨材例の物理的性質および化学成分を表2に示す。6社の粗骨材を用いた。 Table 2 shows the physical properties and chemical components of the coarse aggregate examples used. Coarse aggregates from 6 companies were used.

本発明では、粗砕前の原石からのコア抜き、成形品でなく、製品であるコンクリート用粗骨材そのものを供試体とした。粗骨材を次の方法で、20個以上のサンプリングする。 In the present invention, not a core from a rough ore before crushing, but a molded product, a coarse aggregate for concrete itself, which is a product, was used as a specimen. The coarse aggregate is sampled by 20 or more by the following method.

まず、粒径10mmから15mmの粗骨材に限定する。更に、粒径を分画して、少なくとも5区分の粒径から、各4個以上の試料を篩い分けして、採取する。例えば、10.0〜11.0mmの粒径分画から 5個、11.0〜12.0mmの粒径分画から 5個、12.0〜13.0mmの粒径分画から 5個、13.0〜14.0mmの粒径分画から 5個、14.0〜15.0mmの粒径分画から 5個とする。このあとの目視検査や試験時の供試体寸法測定の結果、除外するサンプルがあることを考慮して、多めにサンプリングしておくことが好ましい。
次いで、先に選定したサンプルの目視検査を行い、亀裂が認められるもの、極端に扁平形状のものは除外する。また、測定対象の粗骨材に層状構造などの方向性が認められる場合は、載荷試験における載荷軸が特定の方向に偏らないように配慮する。
First, it is limited to coarse aggregate having a particle size of 10 mm to 15 mm. Further, the particle size is fractionated, and four or more samples are screened and collected from at least five particle sizes. For example, 5 from a particle size fraction of 10.0 to 11.0 mm, 5 from a particle size fraction of 11.0 to 12.0 mm, 5 from a particle size fraction of 12.0 to 13.0 mm, Five from the particle size fraction of 13.0 to 14.0 mm, and five from the particle size fraction of 14.0 to 15.0 mm. In consideration of the fact that there are samples to be excluded as a result of the subsequent visual inspection and measurement of the specimen dimensions during the test, it is preferable to sample more.
Subsequently, the sample selected above is visually inspected, and those with cracks or extremely flat shapes are excluded. If the coarse aggregate to be measured has a directionality such as a layered structure, consideration should be given so that the loading axis in the loading test does not deviate in a specific direction.

こうして得られた代表性の良いサンプル、例えば25個をJGS 3421−2005に準拠した点載荷試験に供する。具体的には、試験装置は、載荷コーン、載荷フレーム、油圧ジャッキ等から構成される載荷部と破壊荷重Pを測定できる荷重測定装置で測定した。 The samples with good representativeness thus obtained, for example, 25 samples, are subjected to a point load test based on JGS 3421-2005. Specifically, the test device was measured by a load measuring device capable of measuring a loading portion and a breaking load P composed of a loading cone, a loading frame, a hydraulic jack, and the like.

試験方法は、以下の通りである。
1.試験装置を準備する
2.供試体を試験装置にセットする 供試体を上下方向からコーンで支持する。
3.載荷点間隔(D)、載荷点距離(L)、供試体幅(W)を測定する。
4.0.5D<L<1.5Dかつ 0.3W<D<W の条件を満たす場合のみ載荷試験で強度試験を行う。前記条件を満たさない場合は別の供試体に差し替える。
(載荷試験は、載荷点距離10mm〜15mmの1mm刻みの各分画から、それぞれ4個以上の供試体について実施する。また、各分画の個数は同一とする。)
5.次式により、点載荷強度Isを算出する
The test method is as follows.
1. 1. Prepare test equipment Set the specimen on the test equipment. Support the specimen with a cone from above and below.
3. The loading point interval (D), the loading point distance (L), and the specimen width (W) are measured.
4. Only when the conditions of 0.5D <L <1.5D and 0.3W <D <W are satisfied, the strength test is performed in the loading test. If the above conditions are not met, replace with another specimen.
(The loading test is performed on four or more specimens from each fraction in increments of 1 mm with a loading point distance of 10 mm to 15 mm. The number of each fraction is the same.)
5. Calculate the point load strength Is using the following formula:

Is=0.9P/De^2 ここで、Deは、等価コア径であり、二つの載荷点を含む供試体の最小断面積の断面と等しい面積を有する円の直径をいう。本願方法では、Deは、Dに等しい。 Is = 0.9P / De ^ 2 Here, De is an equivalent core diameter, which is the diameter of a circle having an area equal to the cross section of the minimum cross-sectional area of the specimen including two loading points. In the present method, De is equal to D.

例えば、上記20個のサンプルについての、点載荷試験による強度試験結果の平均値(N/mm2)をx軸とし、別途測定した、原石からのコア抜き供試体による圧縮強度(N/mm2)をy軸とする平面座標にプロットする。図1にその例示をした。 For example, for the 20 samples, the average value (N / mm2) of the strength test results by the point loading test is taken as the x-axis, and the compressive strength (N / mm2) by the cored specimen from the raw stone is measured separately. Plot in the plane coordinates with y-axis. This is illustrated in FIG.

図1は、6品の粗骨材製品について、上記点載荷試験による強度試験結果の平均値(N/mm2)と上記原石からのコア抜き供試体による圧縮強度(N/mm2)の相関を示している。相関係数R2は、0.9352できわめて良い相関関係にあった。 FIG. 1 shows the correlation between the average value (N / mm2) of the strength test result by the point loading test and the compressive strength (N / mm2) of the cored specimen from the raw stone for the six coarse aggregate products. ing. The correlation coefficient R2 was 0.9352, indicating a very good correlation.

圧縮強度の未知の原石から得られた粗骨材について、上記点載荷試験によって得られた点載荷強度を図1の上記相関式に当てはめることによって、粗骨材原石の圧縮強度が推定できた。 By applying the point loading strength obtained by the above point loading test for the coarse aggregate obtained from the raw stone of unknown compressive strength to the above correlation equation of FIG. 1, the compressive strength of the coarse aggregate raw stone can be estimated.

図2、図3、図4には、粒径5〜20mmの分画について、上記と同様に1mm刻みの分画を設けた4点サンプリングをしたとき、粒径5〜10mmの分画を設けて処理したとき、粒径15〜20mmmの分画を設けて処理したときの、それぞれのプロット図をしめした。 2, 3, and 4, when the 4-point sampling is performed for the fraction having a particle size of 5 to 20 mm and the fraction having a 1 mm increment is provided in the same manner as described above, the fraction having a particle size of 5 to 10 mm is provided. When the process was performed, plots of the respective plots when the fraction having a particle diameter of 15 to 20 mm was provided and processed were shown.

図2、図3、図4について、それぞれ、相関係数は、0.6833、0.5102、0.6306となり、いずれも、図1に示した方法による圧縮強度との相関は、小さかった。 2, 3, and 4, the correlation coefficients were 0.6833, 0.5102, and 0.6306, respectively, and the correlation with the compression strength by the method shown in FIG. 1 was small.

表2には、上記各図のもととなったデータを分画別、岩種別に、点載荷強度−骨材・圧縮強度の関係として示したものである。 Table 2 shows the data based on each of the above figures as a relationship between the point load strength, the aggregate, and the compressive strength according to the fraction and the rock type.

こうして、予め、粗骨材原石から切り出した試料で圧縮強度を測定し、前記粗骨材原石を粗砕して、粗骨材とし、前記粗骨材の粒径10mm〜15mmの1mm刻みの分画にある複数の供試体の点載荷強度を測定して平均値を算出する工程と、前記圧縮強度の測定値と前記点載荷強度の測定値との相関式を作成しておき、選定対象の粗骨材の点載荷強度を前記分画の範囲で測定して、選定対象の粗骨材の圧縮強度値を前記相関式から決定して、コンクリート用粗骨材の圧縮強度を決定することができる。 Thus, the compressive strength is measured in advance with a sample cut out from the coarse aggregate raw stone, the coarse aggregate raw stone is crushed into coarse aggregate, and the coarse aggregate has a particle size of 10 mm to 15 mm in increments of 1 mm. A step of measuring the point load strength of a plurality of specimens in the image and calculating an average value, and creating a correlation formula between the measured value of the compressive strength and the measured value of the point load strength, Measuring the point load strength of the coarse aggregate in the range of the fraction, determining the compressive strength value of the coarse aggregate to be selected from the correlation equation, and determining the compressive strength of the coarse aggregate for concrete it can.

また、10mm〜15mmの粒径の範囲で選定対象の粗骨材の点載荷強度を測定し、相関式 y=12.445−22.651 (y:骨材の圧縮強度 x:点載荷強度)から粗骨材の圧縮強度を決定するコンクリート用粗骨材の圧縮強度が決定できる。 Further, the point loading strength of the coarse aggregate to be selected is measured in the range of the particle size of 10 mm to 15 mm, and the correlation equation y = 12.445-22.651 (y: the compressive strength of the aggregate x: the point loading strength) From the above, the compressive strength of the coarse aggregate for concrete which determines the compressive strength of the coarse aggregate can be determined.

測定容易な点載荷強度を用いて、粗骨材製品から粗骨材原石の圧縮強度が判定でき、特にコンクリートの圧縮強度に応じて、これに適した粗骨材を簡易に選定でき、建設工程管理が容易に精度良く行うことができる。 By using the point load strength that is easy to measure, it is possible to determine the compressive strength of the rough aggregate from the coarse aggregate product, and it is possible to easily select the coarse aggregate suitable for this, especially according to the compressive strength of the concrete. Management can be performed easily and accurately.

Claims (2)

コンクリート用粗骨材の圧縮強度の決定方法であって、
予め粗骨材原石から切り出した試料で圧縮強度を測定する工程と、
前記粗骨材原石を粗砕して、粗骨材とし、粒径10mm〜15mmの1mm刻みの分画にある複数の供試体の点載荷強度を測定する工程と、
前記圧縮強度の測定値と前記点載荷強度の測定値との相関式を作成する工程と、
選定対象の粗骨材の点載荷強度を前記分画の範囲で測定して、選定対象の粗骨材の圧縮強度値を前記相関式から決定する工程と、
を含むコンクリート用粗骨材の圧縮強度の決定方法。
A method for determining the compressive strength of coarse aggregate for concrete,
A step of measuring the compressive strength with a sample previously cut from the coarse aggregate rough,
Roughly crushing the coarse aggregate raw stone to obtain a coarse aggregate, measuring the point load strength of a plurality of specimens in a fraction of 1 mm increments of particle size 10 mm to 15 mm;
Creating a correlation between the measured value of the compressive strength and the measured value of the point load strength;
Measuring the point loading strength of the coarse aggregate to be selected in the range of the fraction, and determining the compression strength value of the coarse aggregate to be selected from the correlation equation;
Of determining the compressive strength of concrete coarse aggregate containing
10mm〜15mmの粒径の範囲で1mm刻みの分画から選定対象の粗骨材をサンプリングして点載荷強度を測定し、相関式 y=12.445x−22.651 (y:骨材の圧縮強度 x:点載荷強度)から粗骨材の圧縮強度を決定するコンクリート用粗骨材の圧縮強度の決定方法。 Sampling of coarse aggregates to be selected from fractions of 1 mm increments within a particle size range of 10 mm to 15 mm and measuring point load strength, correlation equation y = 12.445x-22.651 (y: compression of aggregates) A method for determining the compressive strength of the coarse aggregate for concrete, which determines the compressive strength of the coarse aggregate from strength x: point load strength).
JP2009174104A 2009-07-27 2009-07-27 Control method of compressive strength of coarse aggregate Active JP5340846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174104A JP5340846B2 (en) 2009-07-27 2009-07-27 Control method of compressive strength of coarse aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174104A JP5340846B2 (en) 2009-07-27 2009-07-27 Control method of compressive strength of coarse aggregate

Publications (2)

Publication Number Publication Date
JP2011027568A true JP2011027568A (en) 2011-02-10
JP5340846B2 JP5340846B2 (en) 2013-11-13

Family

ID=43636485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174104A Active JP5340846B2 (en) 2009-07-27 2009-07-27 Control method of compressive strength of coarse aggregate

Country Status (1)

Country Link
JP (1) JP5340846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011533A (en) * 2011-06-29 2013-01-17 Kajima Corp Selection method for ultrahigh strength concrete aggregate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293091A (en) * 1997-04-18 1998-11-04 Yasuo Tanigawa Method for estimating strength of concrete
JP2001050878A (en) * 1999-08-06 2001-02-23 Tokyu Constr Co Ltd Portable loading test device and measuring method
JP2006212933A (en) * 2005-02-03 2006-08-17 Taisei Corp Method for selecting crude aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293091A (en) * 1997-04-18 1998-11-04 Yasuo Tanigawa Method for estimating strength of concrete
JP2001050878A (en) * 1999-08-06 2001-02-23 Tokyu Constr Co Ltd Portable loading test device and measuring method
JP2006212933A (en) * 2005-02-03 2006-08-17 Taisei Corp Method for selecting crude aggregate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011533A (en) * 2011-06-29 2013-01-17 Kajima Corp Selection method for ultrahigh strength concrete aggregate

Also Published As

Publication number Publication date
JP5340846B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Xiao et al. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads
Aliabdo Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks
Jeong et al. Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter
Li et al. Fractal characteristics of cracks and fragments generated in unloading rockburst tests
Cevizci et al. The effect of blast hole stemming length to rockpile fragmentation at limestone quarries
Jensen et al. Analysis of limestone micromechanical properties by optical microscopy
Muhit et al. Influence of crushed coarse aggregates on properties of concrete
Qasrawi Towards sustainable self-compacting concrete: effect of recycled slag coarse aggregate on the fresh properties of SCC
Olaleye Influence of some rock strength properties on jaw crusher performance in granite quarry
Reddish et al. Numerical simulation of the dynamic impact breakage testing of rock
Yin et al. Texture features analysis on micro-structure of paste backfill based on image analysis technology
JP5340846B2 (en) Control method of compressive strength of coarse aggregate
Bohloli et al. A laboratory and full-scale study on the fragmentation behavior of rocks
Liu et al. Microscope rock texture characterization and simulation of rock aggregate properties
Xu et al. Resistivity and thermal infrared precursors associated with cemented backfill mass
Asiri Standardized Process for Filed Estimation of Unconfined Compressive Strength Using Leeb Hardness
Anya et al. Effect of partial replacement of sand with quarry dust on the structural characteristics of sandcrete blocks
JP5248358B2 (en) How to select coarse aggregate for high-strength concrete
JP2011207647A (en) Method for recovering limestone macadam from concrete
Dey Chemical Characterization of Recycled Concrete Aggregates Using a Handheld X-Ray Fluorescence Device
CN111596030B (en) Method for quickly evaluating tunnel slag performance of aggregate prepared by machine
Chidiroglou et al. Shear behaviour of crushed concrete and bricks
Momber Fractal dimensions of cement-based composites after mechanical comminution
Simangunsong et al. The Effect of Cyclic Impact Loads on Rock Properties.
Shirasagi et al. Evaluation of deformation characteristics of rock materials by knocking ball test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130807

R150 Certificate of patent or registration of utility model

Ref document number: 5340846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250