JPS5934302A - Road foundation material and construction of road foundation - Google Patents

Road foundation material and construction of road foundation

Info

Publication number
JPS5934302A
JPS5934302A JP14403682A JP14403682A JPS5934302A JP S5934302 A JPS5934302 A JP S5934302A JP 14403682 A JP14403682 A JP 14403682A JP 14403682 A JP14403682 A JP 14403682A JP S5934302 A JPS5934302 A JP S5934302A
Authority
JP
Japan
Prior art keywords
slag
oxidized
roadbed material
reduced
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14403682A
Other languages
Japanese (ja)
Other versions
JPH0321682B2 (en
Inventor
正和 吉田
堀 定雄
精一 山田
哲也 下田
後藤 鉱三
杉浦 孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nikko Corp Ltd
Original Assignee
Daido Steel Co Ltd
Nippon Hodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Hodo Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14403682A priority Critical patent/JPS5934302A/en
Publication of JPS5934302A publication Critical patent/JPS5934302A/en
Publication of JPH0321682B2 publication Critical patent/JPH0321682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し、その使用をも包含する。[Detailed description of the invention] and also includes its use.

電気炉製鋼に伴うスラグには、酸化精錬期の終りに排出
される酸化期スラグ(ふつう「酸化スラグ」と略称され
る)と、還元精錬の完了により排出される還元期スラグ
(これも「還元スラグ」と略称される)とがあり、重量
にして、おおよそ7:3の割合で発生する。
The slag associated with electric furnace steelmaking includes oxidation stage slag (usually abbreviated as "oxidation slag") discharged at the end of the oxidation refining stage, and reduction stage slag (also referred to as "reduction slag") discharged upon completion of reduction refining. (abbreviated as "slag"), which is generated in a ratio of approximately 7:3 by weight.

従来、酸化スラグは適宜の大きさに破砕して、コノクリ
ートの骨材やアスファルト舗装の路盤材として利用する
ことが試みられ、一応の成功をみていたが、還元スラグ
にはこれといった利用の途がなく、埋立てに使われる程
度であった。
In the past, attempts have been made to crush oxidized slag to an appropriate size and use it as aggregate for conocrete or as a roadbed material for asphalt pavement, with some success, but reduced slag has no other uses. It was only used as a landfill.

還元スラグが利用されない最大の理由は、発生時に、そ
の中に多量に含まれているケイ酸二カル/ラム2CaO
−SIO2  が高温から低温に冷却されると、β相か
らγ相に変態し、変態に伴う体積膨張のため崩壊粉化す
る傾向があり、粉塵が立って取扱いにくいだけでなく、
ある程度の粒径を要求される用途には向けられないとい
うことにある。
The biggest reason why reduced slag is not used is because it contains a large amount of dical silicate/rum 2CaO when it is generated.
- When SIO2 is cooled from high temperature to low temperature, it transforms from β phase to γ phase, and due to the volume expansion accompanying the transformation, it tends to collapse and become powder, which not only creates dust and is difficult to handle.
The reason is that it is not suitable for applications that require a certain particle size.

本発明者らは、酸化スラグだけでなく還元スラグをも含
めた電気炉スラグ全体の利用を意図して研究し、両者を
一定の割合で配合したものが、路盤材として、たとえば
アスファルト舗装の下の路盤に有用であることを見出し
、その最適な使用法を確立して本発明に至った。
The present inventors conducted research with the intention of using the entire electric furnace slag, including not only oxidized slag but also reduced slag, and found that a mixture of both in a certain ratio can be used as a roadbed material, for example, under asphalt pavement. We have found that it is useful for roadbeds, and have established the optimum method for its use, resulting in the present invention.

本発明の電気炉スラグを利用した路盤材は、電気炉製鋼
に伴い排出される酸化スラグおよび還元スラグを路盤材
として適当な大きさに破砕し、必要により粒度調整を行
なって、酸化スラグ:還元グラフ= 8 0〜60%:
20〜40%(重量%)の割合で配合してなるものであ
る。
The roadbed material using the electric furnace slag of the present invention is produced by crushing the oxidized slag and reduced slag discharged from electric furnace steelmaking into appropriate sizes as a roadbed material, and adjusting the particle size as necessary. Graph = 8 0-60%:
It is blended in a proportion of 20 to 40% (weight %).

酸化スラグと還元スラグとを種々の割合で配合したもの
、および酸化スラグ単独の破砕物をつき固め、一軸圧縮
強度を測定した結果は、第1図に示すとおりである。
Figure 1 shows the results of measuring the unconfined compressive strength of compacted mixtures of oxidized slag and reduced slag in various proportions and crushed oxidized slag alone.

第1図のグラフにみるとおり、酸化スラグに還元スラグ
を配合したものは、従来試みられた酸化スラグ単独の使
用よりも好成績である。 そして。
As shown in the graph of FIG. 1, the mixture of oxidized slag and reduced slag has better results than the previously attempted use of oxidized slag alone. and.

両者の配合比は、前記した、酸化スラグ:還元スラグー
80〜60%:20〜40%の範囲が有用であって、と
くに70:30近辺が最適である。 前述のように、酸
化スラグと還元スラグとは、ほぼ7:3の割合で発生す
るので、本発明に従ってこれを路盤材として利用するに
は、発生したスラグをそのまま使えばよいことになシ、
すこぶる好都合である。
The blending ratio of the two is preferably in the range of 80 to 60%:20 to 40% of oxidized slag:reduced slag, particularly around 70:30. As mentioned above, oxidized slag and reduced slag are generated in a ratio of approximately 7:3, so in order to utilize this as a roadbed material according to the present invention, it is sufficient to use the generated slag as it is.
It's extremely convenient.

酸化スラグと還元スラグとを複合使用して好成績が得ら
れる理由は明らかでないが、ひとつは前者が適度に大き
い粒度を有するところ、後者が比較的細粉であって、そ
の間に入9込み、全体として好ましい分布をすることが
あげられ、いまひとつは、還元スラグが酸化スラグより
高い水硬性をもつことにあると考えられる。 天然砕石
との強度を比較するため、修正CBR試験を実施した。
The reason why good results can be obtained by using a combination of oxidized slag and reduced slag is not clear, but one reason is that the former has a moderately large particle size, while the latter is a relatively fine powder, and the particles in between, resulting in overall Another reason is that reduced slag has higher hydraulic properties than oxidized slag. A modified CBR test was conducted to compare the strength with natural crushed stone.

結果は良好で、第2図に示すとおりである。 酸化スラ
グおよび還元スラグには若干の遊離石灰が含有されるこ
とが避は難く、これを含んだまま路盤に施工すると、後
にCaO − Ca(OH)2の変化にもとづく体積膨
張が起って、アスファルト舗装であればワレを生じるか
ら、あらかじめ十分に消化しておかなければならない。
The results were good, as shown in FIG. It is unavoidable that oxidized slag and reduced slag contain some free lime, and if they are applied to the roadbed while containing this, volumetric expansion will occur later due to changes in CaO - Ca(OH)2. Asphalt pavement will cause cracks, so it must be thoroughly digested in advance.

 この対策としてエージングを試みだところ、第3図に
示す結果を得た。
As a countermeasure to this problem, we tried aging and obtained the results shown in Figure 3.

スラグの水浸膨張率が、3力月後にはほとんど問題にな
らなくなることから、酸化スラグおよび還元スラグは、
水の作用゛の下に3力月以上おくエージングの後に使用
することが好ましい。 水は、スラグの破砕の直後に放
水すれば足シ、あとは雨水および空一気中の湿分の吸収
により進行する。
Oxidized slag and reduced slag are
It is preferable to use it after aging for at least 3 months under the action of water. If water is sprayed immediately after crushing the slag, water will flow through the slag, and the rest will proceed through the absorption of rainwater and moisture in the air.

次に、路盤への施工に際しては、前記した、還元スラグ
がもつ若干の、そしてわずかではあるが酸化スラグも有
する水硬性を活用するため、本発明の路盤材組成物に、
適量の水を与えるべきである。 適切な初期含水率の値
は、スラグの化学組成のほか粒度分布などの条件によっ
ても多少は異なるが、代表的な例についての実験結果を
示せば、第3図のとおりである。 つまり、酸化スラグ
:還元スラグ=80〜60%=20〜40係の配合割合
においては、初期含水率を6〜10Li6の範囲にえら
べば、路盤材(HMS)として必要な一軸圧縮強度’ 
2 ”9/ c)712を上回る値が得られる。 なお
、図から、70:30の最適配合比の場合は、もつと広
Next, when applying the roadbed material composition of the present invention, in order to take advantage of the above-mentioned hydraulic properties of reduced slag and oxidized slag,
Adequate amounts of water should be given. Appropriate initial moisture content values vary somewhat depending on conditions such as particle size distribution as well as chemical composition of the slag, but experimental results for typical examples are shown in Figure 3. In other words, at a mixing ratio of oxidized slag:reduced slag = 80-60% = 20-40, if the initial moisture content is selected in the range of 6-10Li6, the uniaxial compressive strength required as a road base material (HMS) is '
2''9/c) A value exceeding 712 is obtained. From the figure, in the case of the optimal blending ratio of 70:30, the ratio is wider.

い範囲の、初期含水率を採用できること、そして最適の
初期含水率をえらぶことによって、きわめて高い一軸圧
縮強度が得られることがわかる。
It can be seen that a wide range of initial moisture contents can be employed, and that by selecting the optimum initial moisture content, extremely high unconfined compressive strength can be obtained.

路盤材としての施工は、上記の注意を払えば、そのほか
は慣用の技術に従って実施できる。
As long as the above-mentioned precautions are taken, the construction as a roadbed material can be carried out in accordance with conventional techniques.

本発明は酸化スラグおよび還元スラグからなる電気炉ス
ラグを発生比率のit完全に利用するものであシ、排出
物の処理と資源の節約との一石二鳥の効果がある。 本
発明の路盤材を得るに必要な工程は、破砕と多少の粒度
調整および混合だけであるから、特別の装置を必要とせ
ず、消費エネルギーもわずかであって、コストはきわめ
て低い。
The present invention completely utilizes electric furnace slag, which is composed of oxidized slag and reduced slag, in the generation ratio, and has the effect of killing two birds with one stone by treating waste and saving resources. The only steps necessary to obtain the roadbed material of the present invention are crushing, some particle size adjustment, and mixing, so no special equipment is required, energy consumption is small, and the cost is extremely low.

これを使用した路盤は、通常のアスファルト舗装にとっ
ては十分な強度があり、実用性は高い。
Roadbeds made using this material are strong enough for regular asphalt pavement and are highly practical.

実施例 酸化スラグと還元スラグとを、発生比率のまま、すなわ
ち69%+31%(重量)の割合で使用した。 それぞ
れの化学組成はつぎのとおりである。
EXAMPLE Oxidized slag and reduced slag were used in their original proportions, ie, 69%+31% (by weight). The chemical composition of each is as follows.

酸化スラグ  還元スラグ CaO41,849,4 SiOz      20,2     28.2AA
2034.7     11.8 FeO22,80,8 Mり0      3.67、6 Mn5      5.9      0.2S   
     O,090,26 酸化スラグと、還元スラグのうち若干の塊状のものとを
破砕し、ふるい分けて、最大径25咽までとした。 累
積粒度分布は下記のとおりであって、併記したMS−2
5粒度規格をみたしている。
Oxidized slag Reduced slag CaO41,849,4 SiOz 20,2 28.2AA
2034.7 11.8 FeO22,80,8 Mri0 3.67,6 Mn5 5.9 0.2S
O,090,26 Oxidized slag and some lumps of reduced slag were crushed and sieved to a maximum diameter of 25 mm. The cumulative particle size distribution is as follows, and the MS-2
5. Meets particle size standards.

25m      100     95−10020
       90.0 13       74.6    55−8510 
      66.8 5       52.3    30−652.5 
     39.3    20−50】、2咽   
     30.6 0.6          21.1 0.4         19.0         
10−300.3          17.0 0.15        10.9 0.074       6.4          
2−10上記の路盤材について、JISA5015によ
る一軸圧縮強度試験を実施した。 その結果はつぎのと
おりであった。
25m 100 95-10020
90.0 13 74.6 55-8510
66.8 5 52.3 30-652.5
39.3 20-50], 2 pharynx
30.6 0.6 21.1 0.4 19.0
10-300.3 17.0 0.15 10.9 0.074 6.4
2-10 A uniaxial compressive strength test according to JISA5015 was conducted on the above roadbed material. The results were as follows.

最適含水比     7.1% 一軸圧縮強度   15 kg/Cm2丑だ、アスファ
ルト舗装要綱にもとづく修正CBR試験を実施しだ。 
その結果はつぎのとおりである。
We conducted a modified CBR test based on the asphalt pavement guidelines, with an optimal water content ratio of 7.1% and unconfined compressive strength of 15 kg/Cm2.
The results are as follows.

最適含水比     6.2係 最大乾燥密度  2840に’J/Cm3修正CBR値
   114.0係
Optimum water content ratio 6.2 coefficient Maximum dry density 2840'J/Cm3 corrected CBR value 114.0 coefficient

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電気炉スラグを路盤材として使用しだときの
、スラグ組成と一軸圧縮強度との関係をあられすグラフ
である。 第2図は、スラグ組成と修CBR値の関係をあられすグ
ラフである。 第3図は、電気炉スラグの水浸膨張率がエージングによ
り低下する状況を示すグラフである。 第4図は、本発明の路盤材を使用する際の、初期含水比
が一軸圧縮強度に与える影響を示すグラフである。 特許出願人  大同特殊鋼株式会社 同   日本舗道株式会社 同   丸太工業株式会社 代理人 弁理士  須 賀 総 夫 才1図 牙8図 オ 4v!J 翁癩倉丞也(°/、) 手続補正書 昭和57年9月24日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第144036号 2、発明の名称 路盤材および路盤工法 3、補正をする者 事件との関係  特許出願人 住所  愛知県名古屋市南区星崎町字繰出66番地名称
 (371)大同特殊鋼株式会社    (ほか2名)
4、代理人〒104 住所  東京都中央区築地二丁目15番14号明細書の
発明の詳細な説明の欄J3よび末尾の出願人名6、補正
の内容 (1〉 明細書第9頁下から4行目の最大乾燥密度の値
” 2840 ”を、r2.840Jと訂正する。
FIG. 1 is a graph showing the relationship between slag composition and unconfined compressive strength when electric furnace slag is used as a roadbed material. FIG. 2 is a graph showing the relationship between slag composition and modified CBR value. FIG. 3 is a graph showing how the water immersion expansion coefficient of electric furnace slag decreases due to aging. FIG. 4 is a graph showing the influence of initial moisture content on unconfined compressive strength when using the roadbed material of the present invention. Patent applicant Daido Steel Co., Ltd. Nippon Paido Co., Ltd. Maruta Kogyo Co., Ltd. Agent Patent attorney Sou Suga J. Okinokura Joya (°/,) Procedural Amendment September 24, 1980 Director General of the Patent Office Kazuo Wakasugi 1, Indication of the case 1982 Patent Application No. 144036 2, Name of the invention Roadbed material and roadbed construction method 3. Relationship with the case of the person making the amendment Patent applicant address 66, Hoshizaki-cho, Minami-ku, Nagoya, Aichi Prefecture Name (371) Daido Steel Co., Ltd. (2 others)
4. Agent Address: 15-14 Tsukiji 2-chome, Chuo-ku, Tokyo Column J3 of the detailed description of the invention in the specification and the name of the applicant at the end 6. Contents of the amendment (1) 4 from the bottom of page 9 of the specification The maximum dry density value "2840" in the row is corrected to r2.840J.

Claims (1)

【特許請求の範囲】 ill  電気炉製鋼に伴い排出される酸化スラグおよ
び還元スラグを路盤材として適当な大きさに破砕し、必
要により粒度調整を行なって、酸化スラグ:還元スラグ
−80〜60%:20〜40チ(重量%)の割合で配合
してなる路盤材。 (2)  還元スラグを水の作用の下に3力月以上おく
エージングの後に使用する特許請求の範囲第1項の路盤
材。 (3)  電気炉製鋼に伴い排出される酸化スラグおよ
び還元スラグを路盤材として適当な大きさに破砕し、必
要によp粒度調整を行なって、酸化スラグ:還元スラグ
−80〜60%:20〜4oチ(重量%)の割合で配合
してなる路盤材を、初期含水比6〜10%の状態で締め
固めることからなる路盤工法。
[Scope of Claims] ill Oxidized slag and reduced slag discharged from electric furnace steelmaking are crushed into suitable sizes for use as roadbed material, and the particle size is adjusted as necessary to obtain a ratio of oxidized slag to reduced slag of 80 to 60%. : A roadbed material mixed in a proportion of 20 to 40 inches (% by weight). (2) The roadbed material according to claim 1, which is used after aging in which the reduced slag is left under the action of water for three months or more. (3) The oxidized slag and reduced slag discharged from electric furnace steelmaking are crushed into suitable sizes for use as roadbed material, and the P particle size is adjusted as necessary to obtain a ratio of oxidized slag: reduced slag -80 to 60%: 20. A roadbed construction method consisting of compacting a roadbed material mixed at a ratio of ~4ochi (wt%) at an initial moisture content of 6 to 10%.
JP14403682A 1982-08-20 1982-08-20 Road foundation material and construction of road foundation Granted JPS5934302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14403682A JPS5934302A (en) 1982-08-20 1982-08-20 Road foundation material and construction of road foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14403682A JPS5934302A (en) 1982-08-20 1982-08-20 Road foundation material and construction of road foundation

Publications (2)

Publication Number Publication Date
JPS5934302A true JPS5934302A (en) 1984-02-24
JPH0321682B2 JPH0321682B2 (en) 1991-03-25

Family

ID=15352822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14403682A Granted JPS5934302A (en) 1982-08-20 1982-08-20 Road foundation material and construction of road foundation

Country Status (1)

Country Link
JP (1) JPS5934302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279267A (en) * 1987-05-11 1988-11-16 Ueno Hiroshi Multiple color printing method for thin metal
JPH01123671A (en) * 1987-11-09 1989-05-16 Maakutetsuku Kk Dot marking method
JP2015175175A (en) * 2014-03-17 2015-10-05 日新製鋼株式会社 Civil engineering material and manufacturing method thereof
JP2019137584A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279267A (en) * 1987-05-11 1988-11-16 Ueno Hiroshi Multiple color printing method for thin metal
JPH01123671A (en) * 1987-11-09 1989-05-16 Maakutetsuku Kk Dot marking method
JP2015175175A (en) * 2014-03-17 2015-10-05 日新製鋼株式会社 Civil engineering material and manufacturing method thereof
JP2019137584A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material
JP2019137583A (en) * 2018-02-10 2019-08-22 Jfeスチール株式会社 Method for manufacturing steelmaking slag roadbed material

Also Published As

Publication number Publication date
JPH0321682B2 (en) 1991-03-25

Similar Documents

Publication Publication Date Title
JP3221908B2 (en) Method for producing recycled aggregate and recycled aggregate
CN102060428A (en) Silt curing agent and preparation method thereof
JPS5934302A (en) Road foundation material and construction of road foundation
US5658097A (en) Soil or ground quality stabilizer and treatment method
JP2001262141A (en) Soil modifier such as soil solidifying agent or foundation improving agent, method for modifying soil such as solidifying soil or improving foundation by using the modifier, and modified foundation
KR870003948A (en) Cement Mixtures and Methods
JP2002146709A (en) Water permeable base material utilizing reclaimed aggregate
JPH0416534A (en) Method for utilizing slag and coal ash
JPH1161125A (en) Grouting material
JPH02160895A (en) Foundation conditioner
JP3305414B2 (en) How to use demolition concrete waste
JPH01207501A (en) Simplified pavement material and simplified pavement construction
Osuolale et al. Effect of compaction delay on the strength of cement stabilised lateritic soil
JP3636767B2 (en) Solidification method of Otani stone chips
JPS6241784A (en) Concrete containing pumice foamed grain
JPS61238398A (en) Preparation of submerged sludge curing material
JP3091416B2 (en) Road backfill material
JPS58213913A (en) Soil improvement work
JP2987693B2 (en) Hardened concrete using fluidized bed coal ash
JPS59169966A (en) Reinforced ballast mixed with convertor slag dust to blast furnace water granulated slag
JPH0959619A (en) Grout
KR100290052B1 (en) method for manufacturing rolling compactional soil concrete and composition of rolling compactional soil concrete
JP2581897B2 (en) Cement-based composition for pavement surface layer
US6673145B2 (en) Process for manufacturing a soil treatment composition, soil treatment compositions and use of such compositions
JPH0563562B2 (en)