JPS642145B2 - - Google Patents

Info

Publication number
JPS642145B2
JPS642145B2 JP8188381A JP8188381A JPS642145B2 JP S642145 B2 JPS642145 B2 JP S642145B2 JP 8188381 A JP8188381 A JP 8188381A JP 8188381 A JP8188381 A JP 8188381A JP S642145 B2 JPS642145 B2 JP S642145B2
Authority
JP
Japan
Prior art keywords
asphalt
filler
raw material
mixed raw
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8188381A
Other languages
Japanese (ja)
Other versions
JPS57198752A (en
Inventor
Kenkichi Hirano
Isao Takigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8188381A priority Critical patent/JPS57198752A/en
Publication of JPS57198752A publication Critical patent/JPS57198752A/en
Publication of JPS642145B2 publication Critical patent/JPS642145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、舗装アスフアルト用フイラーに関す
るものである。舗装アスフアルトは、粗骨材、細
骨材及びフイラーからなる骨材とアスフアルトな
どのれき青材料との混合物である。フイラーは、
アスフアルトの耐摩耗性等の耐久性の向上にとつ
て必要な成分であり、一般的には、0.074mmふる
い通過の石灰岩粉末又は火成岩類粉末、まれには
消石灰がその一部として使用されている。 しかし、従来の舗装アスフアルトを積雪寒冷地
で使用した場合、スパイクタイヤやタイヤチエン
の摩損作用により、道路の耐久性が著しく小さく
なり、その維持修繕に多大な労力と費用を必要と
する欠点がある。また、アスフアルト使用量が多
いとアスフアルト価格の上昇によつて、アスフア
ルト舗装価格が相当高くなると同時に、夏季や高
温地ではアスフアルトが軟化し、車輛の進行と共
にアスフアルトが流動し、その部分が凹み、いわ
ゆる“わだちぼれ”となり、舗装面の平面さが保
てなくなる。そのためアスフアルト使用量を低下
させる検討もなされているが、従来のフイラーを
使用して、単にアスフアルト量を低下させたので
は、施工性が悪くなり、実用的でない。 本発明者らは、これらの欠点を解決するため
種々検討した結果、フイラーとして、特定の未焼
成ポルトランドセメント用混合原料粉末を用いた
場合、従来のフイラーに比べて、耐摩耗性の高い
舗装アスフアルトを調合できると共に、アスフア
ルト使用量も約2割程度低減できることを見い出
し、本発明に到達したものである。 すなわち、本発明は、水硬率CaO/(SiO2
Al2O3+Fe2O3)が1.7〜2.4である未焼成のポルト
ランドセメント用混合原料粉末よりなる舗装アス
フアルト用フイラーである。 以下本発明を詳細に説明する。 未焼成のポルトランドセメント用混合原料(以
下単に混合原料という)をフイラーとして使用す
る場合、水分が多いと他の骨材等と混合したとき
にその蒸発熱により材料温度が低下する。そのた
め、水分の含有量はできるだけ少ない方がよく、
具体的には含水率を0.1重量%以下とするのが好
ましい。そのためには、原料粉砕機出口から一次
焼成炉入口までの間でとり出したポルトランドセ
メント用混合原料が好適である。また、普通、早
強、中庸熱等のセメントの種類によつて、その混
合原料組成はわずかに異なるが、本発明において
は、水硬率が各々の重量%比で1.7〜2.4になるよ
うにCaO源として石灰石、SiO2源として硅石や
ケツ岩及びアルミ鉄源として粘度やケツ岩等を粉
砕配合したものを使用する。 本発明の混合原料の水硬率は1.7〜2.4である
が、水硬率の大きいもの程好ましい。 又、本発明の混合原料としては、ケイ酸率
(%/%)SiO2/(Al2O3+Fe2O3)が1.8〜3.2、
鉄率(%/%)Al2O3/Fe2O3が0.7〜2.0及び活動
係数(%/%)SiO2/Al2O3が2.5〜8.0である混
合原料の使用が好ましい。 混合原料の粉末度は、ブレーン値で2000〜7000
cm2/g程度がよく、また、添加量は、骨材中に3
〜15重量%程度含有する割合が好ましい。 以下、実施例をあげてさらに詳しく説明する。 実施例 1 第1表に示す配合割合からなる骨材において、
フイラーとして、原料粉砕機出口より取り出した
ものであり、かつ第2表の化学成分を有する普通
ポルトランドセメント乾式原料混合粉末(本発
明)を用い、最適アスフアルト量を求めるため
に、第3表の条件でマーシヤル試験を行なつた。
比較のため、第2表の化学成分を有する市販のフ
イラーを用いて同様な試験を行なつた。その結果
を第4表に示す。なお、アスフアルトは針入度60
〜80のストレートアスフアルトを使用した。
The present invention relates to a filler for paving asphalt. Paving asphalt is a mixture of aggregate consisting of coarse aggregate, fine aggregate and filler and bitumen material such as asphalt. The filler is
It is a necessary component to improve the wear resistance and other durability of asphalt, and generally, limestone powder or igneous rock powder that passes through a 0.074 mm sieve, and in rare cases, slaked lime is used as a part of it. . However, when conventional paving asphalt is used in snowy and cold regions, the durability of the road is significantly reduced due to the wear and tear of the spiked tires and tire chains, which has the disadvantage that maintenance and repair requires a great deal of effort and expense. . In addition, if the amount of asphalt used is large, the price of asphalt will rise, and the price of asphalt pavement will become considerably high. At the same time, asphalt will soften in summer or in high temperature areas, and as the vehicle advances, the asphalt will flow and the area will become dented, so-called This causes “ruts” and the pavement surface becomes unable to maintain its flatness. For this reason, studies have been made to reduce the amount of asphalt used, but simply reducing the amount of asphalt using conventional fillers would result in poor workability and would be impractical. As a result of various studies to solve these drawbacks, the present inventors found that when a specific mixed raw material powder for unfired Portland cement is used as a filler, paving asphalt with higher wear resistance than conventional fillers. The present invention was achieved by discovering that the amount of asphalt used can be reduced by about 20%. That is, in the present invention, the hydraulic ratio CaO/(SiO 2 +
This is a filler for paving asphalt made of an unfired mixed raw material powder for Portland cement whose ratio (Al 2 O 3 +Fe 2 O 3 ) is 1.7 to 2.4. The present invention will be explained in detail below. When using an unfired mixed raw material for Portland cement (hereinafter simply referred to as mixed raw material) as a filler, if it contains a lot of moisture, the material temperature will drop due to the heat of evaporation when mixed with other aggregates. Therefore, it is better to keep the water content as low as possible.
Specifically, the water content is preferably 0.1% by weight or less. For this purpose, a mixed raw material for Portland cement taken out between the raw material crusher outlet and the primary kiln inlet is suitable. In addition, although the mixed raw material composition differs slightly depending on the type of cement, such as normal, early strength, and moderate heat, in the present invention, the hydraulic hardness ratio is 1.7 to 2.4 in weight percent of each cement. Limestone is used as a CaO source, silica or shale is used as a SiO 2 source, and a crushed mixture of shale, shale, etc. is used as an aluminum iron source. The mixed raw material of the present invention has a hydraulic hardness of 1.7 to 2.4, and the higher the hydraulic hardness, the more preferable it is. In addition, the mixed raw material of the present invention has a silicic acid ratio (%/%) SiO 2 /(Al 2 O 3 + Fe 2 O 3 ) of 1.8 to 3.2,
It is preferred to use a mixed raw material in which the iron ratio (%/%) Al 2 O 3 /Fe 2 O 3 is 0.7-2.0 and the activity coefficient (%/%) SiO 2 /Al 2 O 3 is 2.5-8.0. The fineness of mixed raw materials is 2000 to 7000 in Blaine value.
cm 2 /g is good, and the amount added is 3 cm2/g in the aggregate.
The content is preferably about 15% by weight. Hereinafter, the present invention will be explained in more detail with reference to examples. Example 1 In aggregate consisting of the mixing ratio shown in Table 1,
As a filler, ordinary Portland cement dry mixed raw material powder (invention) taken out from the outlet of the raw material crusher and having the chemical components shown in Table 2 was used, and in order to find the optimum amount of asphalt, the conditions shown in Table 3 were used. I conducted a marshal test.
For comparison, a similar test was conducted using a commercially available filler having the chemical composition shown in Table 2. The results are shown in Table 4. In addition, asphalt has a penetration level of 60.
~80 straight asphalt was used.

【表】 S−13(粒径13〜5mm)、S−5(粒径5〜2.5
mm)及び粗砂は胎内川産、細砂は新潟市島見産で
ある。
[Table] S-13 (particle size 13-5 mm), S-5 (particle size 5-2.5
mm) and coarse sand are from Tainai River, and fine sand is from Shimami, Niigata City.

【表】【table】

【表】【table】

【表】 第4表の結果から明らかなように、比較例のア
スフアルト量は6.30〜7.05%であり、その最適ア
スフアルト量は6.8%であるのに対し、実施例の
アスフアルト量は5.30〜5.75%であり、最適アス
フアルト量は5.5%である。本発明のフイラーを
使用することによりアスフアルト量を約2割低減
できる。 実施例 2 実施例1で求めた最適アスフアルト量と第1表
で示した骨材配合により舗装アスフアルトを調合
し、それを用いて厚さ50mm、長さ100mに渡りコ
ンクリート道路のオーバレー施工を行なつた。期
間10月〜3月において、スパイクタイヤによる耐
摩耗試験を行なつたところ、本発明のフイラーを
使用した舗装道路は、タイヤ部分で平均1cmの摩
耗があつたが、全体的にまだ使用可能であつたの
に対し、市販の石粉をフイラーとしたものは、コ
ンクリートが露出し修繕が必要であつた。 実施例 3 石灰石、硅石、ケツ岩及び粘土の粉砕物(各々
ブレーン値5000cm2/g)を使用し、水硬率が1.5,
1.7,2.0,2.4及び3.0になるように配合した舗装
アスフアルト用フイラーを作成した。 この舗装アスフアルト用フイラーを使用して実
施例1と同様の試験をし、最適アスフアルト量を
求めた。その結果を第5表に示す。
[Table] As is clear from the results in Table 4, the amount of asphalt in the comparative example is 6.30 to 7.05%, and the optimum amount of asphalt is 6.8%, whereas the amount of asphalt in the example is 5.30 to 5.75%. The optimum amount of asphalt is 5.5%. By using the filler of the present invention, the amount of asphalt can be reduced by about 20%. Example 2 Paving asphalt was prepared using the optimum amount of asphalt determined in Example 1 and the aggregate composition shown in Table 1, and used to overlay a concrete road over a length of 100 m with a thickness of 50 mm. Ta. When a wear resistance test was conducted using spiked tires during the period from October to March, the paved roads using the filler of the present invention had an average of 1 cm of wear on the tire portion, but the road was still usable overall. In contrast, when using commercially available stone powder as a filler, the concrete was exposed and needed repair. Example 3 Crushed limestone, silica, shale, and clay (each with a Blaine value of 5000 cm 2 /g) were used, and the hydraulic ratio was 1.5.
Paving asphalt fillers were created with blends of 1.7, 2.0, 2.4, and 3.0. Using this filler for paving asphalt, the same test as in Example 1 was conducted to determine the optimum amount of asphalt. The results are shown in Table 5.

【表】 表から明らかなように、水硬率が1.7〜2.4の範
囲でアスフアルト量は少なくなる。 比較例 又、比較のため水硬率が、1.5,1.7,2.0,2.4
及び3.0になるようにした配合原料を1550℃で焼
成しポルトランドセメントクリンカーを得た。 このセメントクリンカーをボールミルで粉砕
し、4100cm2/gの焼成ポルトランドセメントクリ
ンカー粉末を得た。 該粉末を実施例3と同様に試験し最適アスフア
ルト量を求めた。結果を第6表に示す。
[Table] As is clear from the table, the amount of asphalt decreases when the hydraulic ratio is in the range of 1.7 to 2.4. Comparative example Also, for comparison, the hydraulic ratio is 1.5, 1.7, 2.0, 2.4
and 3.0, and the blended raw materials were fired at 1550°C to obtain Portland cement clinker. This cement clinker was ground in a ball mill to obtain 4100 cm 2 /g of calcined Portland cement clinker powder. The powder was tested in the same manner as in Example 3 to determine the optimum amount of asphalt. The results are shown in Table 6.

【表】 表からわかるように、未焼成ポルトランドセメ
ント混合原料を使用した本願発明の舗装アスフア
ルト用フイラーの場合に比べ、焼成ポルトランド
セメントクリンカーを使用した比較例は、いずれ
もアスフアルト量が多く必要である。
[Table] As can be seen from the table, compared to the case of the paving asphalt filler of the present invention using unburned Portland cement mixed raw materials, the comparative examples using burnt Portland cement clinker require a larger amount of asphalt. .

Claims (1)

【特許請求の範囲】[Claims] 1 水硬率CaO/(SiO2+Al2O3+Fe2O3)が1.7
〜2.4である未焼成のポルトランド用混合原料粉
末よりなる舗装アスフアルト用フイラー。
1 Hydraulic ratio CaO/(SiO 2 + Al 2 O 3 + Fe 2 O 3 ) is 1.7
A filler for paving asphalt made of unfired Portland mixed raw material powder with a particle size of ~2.4.
JP8188381A 1981-05-30 1981-05-30 Filler for paving asphalt Granted JPS57198752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188381A JPS57198752A (en) 1981-05-30 1981-05-30 Filler for paving asphalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188381A JPS57198752A (en) 1981-05-30 1981-05-30 Filler for paving asphalt

Publications (2)

Publication Number Publication Date
JPS57198752A JPS57198752A (en) 1982-12-06
JPS642145B2 true JPS642145B2 (en) 1989-01-13

Family

ID=13758845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188381A Granted JPS57198752A (en) 1981-05-30 1981-05-30 Filler for paving asphalt

Country Status (1)

Country Link
JP (1) JPS57198752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42214E1 (en) 1999-11-30 2011-03-08 Pawan Goyal Providing quality of service guarantees to virtual hosts
USRE43051E1 (en) 2000-03-15 2011-12-27 Digital Asset Enterprises, L.L.C. Enabling a service provider to provide intranet services
USRE44210E1 (en) 2000-12-22 2013-05-07 Digital Asset Enterprises, L.L.C. Virtualizing super-user privileges for multiple virtual processes
USRE44723E1 (en) 2000-05-16 2014-01-21 Digital Asset Enterprises, L.L.C. Regulating file access rates according to file type

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166178B2 (en) * 2004-03-11 2008-10-15 太平洋セメント株式会社 Hydraulic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42214E1 (en) 1999-11-30 2011-03-08 Pawan Goyal Providing quality of service guarantees to virtual hosts
USRE43051E1 (en) 2000-03-15 2011-12-27 Digital Asset Enterprises, L.L.C. Enabling a service provider to provide intranet services
USRE44723E1 (en) 2000-05-16 2014-01-21 Digital Asset Enterprises, L.L.C. Regulating file access rates according to file type
USRE44210E1 (en) 2000-12-22 2013-05-07 Digital Asset Enterprises, L.L.C. Virtualizing super-user privileges for multiple virtual processes

Also Published As

Publication number Publication date
JPS57198752A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US7141112B2 (en) Cementitious materials including stainless steel slag and geopolymers
US4402749A (en) Cementitious compositions with early high strength development and methods for controlling setting rate
Khan et al. Improving slurry seal performance in Eastern Saudi Arabia using steel slag
JPS642145B2 (en)
KR20110066012A (en) Wet yellow soil paving materials with alkali-activated binder with no cement and paving method using the same
CN109704651B (en) Asphalt mixture and preparation method thereof
EP1291391B1 (en) Bitumen aggregate and method for producing road structural layer
CN113622247B (en) Low-carbon rapid maintenance paving method for asphalt pavement track
KR100454875B1 (en) Road paving material formation
JP4387995B2 (en) Tile paving material
JP4319312B2 (en) Concrete pavement
WO2006079876A1 (en) Improved asphaltic concrete compositions that contain anhydrite as anti-stripping asphalt agents
JPS62123046A (en) Manufacture of hydraulic road bed material
JP2631522B2 (en) Flow resistant and wear resistant resin pavement using industrial waste as filler
JP2581897B2 (en) Cement-based composition for pavement surface layer
JPS6140902A (en) Hydraulic composition for road
KR950006735B1 (en) Urgent road repairing meterial
JPS60250103A (en) Hydraulic road material
KR20050077453A (en) Methode of pave with loess road
JP2002256508A (en) Material for asphalt pavement
CN116876284A (en) High-temperature-resistant rut-resistant asphalt pavement and construction method thereof
JPS59138262A (en) Asphalt composition
RU2108309C1 (en) Bituminous concrete mix
JPH01157439A (en) Aggregate for wear resistant asphalt pavement
GB464963A (en) Improvements in and relating to mastic asphalt compositions