JPS6140902A - Hydraulic composition for road - Google Patents

Hydraulic composition for road

Info

Publication number
JPS6140902A
JPS6140902A JP16310084A JP16310084A JPS6140902A JP S6140902 A JPS6140902 A JP S6140902A JP 16310084 A JP16310084 A JP 16310084A JP 16310084 A JP16310084 A JP 16310084A JP S6140902 A JPS6140902 A JP S6140902A
Authority
JP
Japan
Prior art keywords
value
blast furnace
furnace slag
compressive strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16310084A
Other languages
Japanese (ja)
Inventor
佐藤 康文
渡辺 良男
遠山 俊一
実 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16310084A priority Critical patent/JPS6140902A/en
Publication of JPS6140902A publication Critical patent/JPS6140902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、路盤用の水硬性組成物に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a hydraulic composition for roadbeds.

〔従来の技術〕[Conventional technology]

道路の上層路盤材料として粒度調整砕石等が知られてお
シ、また路盤施工法としては歴青安定化処理工法、或は
セメントや石灰による安定処理工法等が知られている。
Grain-adjusted crushed stone is known as a material for the upper road base course, and as a road base construction method, a bituminous stabilization method, a stabilization method using cement or lime, etc. are known.

これらの路盤材料や路盤施工法は設計定数である等値換
算係数(日本道路協会[アスファルト舗装要綱に定めら
れている材料定数で、道路表層のアスファルトを1とし
た換算係数」)を用いて価値を評価するのが通例であシ
、粒度調整砕石には0.35、歴青安定化処理工法には
0680、セメント安定処理、工法には0.55、石灰
安定処理工法には0.45が夫々標準的な値として与え
られている。そしてこの様な路盤材や施工法の選択に当
たっては ■等値換算係数が大きいこと、 ■耐久性に優れていること、 ■硬化時に収縮クラックが発生せず、しかも盛土の不等
沈下や路床の変形に追随できひび割れを起こさないこと
、 ■容易に入手することができ、しかも使用場所が製造所
周辺のみに限定されないこと、■安価であること、 等が要望される。
These roadbed materials and roadbed construction methods are valued using equivalent conversion coefficients (Japan Road Association [Material constants specified in the Asphalt Paving Guidelines, conversion coefficients with road surface asphalt as 1]) which are design constants. It is customary to evaluate 0.35 for particle-sized crushed stone, 0680 for bitumen stabilization method, 0.55 for cement stabilization method, and 0.45 for lime stabilization method. Each is given as a standard value. When selecting such roadbed materials and construction methods, it is important to: ■ have a large equivalent conversion coefficient, ■ have excellent durability, and ■ do not cause shrinkage cracks during hardening, and will not cause uneven settlement of the embankment or subgrade. It is desired that the material be able to follow the deformation of the material and not cause cracks, that it be easily available and not limited to the area around the manufacturing site, and that it be inexpensive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の様な要望項目■〜■に対し、前述の粒度調整砕石
は■及び■の点で問題があシ、また歴青安定処理工法は
■の点で、またセメント安定処理工法は■及び■の点で
、また更に石灰安定処理工法は■及び■の点で夫々問題
を有している。また近年の交通量の増加は著しくそれに
伴ってわだち堀れの問題も頻発しぞおシ、アスファルト
組成物の改良・開発が進められる一方、路盤材にはます
ます高レベルの耐久性が要求される様になってきている
Regarding the above request items ■ to ■, the particle size-adjusted crushed stone mentioned above has problems in points ■ and ■, the bitumen stabilization method has problems in points ■, and the cement stabilization method has problems in points ■ and ■. In addition, the lime stabilization treatment method has problems in (1) and (2). In addition, the amount of traffic has increased significantly in recent years, leading to frequent problems with ruts.While improvements and developments in asphalt compositions are progressing, roadbed materials are required to have an increasingly high level of durability. It is starting to look like this.

一方製鉄工業で大量に副生する高炉水砕スラグが潜在水
硬性を有していることは知られておシ、一部は高炉セメ
ントとしても利用されているが、ポルトランドセメント
等に比べると水硬性の活性度は低く且つ硬化物の圧縮強
さも十分とは言えない。
On the other hand, it is known that granulated blast furnace slag, which is produced in large quantities as a by-product in the steel industry, has latent hydraulic properties, and some of it is also used as blast furnace cement, but compared to Portland cement, etc. The hardness activity is low and the compressive strength of the cured product is not sufficient.

本発明はこうした状況のもとて高炉水砕スラグを主原料
として前記■〜■の要望を満たすことのできる路盤用水
硬性組成物を提供しようとするものである。
Under these circumstances, the present invention aims to provide a hydraulic composition for roadbeds that uses granulated blast furnace slag as a main raw material and can satisfy the above requirements (1) to (3).

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、高炉水砕スラグを破砕して下記式により求め
られる細粒度指数(F値)が80〜200となる様に調
整した高炉水砕スラグに対し、適量のアルカリ刺激剤を
配合した点に要旨を有する路盤用水硬性組成物である。
The present invention is characterized in that an appropriate amount of an alkaline stimulant is blended into granulated blast furnace slag that has been crushed and adjusted to have a fineness index (F value) of 80 to 200 as determined by the following formula. This is a hydraulic composition for roadbeds having the following features.

F値=P−十P5o+P。F value=P-10P5o+P.

(但しPlg) s PsO%PsoはASTM標準ふ
るいの100番、50番、30番の通過重量百分率) 〔作用〕 周知の通シ高炉水砕スラグは高炉スラグを水で急冷し破
砕したものであシ潜在水硬性を有している。しかし通常
の高炉水砕スラグは比較的粗粒で0、4 mmφ程度以
下の細粒分は少なく、細粒度指数(F値:同前)は約2
0〜50と小さい。しかも製造時における水や空気との
接触によって粒子表面に炭酸カルシウム被膜が形成され
ている為、水硬性の活性度は低い。ところがこの高炉水
砕スラグをロッドミルやコーンクラッシャー等の破砕機
・ で微粉砕し、前記F値が80以上となるまで破砕す
ると、細粒化によシ表面積が拡大すると共に前述の表面
コーティング層が破壊され、更に水硬性の活性度が高ま
シ且つ硬化物の圧縮強さも大幅に向上することが確認さ
れた。ち々みに第1図社高炉水砕スラグ破砕物のF値と
硬化物の一軸圧縮強さの関係〔但しアルカリ刺激剤とし
てセメントを10重量%添加・:材令14日後の値、a
Wは、該配合物の細骨剤に対する配合量(重量%)〕を
示したグラフであy1高炉水砕スラグのF値を高めるに
つれて圧縮強さは比例的に増大する。そしてJIS  
A  5015で規定される道路用スラグであるHMS
−25と同程度の一軸圧縮強さを確保する為には、F値
が80以上となるまで微粉砕すればよいことが分かる。
(However, Plg) s PsO%Pso is the weight percentage passing through ASTM standard sieves No. 100, No. 50, and No. 30) [Operation] The well-known granulated blast furnace slag is made by quenching blast furnace slag with water and crushing it. It has latent hydraulic properties. However, normal granulated blast furnace slag has relatively coarse grains, with a small amount of fine grains of about 0.4 mmφ or less, and the fineness index (F value: same as before) is about 2.
It is as small as 0-50. Moreover, since a calcium carbonate film is formed on the particle surface due to contact with water or air during production, the hydraulic activity is low. However, when this granulated blast furnace slag is pulverized with a crusher such as a rod mill or a cone crusher until the F value reaches 80 or more, the surface area increases due to the finer particles and the surface coating layer described above is It was confirmed that the hydraulic activity was further increased, and the compressive strength of the cured product was also significantly improved. Figure 1 shows the relationship between the F value of crushed blast furnace slag and the unconfined compressive strength of the hardened product [However, 10% by weight of cement was added as an alkaline stimulant: Value after 14 days of age, a
W is a graph showing the amount (% by weight) of the blend relative to the fine aggregate.y1 As the F value of the granulated blast furnace slag increases, the compressive strength increases proportionally. And JIS
HMS, which is road slag specified in A 5015
It can be seen that in order to ensure the same uniaxial compressive strength as -25, it is sufficient to finely grind until the F value becomes 80 or more.

尚圧縮強さの観点からみた場合F値の上限は存在しない
が、F値が200超となるまで微粉砕するには極めて高
性能の破砕装置が必要になる他、破砕に長大な時間とエ
ネルギーを要するので、経済性を踏まえた実用性を考え
れば゛200程度がF値の上限と力る。
From the perspective of compressive strength, there is no upper limit for the F value, but pulverization until the F value exceeds 200 requires extremely high-performance crushing equipment and requires a large amount of time and energy to crush. Therefore, considering practicality based on economic efficiency, the upper limit of the F value is about 200.

但し高炉水砕スラグ破砕物では、たとえF値が8−θ〜
200の範囲内とした場合でも単独では実用にかなう水
硬性と硬化物強度を得るには至らない。ところがこれに
適量のアルカリ刺激剤を配合してみると、従来のセメン
トや石灰を主成分とする水硬性組成物に匹敵する水硬性
を示すと共に、優れた圧縮強度を示す硬化物を得ること
ができる。
However, for crushed blast furnace slag, even if the F value is 8-θ~
Even when it is within the range of 200, it is not possible to obtain practical hydraulic properties and cured product strength when used alone. However, when an appropriate amount of an alkaline stimulant is added to this, it is possible to obtain a cured product that exhibits hydraulic properties comparable to conventional hydraulic compositions containing cement or lime as the main components, and also exhibits excellent compressive strength. can.

尚アルカリ刺激剤としてはそれ自身水硬性を有する種々
のアルカリ性物質を使用することができるが、経済性や
性能を加味すると普通ポルトランドセメント及び石灰が
最適であると思われる。そしてこれら刺激剤の好適配合
率についても検討を行なったところ、第2図にも示す如
く高炉水砕スラグ破砕物に対して10重量%以上配合す
れば、前記HMS−25に匹敵する一軸圧縮強さを確保
し得ることが確認された。そして刺激剤として普通ポル
トランドセメントを選択した場合、該セメントの配合量
を増やすにつれて硬化物の一軸圧縮強さ昧増大するが、
50重量%を超えると、高炉水砕スラグの相対的な使用
量が少なくなシ「高炉水砕スラグの有効利用」という本
来の趣旨が有効に生かせなくなるので、セメントの配合
量#′i50重量%以下、望ましくは30重量%以下に
抑えるのがよい。但し要求される圧縮強さの程度によっ
ては規定量を超えるセメントを配合するととも勿論可能
である。他方アルカリ刺激剤として石灰を使用する場合
は、第3図に示す如<10〜40重量%(よシ好ましく
は25〜35重量%)の石灰を配合したときに最大の一
軸圧縮強さを示し、10重量%未満でも或は40重量%
を超えても満足のいく一軸圧縮強さを得ることはできな
い。
As the alkaline stimulant, various alkaline substances which themselves have hydraulic properties can be used, but in consideration of economy and performance, Portland cement and lime are considered to be most suitable. We also investigated the suitable blending ratio of these stimulants, and found that if they were blended in an amount of 10% by weight or more to the crushed granulated blast furnace slag, as shown in Figure 2, the stimulant would have a uniaxial compressive strength comparable to that of HMS-25. It was confirmed that it is possible to ensure the If ordinary Portland cement is selected as the stimulant, the unconfined compressive strength of the cured product will increase as the amount of cement increases;
If it exceeds 50% by weight, the relative amount of granulated blast furnace slag used will be small and the original purpose of ``effective use of granulated blast furnace slag'' cannot be effectively utilized, so the blending amount of cement #'i50% by weight Hereinafter, it is desirable to suppress the content to 30% by weight or less. However, depending on the degree of compressive strength required, it is of course possible to mix more than the specified amount of cement. On the other hand, when using lime as an alkaline stimulant, the maximum uniaxial compressive strength is shown when <10 to 40% by weight (preferably 25 to 35% by weight) of lime is blended, as shown in Figure 3. , even less than 10% by weight or 40% by weight
It is not possible to obtain a satisfactory unconfined compressive strength even if the

以上の様に本発明では、安価な高炉水砕スラグを主原料
とし、これを微粉砕して細粒度指数を特定範囲内となる
様に調整した上で適量のアルカリ刺激剤と混合すること
により、従来の路盤用水硬性材料と比べても全く遜色の
ない水硬性組成物を得ることができる様になった。尚本
発明の水硬性組成物を実用化するに当たっては、粒度調
整砕石等の骨材と路上で混合して使用してもよく、或は
骨材を配合せずそのままモルタル状で使用すると〔実施
例〕 高炉水砕スラグ80重量部を微粉砕してF値を112と
し、これに普通ポルトランドセメントを水を加えて混線
硬化せしめ路盤材としての性能を調べたところ、下記第
1表に示す路盤材特性値が得られた。
As described above, the present invention uses inexpensive granulated blast furnace slag as the main raw material, finely pulverizes it, adjusts the fineness index to within a specific range, and then mixes it with an appropriate amount of an alkaline stimulant. It has now become possible to obtain a hydraulic composition that is completely comparable to conventional hydraulic materials for roadbeds. In putting the hydraulic composition of the present invention into practical use, it may be used by mixing it with aggregate such as particle size-adjusted crushed stone on the road, or it may be used as it is in the form of mortar without adding aggregate. Example] 80 parts by weight of granulated blast furnace slag was finely pulverized to give an F value of 112, and ordinary Portland cement was mixed with water and hardened to investigate its performance as a roadbed material. Material property values were obtained.

またこの硬化物について、−軸圧縮強さの経時変化を調
べたところ第4図に示す結果が得られた。
When the cured product was examined for changes in -axial compressive strength over time, the results shown in FIG. 4 were obtained.

尚第4図には比較データとしてセメント安定処理材及び
JIS  A  5015規格HMS−25の経時変化
を併記した。
In addition, Fig. 4 also shows the changes over time of the cement stabilization treated material and JIS A 5015 standard HMS-25 as comparative data.

第   1  表 第1表において「修正CBRJとは下記の意味を有し、
路盤材としての規格値はr811以上」とされている。
Table 1 In Table 1, “Modified CBRJ has the following meaning,
The standard value for roadbed material is R811 or higher.

また−軸圧縮強さの規格値は「i 2 kgf/CII
+2以上」とされている。
- The standard value of axial compressive strength is “i 2 kgf/CII
+2 or more.”

(修正CBR) CB R(California Bearing R
atio )とは道路に用いる路床・路盤などの材料強
度の評価値であり、試験方法としてはJ r s A1
211−197Or路床土支持力比(CBR)試験方法
」とアスファルト舗装要#l(日本道路協会)に定める
「路盤材料の修正CBR試験方法」があシ、修正CBR
とは後者の方法で得た値を意味する。
(Modified CBR) CB R (California Bearing R)
atio) is an evaluation value of the material strength of roadbeds, roadbeds, etc. used for roads, and the test method is J r s A1
211-197Or Subgrade Soil Bearing Ratio (CBR) Test Method" and "Modified CBR Test Method for Subgrade Materials" specified in Asphalt Pavement Requirements #1 (Japan Road Association). Modified CBR
means the value obtained by the latter method.

第1表及び第4図からも、本発明に係る水硬性組成物の
硬化物は、路盤材として優れた効果を有していることが
分かる。
It can also be seen from Table 1 and FIG. 4 that the cured product of the hydraulic composition according to the present invention has excellent effects as a roadbed material.

〔発明の効果〕 本発明は以上の様に構成されているが、要は高炉水砕ス
ラグを微粉砕して縄粒度指数が特定範囲内に収まる様に
調整すると共に、特定量のアルカリ刺激剤と併用するこ
とによって、優れた水硬性活性を有し且つ硬化後は卓越
した圧縮強度を有する路盤用水硬性組成物を安価に提供
し得ることになった。
[Effects of the Invention] The present invention is configured as described above, but the key point is that granulated blast furnace slag is finely pulverized and adjusted so that the rope particle size index falls within a specific range, and a specific amount of an alkaline stimulant is By using it in combination with the present invention, it has become possible to provide a hydraulic composition for roadbeds at a low cost, which has excellent hydraulic activity and excellent compressive strength after curing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高炉水砕スラグ破砕物の細粒度指数(F値)と
−軸圧縮強さの関係を示すグラフ、第2゜3図はセメン
ト又は石灰の添加量と一軸圧縮強さの関係を示すグラフ
、第4図は硬化物の材令と一軸圧縮強さの関係を示すグ
ラフである。
Figure 1 is a graph showing the relationship between the fineness index (F value) and -axial compressive strength of crushed granulated blast furnace slag, and Figures 2 and 3 are graphs showing the relationship between the amount of cement or lime added and uniaxial compressive strength. The graph shown in FIG. 4 is a graph showing the relationship between the age of the cured product and the unconfined compressive strength.

Claims (1)

【特許請求の範囲】 下記式により求められる細粒度指数(F値)が80〜2
00である高炉水砕スラグに対し、10〜50重量%の
アルカリ刺激剤を配合してなることを特徴とする路盤用
水硬性組成物。 F値=P_1_0_0+P_5_0+P_3_0(但し
P_1_0_0、P_5_0、P_3_0はASTM標
準ふるいの100番、50番、30番の通過重 量百分率)
[Claims] The fineness index (F value) determined by the following formula is 80 to 2.
1. A hydraulic composition for roadbeds, comprising 10 to 50% by weight of an alkali stimulant added to granulated blast furnace slag. F value = P_1_0_0 + P_5_0 + P_3_0 (However, P_1_0_0, P_5_0, P_3_0 are the weight percentages passing through ASTM standard sieves No. 100, No. 50, and No. 30)
JP16310084A 1984-08-01 1984-08-01 Hydraulic composition for road Pending JPS6140902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16310084A JPS6140902A (en) 1984-08-01 1984-08-01 Hydraulic composition for road

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16310084A JPS6140902A (en) 1984-08-01 1984-08-01 Hydraulic composition for road

Publications (1)

Publication Number Publication Date
JPS6140902A true JPS6140902A (en) 1986-02-27

Family

ID=15767171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16310084A Pending JPS6140902A (en) 1984-08-01 1984-08-01 Hydraulic composition for road

Country Status (1)

Country Link
JP (1) JPS6140902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123046A (en) * 1985-11-22 1987-06-04 株式会社神戸製鋼所 Manufacture of hydraulic road bed material
JPS6395147A (en) * 1986-10-09 1988-04-26 住友大阪セメント株式会社 Composition for water-permeable high strength concrete pavement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123046A (en) * 1985-11-22 1987-06-04 株式会社神戸製鋼所 Manufacture of hydraulic road bed material
JPS6395147A (en) * 1986-10-09 1988-04-26 住友大阪セメント株式会社 Composition for water-permeable high strength concrete pavement

Similar Documents

Publication Publication Date Title
Oluwatuyi et al. Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction
JP2631336B2 (en) Natural soil stabilization method
US4038095A (en) Mixture for pavement bases and the like
Little et al. SOIL STABILIZATION FOR ROADWAYS I cl AND AIRFIELDS
Terrel Soil Stabilization in Pavement Structures: Mixture design considerations
Edeh et al. Cassava peel ash stabilized lateritc soil as highway pavement material
KR100846659B1 (en) A mixed aggregate
Mishra et al. Use of fly ash plastic waste composite in bituminous concrete mixes of flexible pavement
JPS6140902A (en) Hydraulic composition for road
Edeh et al. Rice husk ash stabilization of reclaimed asphalt pavement using cement as additive
JPS62123046A (en) Manufacture of hydraulic road bed material
JPS60250103A (en) Hydraulic road material
JPS636593B2 (en)
JP2540422B2 (en) Rolling compact concrete paving material
Oba et al. Characterisation of saw dust ash–Quarry dust bituminous concrete
US1505880A (en) Pavement composition
JP3035765B2 (en) Soil stabilizer and stabilization method of natural soil using this soil stabilizer
Edeh et al. Groundnut shell ash stabilized reclaimed asphalt pavement, as pavement material
DE2163347C3 (en) Mixed building material for road construction and civil engineering from combustion residues from coal-fired power plants and conventional building materials
JP3936992B1 (en) Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime
JPS642145B2 (en)
Jaya et al. Flexural strength properties of porous concrete pavement incorporating nano black rice husk ash
JPH0393657A (en) Hydraulic paving material
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
JP3556155B2 (en) Granulated / hardened material of coal ash blended as supplementary material with roadbed material, method of manufacturing the same, roadbed material blended with granulated / hardened material of coal ash as supplementary material