JP3936992B1 - Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime - Google Patents

Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime Download PDF

Info

Publication number
JP3936992B1
JP3936992B1 JP2006228798A JP2006228798A JP3936992B1 JP 3936992 B1 JP3936992 B1 JP 3936992B1 JP 2006228798 A JP2006228798 A JP 2006228798A JP 2006228798 A JP2006228798 A JP 2006228798A JP 3936992 B1 JP3936992 B1 JP 3936992B1
Authority
JP
Japan
Prior art keywords
slaked lime
molten slag
weight
finely pulverized
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006228798A
Other languages
Japanese (ja)
Other versions
JP2008050481A (en
Inventor
雅己 対馬
直樹 徳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006228798A priority Critical patent/JP3936992B1/en
Application granted granted Critical
Publication of JP3936992B1 publication Critical patent/JP3936992B1/en
Publication of JP2008050481A publication Critical patent/JP2008050481A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Road Paving Structures (AREA)

Abstract

【課題】本発明は、都市ゴミの溶融施設から排出される溶融物を粒径425μm以下に微粉砕したゴミ溶融スラグと添加率5重量%以上の消石灰の混合による、実用上十分な圧縮強度を得る路盤改良材を提供する。
【解決手段】本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材は、都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕したゴミ溶融スラグの粒径425〜10μmの範囲に対して、消石灰5〜15重量%添加したものである。特に、本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材は、都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕したゴミ溶融スラグの粒径250μmに対して、消石灰10重量%添加したものである。
【選択図】図4
The present invention provides a practically sufficient compressive strength by mixing waste molten slag obtained by pulverizing a melt discharged from a municipal waste melting facility to a particle size of 425 μm or less and slaked lime having an addition rate of 5% by weight or more. Provide a roadbed improvement material to obtain.
A roadbed improvement material by mixing finely pulverized waste molten slag and slaked lime according to the present invention has a particle size 425 of finely pulverized waste molten slag after rapidly solidifying a melt discharged from a municipal waste melting facility. The slaked lime is added in an amount of 5 to 15% by weight with respect to the range of 10 μm. In particular, the roadbed improving material by mixing finely pulverized waste molten slag and slaked lime according to the present invention is obtained by rapidly cooling and solidifying a melt discharged from a municipal waste melting facility and then finely pulverizing the waste molten slag having a particle size of 250 μm. In addition, 10% by weight of slaked lime is added.
[Selection] Figure 4

Description

本発明は、都市ゴミの溶融施設から排出される溶融物を微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材に関する。   The present invention relates to a roadbed improvement material by mixing waste molten slag and slaked lime obtained by pulverizing a melt discharged from a municipal waste melting facility.

従来、都市ごみの焼却灰の再利用に着目し、地下水位が高く緩い砂質土地盤の液状化防止用の地盤改良材が知られている(特許文献1を参照)。
この公知技術では、前記地盤改良材は、都市ごみの焼却灰を溶融して得られたスラグと、硬焼生石灰と、セメントと、透水性材料と、石膏を適宜配合した組成からなるものである。
一般に、対象となる土に対して、生石灰、消石灰、セメントなどの安定材を添加して改良を行っている。
安定材を添加して処理した土、すなわち安定処理土の効果は、通常、水の存在の元に、安定材がそれ自身及び土粒子との間で化学反応して水和物を生成し、これが未反応の土粒子・安定材の間隙を埋めることによってなされる。
セメントは、焼成工程で六価クロムが入り、これを地盤材料と混合することによって、六価クロムが残留し、これが溶出する可能性があり、溶出量が土壌環境基準に適合しているかが問題となる。
また、急冷工程を経た都市ごみ焼却施設から排出される溶融スラグの持つ潜在水硬性を活用し、これを圧縮強度に優れた硬化材とすること及びこの硬化材を用いて硬化体を製造する製造方法が知られている(特許文献2を参照)。
この公知技術では、前記硬化材は、急冷工程を経た都市ごみ溶融スラグの微粉末に、粉体で提供されるアルカリ刺激材を均一に添加混合したものであって、これに水を加えることによってその中のアルカリ刺激材のアルカリ刺激作用によって硬化させるものである。
アルカリ刺激材としては、メタ珪酸塩、水ガラス又は水酸化ナトリウムのほかに、水酸化カルシウム、炭酸ナトリウム、酸化カルシウム、水酸化アルミニウム、硝酸マグネシウム及びアルミン酸ナトリウム等も検討の余地があるが、前三者はこれを使用した場合は硬化するものの実用上十分な圧縮強度を得ることはできないし、後三者を使用した場合は全く硬化しない。
特開平10−130645号公報 特開2005−60189号公報
Conventionally, a ground improvement material for preventing liquefaction of a sandy ground having a high groundwater level and a loose ground has been known (see Patent Document 1), focusing on the reuse of incineration ash from municipal waste.
In this publicly known technology, the ground improvement material is composed of a composition in which slag obtained by melting incineration ash of municipal waste, hard calcined lime, cement, a water-permeable material, and gypsum are appropriately blended. .
In general, a stabilizer such as quick lime, slaked lime or cement is added to the target soil for improvement.
The effect of the soil treated with the addition of the stabilizer, i.e., the treated soil, is usually the result of the chemical reaction between the stabilizer itself and the soil particles in the presence of water to form a hydrate, This is done by filling the gap between unreacted soil particles and stabilizer.
Cement contains hexavalent chromium in the firing process, and when this is mixed with the ground material, hexavalent chromium may remain and may be eluted. It becomes.
In addition, by utilizing the latent hydraulic properties of molten slag discharged from municipal waste incineration facilities that have undergone a rapid cooling process, this is used as a hardened material with excellent compressive strength, and manufacturing that uses this hardened material to produce a hardened body A method is known (see Patent Document 2).
In this known technology, the hardener is a mixture of municipal waste molten slag fine powder that has undergone a rapid cooling process, and an alkali stimulating material provided in powder form, which is added and mixed with water. It is hardened by the alkali stimulating action of the alkali stimulating material therein.
In addition to metasilicate, water glass or sodium hydroxide, alkali stimulants include calcium hydroxide, sodium carbonate, calcium oxide, aluminum hydroxide, magnesium nitrate and sodium aluminate. Although the three are cured when used, they cannot obtain a practically sufficient compressive strength, and are not cured at all when the latter are used.
JP-A-10-130645 Japanese Patent Laying-Open No. 2005-60189

本発明は、都市ゴミの溶融施設から排出される溶融物を粒径425μm以下に微粉砕したゴミ溶融スラグと添加率5重量%以上の消石灰の混合による、実用上十分な圧縮強度を得る路盤改良材を提供することを目的とする。   The present invention is a roadbed improvement which obtains a practically sufficient compressive strength by mixing waste molten slag finely pulverized from a municipal waste melting facility to a particle size of 425 μm and slaked lime with an addition rate of 5% by weight or more. The purpose is to provide materials.

本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材は、都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕した粒径425〜10μmの範囲のゴミ溶融スラグ50重量%土材料50重量%とからなる混合土に消石灰5〜15重量%添加したものである。
特に、本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材は、都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕した粒径250μmのゴミ溶融スラグ50重量%土材料50重量%とからなる混合土に消石灰10重量%添加したものである。
The roadbed improving material by mixing finely pulverized waste molten slag and slaked lime according to the present invention is prepared by rapidly solidifying a melt discharged from a municipal waste melting facility, and then finely pulverized waste molten slag having a particle diameter of 425 to 10 μm. 5 to 15% by weight of slaked lime is added to a mixed soil composed of 50 % by weight and 50% by weight of a soil material .
In particular, the roadbed improving material by mixing finely pulverized waste molten slag and slaked lime according to the present invention is obtained by rapidly cooling and solidifying a melt discharged from a municipal waste melting facility, and then finely pulverizing the waste molten slag having a particle diameter of 250 μm 50 weight. it is obtained by adding slaked lime 10% by weight% and the soil material 50% by weight of a mixed soil.

本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材は、土材料と微粉砕したゴミ溶融スラグの混合土が微粉砕による比表面積の増加と、これに伴う潜在水硬性が発揮され、強度が増大する。
土材料と微粉砕したゴミ溶融スラグ、さらに消石灰を添加した混合土は、スラグの潜在水硬性と消石灰による硬化が複合的に発揮され、とりわけ微粉砕粒径250ミクロン〜10ミクロンの範囲では、下層路盤や路床の改良に充分活用できる。
特に経済性の観点から、微粉砕したゴミ溶融スラグの粒径250ミクロンに対して、消石灰10重量%の添加が下層路盤や路床の改良に、より有効的である。
The roadbed improvement material by mixing finely pulverized waste molten slag and slaked lime according to the present invention exhibits an increase in specific surface area due to finely pulverized mixed soil of soil material and finely pulverized waste molten slag, and the associated hydraulic potential. , The strength increases.
Soil material, finely pulverized waste molten slag, and mixed soil to which slaked lime is added exhibit the combined hydraulic properties of slag and hardening by slaked lime, especially in the fine pulverized particle size range of 250 to 10 microns. It can be fully used to improve the roadbed and roadbed.
In particular, from the viewpoint of economy, the addition of 10% by weight of slaked lime is more effective for improving the lower layer roadbed and roadbed with respect to the particle size of 250 μm of finely pulverized dust molten slag.

本発明の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材について、以下に説明する。
一般家庭や事業所から排出される可燃性ゴミは、各自治体の焼却施設により焼却処分されているが、近年ダイオキシン等の除去のため、高温還元雰囲気1800℃の高温で焼却する溶融炉、例えばシャフト炉式ガス化溶融炉で多様なゴミを溶融するようになっている。
このような都市ゴミの溶融施設から排出される溶融物は、年間数万トンも排出され、その再資源化が望まれている。
本発明は、この溶融施設から排出されるゴミ溶融スラグを微粉砕することによって生じる潜在水硬性に着目し、これに安定材として消石灰を混合して地盤改良材を生成して地盤の安定処理を行い、改質を図るものである。
The roadbed improving material by mixing finely pulverized dust molten slag and slaked lime according to the present invention will be described below.
Combustible waste discharged from ordinary households and business establishments is incinerated by local government incineration facilities. Recently, in order to remove dioxins, etc., a melting furnace, for example, a shaft, is incinerated at a high temperature of 1800 ° C in a high temperature reducing atmosphere. Various types of garbage are melted in a furnace-type gasification melting furnace.
Tens of thousands of tons of molten material discharged from such municipal waste melting facilities are discharged annually, and recycling is desired.
The present invention pays attention to the latent hydraulic property generated by finely pulverizing the molten molten slag discharged from this melting facility, and mixes slaked lime as a stabilizing material with this to generate a ground improvement material to stabilize the ground. To improve the quality.

社団法人日本道路協会、舗装施工便覧によると、下層路盤は各路盤材を所定の仕上がり厚さが得られるように均一に敷きならし、所定の締固め度が得られるまで締め固め、かつ所定の形状に平坦に仕上げるものである。
下層路盤の築造工法には、粒状路盤工法、セメント安定処理工法及び石灰安定処理工法があり、セメント安定処理の一軸圧縮強さの基準が980kN/m(0.98MPa)、石灰安定処理の一軸圧縮強さの基準が700kN/m(0.70MPa)である。
なお、養生期間は10日である。
According to the Japan Road Association and the Paving Construction Handbook, the lower roadbed should be laid out evenly so that the required finishing thickness is obtained, compacted until a predetermined degree of compaction is obtained, and The shape is finished flat.
For the construction method of the lower roadbed, there are a granular roadbed method, a cement stabilization method and a lime stabilization method, the standard of uniaxial compressive strength of cement stabilization is 980 kN / m 2 (0.98 MPa), and the axis of lime stabilization The standard of compressive strength is 700 kN / m 2 (0.70 MPa).
The curing period is 10 days.

そこで、溶融施設から直接排出されるゴミ溶融スラグと市販の粉末粘土により供試体(直径5cm、高さ10cm)を作成し、一軸圧縮強さを調べるために一軸圧縮試験機で試験を行った。
溶融施設から直接排出されるゴミ溶融スラグ(粒径2.36mm〜0.15mm、密度2.87g/cm、吸水率0.60%)と、市販の粉末粘土(密度2.72g/cm)との混合割合による応力σ(kN/m)、軸ひずみε(%)を比較検討した。
図1に示すように、粘土&スラグ25重量%では粘土単独より応力が小さく、粘土&スラグ75重量%では他の混合土より、応力が大きいが、かなり小さなひずみで破壊に至る。
一方、粘土&スラグ50重量%では応力、軸ひずみとも徐々に増加する。
図2に示すように、粘土&スラグ50重量%で、ゴミ溶融スラグの粒径を2.36mm、425μm、250μm、75μm、10μmとした場合を示す。
図2より、一軸圧縮強さqu(kN/m)が最大となるのは、ゴミ溶融スラグの粒径250μmである。
Therefore, a specimen (diameter 5 cm, height 10 cm) was prepared from waste molten slag discharged directly from the melting facility and commercially available powdered clay, and a test was conducted with a uniaxial compression tester to examine the uniaxial compression strength.
Waste molten slag discharged directly from the melting facility (particle size 2.36 mm to 0.15 mm, density 2.87 g / cm 3 , water absorption 0.60%) and commercially available powdered clay (density 2.72 g / cm 3 ) And stress σ (kN / m 2 ) and axial strain ε (%) depending on the mixing ratio.
As shown in FIG. 1, when the clay and slag is 25% by weight, the stress is smaller than that of the clay alone, and when the clay and slag is 75% by weight, the stress is larger than that of the other mixed soil, but the fracture is caused by a considerably small strain.
On the other hand, at 50% by weight of clay and slag, both stress and axial strain gradually increase.
As shown in FIG. 2, the case is shown in which the clay and slag is 50% by weight and the particle size of the waste molten slag is 2.36 mm, 425 μm, 250 μm, 75 μm, and 10 μm.
From FIG. 2, the maximum uniaxial compressive strength qu (kN / m 2 ) is the particle size 250 μm of the waste molten slag.

ゴミ溶融スラグを微粉砕することによって、比表面積が増し、潜在水硬性も増大するので、土材料と微粉砕したゴミ溶融スラグを混合することによって、潜在水硬性による硬化が進行し、さらに環境に優しい消石灰を添加して、より硬化を促進させることができる。
そこで、前記粘土&スラグ50重量%の乾燥重量比の混合割合で、ゴミ溶融スラグの微粉砕粒径を2.36mm、425μm、250μm、75μm、10μmとし、消石灰の添加率を5重量%、10重量%、15重量%とし、さらに養生期間を3日、7日、10日として一軸圧縮試験(ひずみ速度1.0%/min)を行った。
この供試体の寸法は、前述と同様に直径5cm、高さ10cmで、3層の各層25回の締め固めである。
By finely pulverizing waste molten slag, the specific surface area is increased and the latent hydraulic property is also increased. By mixing the earth material and finely pulverized waste molten slag, hardening due to the latent hydraulic property progresses, and further to the environment. Gentle slaked lime can be added to further accelerate the curing.
Therefore, at a mixing ratio of 50% by weight of the clay & slag, the finely pulverized particle size of the waste molten slag is 2.36 mm, 425 μm, 250 μm, 75 μm, 10 μm, and the addition rate of slaked lime is 5% by weight, 10%. The uniaxial compression test (strain rate of 1.0% / min) was performed with the curing period being 3 days, 7 days, and 10 days.
The dimensions of the specimen are 5 cm in diameter and 10 cm in height, as described above, and are compacted 25 times for each of the three layers.

図3に示すように、消石灰5重量%添加の場合、石灰安定処理の一軸圧縮強さの基準が700kN/m(0.70MPa)であるが、粘土&スラグ50重量%の乾燥重量比の混合割合で、それを超えるのは養生7日のスラグ粒径75μm、10μmである。 As shown in FIG. 3, when 5% by weight of slaked lime is added, the uniaxial compressive strength standard of the lime stabilization treatment is 700 kN / m 2 (0.70 MPa), but the dry weight ratio of clay & slag is 50% by weight. The mixing ratio exceeding this is slag particle size of 75 μm and 10 μm on the 7th day of curing.

図4に示すように、消石灰10重量%添加の場合、石灰安定処理の一軸圧縮強さの基準が700kN/m(0.70MPa)であるが、粘土&スラグ50重量%の乾燥重量比の混合割合で、それを超えるのは養生7日のスラグ粒径250μm、75μm、10μmである。 As shown in FIG. 4, in the case of addition of 10% by weight of slaked lime, the standard of uniaxial compressive strength of lime stabilization treatment is 700 kN / m 2 (0.70 MPa), but the dry weight ratio of clay & slag is 50% by weight. The mixing ratio exceeds the slag particle size of 250 μm, 75 μm, and 10 μm on the 7th day of curing.

図5に示すように、消石灰15重量%添加の場合、石灰安定処理の一軸圧縮強さの基準が700kN/m(0.70MPa)であるが、粘土&スラグ50重量%の乾燥重量比の混合割合で、それを超えるのは養生3日のスラグ粒径250μm、75μm、10μm及び養生7日のスラグ粒径425μm、養生10日のスラグ粒径2.36mmである。 As shown in FIG. 5, when 15% by weight of slaked lime is added, the uniaxial compressive strength standard of the lime stabilization treatment is 700 kN / m 2 (0.70 MPa), but the dry weight ratio of clay & slag is 50% by weight. In the mixing ratio, the slag particle size 250 μm, 75 μm, 10 μm on the curing 3 day and the slag particle size 425 μm on the curing 7 day and the slag particle size 2.36 mm on the curing 10 day are exceeded.

以上のように、消石灰の添加率を変えた場合、石灰安定処理の一軸圧縮強さの基準が700kN/m(0.70MPa)であるが、それを超えるには養生日数を増加すること及びスラグ粒径を小さくすることが影響する。
そこで、図6に示すように、養生10日におけるゴミ溶融スラグのそれぞれの粒径での一軸圧縮強さqu(kN/m)及び消石灰の添加率(重量%)を調べた。
図6に示すように、石灰安定処理の一軸圧縮強さの基準700kN/m(0.70MPa)以上となるのは、消石灰の添加率5重量%でゴミ溶融スラグの粒径250μm以下である。
また、消石灰の添加率10重量%ではゴミ溶融スラグの粒径425μm以下である。
As mentioned above, when the addition rate of slaked lime is changed, the standard of uniaxial compressive strength of lime stabilization treatment is 700 kN / m 2 (0.70 MPa), but to exceed that, the number of days of curing is increased and Reducing the slag particle size has an effect.
Therefore, as shown in FIG. 6, the uniaxial compressive strength qu (kN / m 2 ) and the addition rate (% by weight) of slaked lime at each particle size of the waste molten slag on the curing day 10 were examined.
As shown in FIG. 6, the uniaxial compressive strength standard 700 kN / m 2 (0.70 MPa) or more of the lime stabilization treatment is not less than 250 μm in particle size of the molten slag at an addition rate of 5% by weight of slaked lime. .
In addition, when the addition rate of slaked lime is 10% by weight, the particle size of the waste molten slag is 425 μm or less.

したがって、上記試験は市販の粘土を使用したが、土材料と微粉砕したゴミ溶融スラグ、更に消石灰を添加した混合土の場合は、スラグの潜在水硬性と消石灰による硬化が複合的に発揮され、とりわけ微粉砕粒径250〜10μmの範囲では、下層路盤や路床の改良に充分活用できる。
さらに、経済性の観点から、微粉砕したゴミ溶融スラグの粒径250μmに対して、消石灰10重量%の添加が下層路盤や路床の改良に、より有効的である。
Therefore, in the above test, a commercially available clay was used, but in the case of mixed soil added with soil material and finely pulverized waste molten slag, and further added with slaked lime, the latent hydraulic properties of slag and hardening by slaked lime are exhibited in combination. In particular, in the range of finely pulverized particle size of 250 to 10 μm, it can be sufficiently utilized for improving the lower layer roadbed and roadbed.
Furthermore, from the viewpoint of economy, the addition of 10% by weight of slaked lime with respect to the particle size of 250 μm of finely pulverized dust molten slag is more effective for improving the lower roadbed and roadbed.

粘土&スラグの混合率25重量%、75重量%に対して消石灰5重量%、10重量%、15重量%を添加しても、粘土&スラグの混合率50重量%とほぼ同様な増加傾向が予測される。   Even if 5%, 10%, and 15% by weight of slaked lime are added to 25% and 75% by weight of clay and slag, the same tendency to increase as 50% by weight of clay and slag is added. is expected.

下層路盤や路床の実際の改良施工では、施工前にあらかじめ微粉砕したゴミ溶融スラグに消石灰を混合し、これを土と混合・攪拌した後、通常の施工と同様に転圧(締固め)して行うことができる。   In the actual improvement construction of the lower roadbed and roadbed, slaked lime is mixed with the crushed dust molten slag before construction, and this is mixed and stirred with the soil, and then rolled (compacted) in the same way as normal construction. Can be done.

一般住宅用の建設に際して、地耐力のない地盤にあらかじめ微粉砕したゴミ溶融スラグに消石灰5重量%程度添加し、これを土と25重量%〜75重量%の割合で表層から2mまでを混合・攪拌すれば、十分な地盤強度が得られることが予測される。   When constructing a general house, add about 5% by weight of slaked lime to the molten slag that has been finely pulverized in advance to the ground without earth resistance, and mix this with the soil at a rate of 25% to 75% by weight from the surface to 2m. It is predicted that sufficient ground strength can be obtained by stirring.

スラグ粒径2.36mmの一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test of slag particle size 2.36mm. 粘土とスラグの混合土(50重量%)のみの一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test only of the mixed soil (50 weight%) of clay and slag. 粘土とスラグの混合土(50重量%)、消石灰5重量%添加の一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test with the mixed soil (50 weight%) of clay and slag, and 5 weight% of slaked lime addition. 粘土とスラグの混合土(50重量%)、消石灰10重量%添加の一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test of the mixed soil (50 weight%) of clay and slag addition, and 10 weight% of slaked lime. 粘土とスラグの混合土(50重量%)、消石灰15重量%添加の一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test of the mixed soil (50 weight%) of clay and slag, and 15 weight% of slaked lime addition. 粘土とスラグの混合土(50重量%)、養生日数10daysの一軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the uniaxial compression test of the mixed soil (50 weight%) of clay and slag, and curing days 10days.

Claims (2)

都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕した粒径425〜10μmの範囲のゴミ溶融スラグ50重量%土材料50重量%とからなる混合土に消石灰5〜15重量%添加したことを特徴とする微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材。 After rapidly solidifying the melt discharged from the municipal waste melting facility , slaked lime 5 to 15 in a mixed soil composed of 50 % by weight of waste molten slag having a particle size of 425 to 10 μm and 50% by weight of soil material A roadbed improvement material by mixing finely pulverized waste molten slag and slaked lime, characterized by the addition of wt %. 都市ゴミの溶融施設から排出される溶融物を急冷凝固した後、微粉砕した粒径250μmのゴミ溶融スラグ50重量%土材料50重量%とからなる混合土に消石灰10重量%添加したことを特徴とする請求項1記載の微粉砕したゴミ溶融スラグと消石灰の混合による路盤改良材。 After rapidly solidifying the melt discharged from the municipal waste melting facility, 10% by weight of slaked lime was added to the mixed soil consisting of 50 % by weight of the molten slag having a particle size of 250 μm and 50% by weight of the earth material. The roadbed improvement material by mixing finely pulverized refuse molten slag and slaked lime according to claim 1.
JP2006228798A 2006-08-25 2006-08-25 Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime Active JP3936992B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228798A JP3936992B1 (en) 2006-08-25 2006-08-25 Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228798A JP3936992B1 (en) 2006-08-25 2006-08-25 Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime

Publications (2)

Publication Number Publication Date
JP3936992B1 true JP3936992B1 (en) 2007-06-27
JP2008050481A JP2008050481A (en) 2008-03-06

Family

ID=38249205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228798A Active JP3936992B1 (en) 2006-08-25 2006-08-25 Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime

Country Status (1)

Country Link
JP (1) JP3936992B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911968A (en) * 2015-04-17 2015-09-16 中国十七冶集团有限公司 Technology for constructing sidewalks on roadbed by using improved soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180864B (en) * 2021-12-21 2022-12-27 廊坊师范学院 Controllable low-strength material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911968A (en) * 2015-04-17 2015-09-16 中国十七冶集团有限公司 Technology for constructing sidewalks on roadbed by using improved soil

Also Published As

Publication number Publication date
JP2008050481A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
CN108218272B (en) Environment-friendly artificial aggregate (aggregate) derived from waste
Hesami et al. Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement
Cheng Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars
James et al. Bagasse ash as an auxiliary additive to lime stabilization of an expansive soil: strength and microstructural investigation
Taha et al. An overview of waste materials recycling in the Sultanate of Oman
Wang et al. Recycling fresh concrete waste: A review
KR101889783B1 (en) Solidified agent and making method of it using high-calcium fly ash and steel making slags
JP6184149B2 (en) Fired product
JP2013064052A (en) Soil conditioner
Mohammadi et al. Recycling industrial alkaline solutions for soil stabilization by low-concentrated fly ash-based alkali cements
KR20180109377A (en) Surface solidification and soil pavement method
Murthi et al. Fresh properties of self-compacting concrete incorporating electric arc furnace oxidizing slag (EAFOS) as coarse aggregate
JP4033894B2 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
Singh et al. Red mud as a sustainable road construction material: An experimental investigation
JP4452780B2 (en) Ground and roadbed improvement material by mixing rock sludge, waste molten slag and stabilizer.
JP3936992B1 (en) Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime
KR101852483B1 (en) Makinh method of Solidified agent using high-calcium fly ash
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
Adedokun et al. Geotechnical beneficiation of the strength indices of lateritic soil using steel slag and cement
JP4013168B2 (en) Ground improvement material
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JPH08259946A (en) Method of utilizing coal ash, surplus soil of construction and slag
Singh et al. Stabilization of red mud using ground granulated blast furnace slag by geopolymerization technique
JP4774089B2 (en) Molten slag hardened material and method for producing a molten slag hardened body using the same
JPH10219246A (en) Organic solidification material for poor ground

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150