JPS62121407A - Optical filter and wavelength multiplex transmission device using the optical filter - Google Patents

Optical filter and wavelength multiplex transmission device using the optical filter

Info

Publication number
JPS62121407A
JPS62121407A JP25976085A JP25976085A JPS62121407A JP S62121407 A JPS62121407 A JP S62121407A JP 25976085 A JP25976085 A JP 25976085A JP 25976085 A JP25976085 A JP 25976085A JP S62121407 A JPS62121407 A JP S62121407A
Authority
JP
Japan
Prior art keywords
optical filter
waveguide
wavelength
optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25976085A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25976085A priority Critical patent/JPS62121407A/en
Priority to US06/929,911 priority patent/US4790614A/en
Publication of JPS62121407A publication Critical patent/JPS62121407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To prepare an optical filter by a process for forming a semiconductor light emitting element or a light receiving element by forming plural numbers of groove having deeper depth than the thickness of a waveguide with a desired spacing of period and a desired width along the propagation direction of light, and embedding film comprising a material having a different refractive index from the refractive index of the waveguide layer in the groove. CONSTITUTION:A substrate 1 comprises a semiconductor, ferroelectric body, magnetic body, or glass, and a waveguide layer 3 is formed interposing a clad layer 2. The refractive index of the clad layer 2 is smaller than the refractive index of the waveguide layer 3. Layers 4-1-4-m having smaller refractive indices than the waveguide 3 are formed with ca. n/2 wavelength spacings. In order to reduce radiation loss at the respective parts, the refractive indices of the layers 4-1-4-m are preferred to be larger than the refractive index of the clad layer. The width of the layers 4-1-4-m are regulated to ca. n/4 of the wavelength.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、波長選択性を有する光フィルタおよび該光フ
ィルタを用いた波長多重伝送デバイスに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical filter having wavelength selectivity and a wavelength multiplexing transmission device using the optical filter.

〔発明の背景〕[Background of the invention]

光フアイバ通信における光波長多重伝送技術は通信シス
テムの経済化をはかる上で重要であり、上記光波長多重
伝送において、光合分波器は必須のデバイスである。
Optical wavelength division multiplexing transmission technology in optical fiber communications is important for economicalization of communication systems, and optical multiplexers and demultiplexers are essential devices in the above-mentioned optical wavelength division multiplexing transmission.

従来、光合分波器の1つに干渉膜フィルタを用いる構成
である。この干渉膜フィルタを用いた光合分波器は、通
過域、阻止域損失特性、通過帯域幅とも良好な特性が得
られており、広く用いられようとしている。しかし上記
構成では、干渉膜フィルタをガラス平板に蒸着し、上記
干渉膜フィルタ付ガラス平板をガラスブロックに接着剤
で貼付けており、接着による貼付けの際に精密な光軸合
わせを必要とし、また接着剤の厚さによってガラスブロ
ックへのガラス平板貼付は角度が変化するため、光を励
振しながら精密な位置や角度を調整する必要がある。ま
た組立て加工時間もかかりすぎるため、低コスト化が難
しい。さらにガラスブロックも鏡面研磨し、寸法精度、
角度精度を高めなければならないため、非常に高価なも
のとなり量産性が悪い。また半導体発光素子、受光素子
を上記光合分波器と組合わせて双方向伝送用ハイブリッ
ド光モジュールを構成しようとすると、上記光合分波器
が個別部品の組合せであるため、組立て加工や光軸調整
により時間がかかり、非常に高価になり、量産がむずか
しいという問題があった(詐井、光通信ハンドブック、
朝倉書店刊、p。
Conventionally, an interference film filter is used as one of the optical multiplexers/demultiplexers. An optical multiplexer/demultiplexer using this interference film filter has good characteristics in terms of passband, stopband loss characteristics, and passband width, and is about to be widely used. However, in the above configuration, the interference film filter is vapor-deposited on a glass flat plate, and the glass flat plate with the interference film filter is attached to the glass block with adhesive, which requires precise optical axis alignment when pasting with adhesive. The angle of attaching the flat glass plate to the glass block changes depending on the thickness of the agent, so it is necessary to precisely adjust the position and angle while exciting the light. Furthermore, it takes too much time to assemble, making it difficult to reduce costs. Furthermore, the glass block is mirror polished to improve dimensional accuracy.
Since angle accuracy must be increased, it becomes extremely expensive and difficult to mass-produce. Furthermore, when attempting to configure a hybrid optical module for bidirectional transmission by combining a semiconductor light-emitting element and a light-receiving element with the optical multiplexer/demultiplexer described above, since the optical multiplexer/demultiplexer is a combination of individual parts, assembly processing and optical axis adjustment may be required. The problem was that it was time consuming, very expensive, and difficult to mass produce (Nasoi, Optical Communication Handbook,
Published by Asakura Shoten, p.

324〜I)、331. 1982 )。324-I), 331. 1982).

〔発明の目的〕[Purpose of the invention]

本発明は、従来の半導体発光素子や受光素子を形成する
プロセスを用いて、より簡易化、経済化がはかれる1チ
ツプモノリシツク型の光フィルタを得るとともに、上記
光フィルタを用いて簡単な構造の波長多重伝送デバイス
を得ることを目的とする。
The present invention provides a one-chip monolithic optical filter that is simpler and more economical by using conventional processes for forming semiconductor light-emitting devices and light-receiving devices. The purpose is to obtain a wavelength division multiplexing transmission device.

〔発明の概要〕[Summary of the invention]

本発明による光フィルタおよび該光フィルタを用いた波
長多重伝送デバイスは、スラブあるいは3次元光導波路
の導波路層に、所望周期間隔、所望幅で上記導波路層の
厚さよりも深い溝を光伝搬方向に沿って複数個形成し、
上記溝に導波路層の屈折率と異る屈折率を有する材質の
膜を埋込んで光フィルタを形成するとともに、上記光フ
ィルタを光導波路に少なくとも1個設け、上記光フィル
タを透過した光信号側および上記光フィルタにより反射
した光信号側に、半導体発光素子または受光素子のいず
れか一方、あるいはそれら両方を配置してモノリシック
状に形成することにより、波長多重伝送デバイスを構成
したものである。
The optical filter according to the present invention and the wavelength division multiplexing transmission device using the optical filter propagate light through a groove in a waveguide layer of a slab or a three-dimensional optical waveguide with a desired periodic interval and a desired width and which is deeper than the thickness of the waveguide layer. Form multiple pieces along the direction,
An optical filter is formed by embedding a film made of a material having a refractive index different from that of the waveguide layer in the groove, and at least one optical filter is provided in the optical waveguide, and an optical signal transmitted through the optical filter is formed. A wavelength multiplexing transmission device is constructed by arranging either a semiconductor light-emitting element or a light-receiving element, or both, on the side and the side of the optical signal reflected by the optical filter and forming a monolithic structure.

本発明による光フィルタは、第9図に示すように、よく
知られた干渉膜フィルタ構造を採用したものである。す
なわち干渉膜フィルタは、屈折率が高い層(例えば、n
2+ n4. n6・・・・・・)と屈折率が低い層(
例えば、n3+ n5. n7・・・・・・)とを交互
にほぼn/4波長(n=1.3・・・・・・)の幅(こ
の場合はd2゜d3・・・・・・dn−1)で形成した
ものである。上記の干渉膜フィルタに対して、本発明に
よる光フィルタは、屈折率が高い(あるいは低い)導波
路層にほぼn/2波長間隔で、幅がほぼn/4波長であ
る溝を複数個形成し、上記溝に屈折率が低い(あるいは
高い)材質の膜を埋込んだ構成になっている。そして、
光フィルタの波長特性によって、上記導波路の途中に、
幅がほぼn/2波長である溝を少なくとも1つ形成し、
上記溝に屈折率が低い(あるいは高い)膜を埋込むこと
ができるようにしたものである。すなわち、キャビティ
層を設けて、短波長通過型、長波長通過型、帯域通過型
、あるusiま帯域阻止型等の光フイルりが形成できる
よう(こしである。導波路層はスラブ型、あるし1は3
次元導波路型で形成されている。
The optical filter according to the present invention employs a well-known interference film filter structure, as shown in FIG. In other words, the interference film filter has a layer with a high refractive index (for example, n
2+ n4. n6...) and a layer with a low refractive index (
For example, n3+n5. n7...) alternately with a width of approximately n/4 wavelength (n=1.3......) (in this case, d2゜d3...dn-1). It was formed. In contrast to the above-mentioned interference film filter, the optical filter according to the present invention has a plurality of grooves each having a width of approximately n/4 wavelength at approximately n/2 wavelength intervals in a waveguide layer having a high (or low) refractive index. However, a film made of a material having a low (or high) refractive index is embedded in the groove. and,
Depending on the wavelength characteristics of the optical filter, there may be a
forming at least one groove having a width approximately n/2 wavelengths;
This allows a film with a low (or high) refractive index to be embedded in the groove. That is, a cavity layer is provided to form an optical film of a short wavelength pass type, a long wavelength pass type, a band pass type, or a band rejection type. 1 is 3
It is formed of a dimensional waveguide type.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面ととも番こ説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

なお 第1図は本発明による光フイルりの一実施例の構造を示
す図で、(a)は平面図、(b)は断面図、第2図は上
記実施例の波長特性計算結果を示す図、第3・図(a+
 、 (b) 、 (CL (d)はそれぞれ上記光フ
イルりの製置(工程を示す図、第4図は本発明による波
長多重伝。
FIG. 1 is a diagram showing the structure of an embodiment of the optical film according to the present invention, in which (a) is a plan view, (b) is a cross-sectional view, and FIG. 2 shows the calculation results of wavelength characteristics of the above embodiment. Figure, 3rd figure (a+
, (b) and (CL) (d) are diagrams showing the manufacturing process of the optical film, respectively, and FIG. 4 is a wavelength multiplex transmission according to the present invention.

送デバイスの第1実施例を示す図で、(a)は正面図、
(b)は側面図、第5図は上記波長多重伝送デノくイス
の第2実施例を示す図で、(a)は正面図、(blは側
面図、第6図は上記波長多重伝送デノくイスの第3実1
施例を示す正面図、第7図は上記波長多重伝送デバイス
の第4実施例を示す正面図、第8図は上記波長多重伝送
デバイスの第5実施例を示す正面図である。
1 is a diagram illustrating a first embodiment of a feeding device, in which (a) is a front view;
(b) is a side view, FIG. 5 is a diagram showing a second embodiment of the wavelength division multiplex transmission device, (a) is a front view, (bl is a side view, and FIG. 6 is a diagram showing the wavelength division multiplex transmission device). The third fruit of Denokuisu 1
FIG. 7 is a front view showing a fourth embodiment of the wavelength multiplexing transmission device, and FIG. 8 is a front view showing a fifth embodiment of the wavelength multiplexing transmission device.

第1図に示す光フィルタはスラブ導波路型の光フィルタ
を示し、基板lは半導体、強誘電体、磁性体、あるいは
ガラスからなり、クラ・ンド層2を介して導波路層3が
形成されている。上記クラ・ソド層2は導波路層3より
も屈折率が低い。4−1〜4−mは上記導波路3の屈折
率よりも低し1屈折率は、約n/47長に設定されてい
る。上記実施例は゛基板lにInP、バッファ層2にI
nP、導波路層3ニIn Ga As Pを用い、4−
1〜4−mの低屈折率層として5tOzにTi O,を
ドープした酸化膜を用いた。導波路層3の屈折率として
3.2、低屈折率層4−1〜4−mの屈折率として1゜
8を用0、層数mを23とし、途中に屈折率が高いキャ
ビティ層を2つと、屈折率が低いキャビティ層を2つ設
けた場合の計算結果を第2図に示す。第2図から判るよ
うに、波長1.2μm、 1.3μm、 1.55μm
の通過帯域フィルタが実現されている。
The optical filter shown in FIG. 1 is a slab waveguide type optical filter, in which the substrate 1 is made of a semiconductor, ferroelectric material, magnetic material, or glass, and a waveguide layer 3 is formed with a clad layer 2 interposed therebetween. ing. The Clasode layer 2 has a lower refractive index than the waveguide layer 3. 4-1 to 4-m are lower than the refractive index of the waveguide 3, and 1 refractive index is set to approximately n/47 length. In the above embodiment, the substrate 1 is InP, the buffer layer 2 is I
nP, waveguide layer 3 using InGaAsP, 4-
An oxide film doped with 5 tOz of TiO was used as the 1 to 4-m low refractive index layer. The refractive index of the waveguide layer 3 is 3.2, the refractive index of the low refractive index layers 4-1 to 4-m is 1°8, the number of layers m is 23, and a cavity layer with a high refractive index is provided in the middle. FIG. 2 shows the calculation results when two cavity layers with a low refractive index are provided. As you can see from Figure 2, the wavelengths are 1.2 μm, 1.3 μm, and 1.55 μm.
A passband filter has been realized.

第3図(a)〜fd)は上記光フイルりの製造工程をそ
れぞれ示した図であって、第3図(a)は基板l!こク
ラッド層2および導波路層3を形成した工程で、同図(
b)はドライエツチングによりm5−i〜5−5を加工
した工程を示し、この場合のドライエツチングによる溝
加工精度は、現状においては1μm幅に対し0.05μ
m以下を実現できるので、例えば溝幅を3/4波長とし
、溝間隔を3/2波長にすれば、光フイルタ特性として
は第2図に示すような特性を実現することができる。同
図(C)は上記溝5−1〜5−5ニ酸化膜6(この場合
は、Si 02 ニTi 04 ヲ含んだ膜)を埋込む
工程を示している。同図(dlは上記導波路層3上の酸
化膜6をエツチングした工程である。この導波路層3上
の酸化膜6は、光フィルタの湿度による特性変動防止の
ためや、表面の汚染による吸収、散乱損失の予防のため
に、エツチングしないでそのまま設けておいてもよい。
FIGS. 3(a) to 3(fd) are diagrams showing the manufacturing process of the above-mentioned optical film, and FIG. 3(a) shows the substrate 1! In the process of forming the cladding layer 2 and the waveguide layer 3, the figure (
b) shows the process of machining m5-i to m5-5 by dry etching, and the groove machining accuracy by dry etching in this case is currently 0.05 μm per 1 μm width.
For example, if the groove width is set to 3/4 wavelength and the groove interval is set to 3/2 wavelength, optical filter characteristics as shown in FIG. 2 can be achieved. FIG. 5C shows a step of filling the trenches 5-1 to 5-5 with a carbon dioxide film 6 (in this case, a film containing Si 02 and Ti 04 ). In the same figure (dl is the step of etching the oxide film 6 on the waveguide layer 3. The oxide film 6 on the waveguide layer 3 is used to prevent characteristic fluctuations due to humidity of the optical filter and to prevent surface contamination. In order to prevent absorption and scattering loss, it may be left as is without etching.

ただし、上記導波路層3上に形成する酸化膜としては、
低屈折率層4−1〜4−5の屈折率よりも低い方が、導
波路での放射損失を低くする上で重要である。なお本発
明の光フィルタは、基板lに半導体材料を用い低屈折率
層6に8102のようなガラスを用いれば、屈折率差を
太き(とることができるので、帯域通過フィルタの通過
帯域幅を広くすることができ、かつ阻止域の減衰量も大
きくとれるという特徴がある。したがって層数mは従来
の光フィルタに比し、半分かそれ以下でよい。
However, the oxide film formed on the waveguide layer 3 is as follows:
It is important that the refractive index is lower than that of the low refractive index layers 4-1 to 4-5 in order to reduce radiation loss in the waveguide. In addition, in the optical filter of the present invention, if a semiconductor material is used for the substrate 1 and a glass such as 8102 is used for the low refractive index layer 6, the refractive index difference can be increased, so that the passband width of the bandpass filter can be increased. It has the characteristics that it is possible to widen the optical filter and to have a large attenuation in the stopband.Therefore, the number of layers (m) may be half or less than that of a conventional optical filter.

第4図は本発明による波長多重伝送デバイスの第1実施
例を示し、(a)は正面図、(b)は側面図である。基
板lにクラッド層2を形成し、その上に上記クラッド層
2の屈折率よりも高いスラブ導波路層3を形成し、上記
スラブ導波路層3に本発明による上記光フィルタ7.8
を形成したものである。
FIG. 4 shows a first embodiment of a wavelength division multiplexing transmission device according to the present invention, in which (a) is a front view and (b) is a side view. A cladding layer 2 is formed on a substrate l, a slab waveguide layer 3 having a refractive index higher than that of the cladding layer 2 is formed thereon, and the optical filter 7.8 according to the present invention is formed on the slab waveguide layer 3.
was formed.

第4図(a)における13.14.15.16はレンズ
であり、上記スラブ導波路層3の一部を凹面状にくぼま
せて形成し、光ファイバ17からの出射光を平行光に変
換したり、また半導体発光素子の出射光を平行光に変換
したり、あるいは受光素子へ光を集光させたりするもの
である。半導体発光素子あるいは受光素子9.10.1
1.12はそれぞれスラブ導波路層3の側端部20およ
び21に取付けられている。つぎに上記第1実施例に示
した波長多重伝送デノくイスの動作を説明する。半導体
発光素子9には波長λ1(この場合1.55μm)の半
導体レーザを用い、受光素子11には波長1.2μmの
光信号を受光するためのGe−APD(ゲルマニウム−
アバランシェホトダイオード)を、受光素子12には波
長1.3μmの光信号を受光するためのGe−APDを
用いた。光フィルタ7には波長1.3μm、 1.55
μmの光信号を通すが、波長1.2μmの光信号を反射
させる長波長通過型フィルタを用い、光フィルタ8には
波長1.2μm。
Lenses 13, 14, 15, 16 in FIG. 4(a) are formed by recessing a part of the slab waveguide layer 3 into a concave shape, and convert the light emitted from the optical fiber 17 into parallel light. It also converts light emitted from a semiconductor light emitting element into parallel light, or focuses light on a light receiving element. Semiconductor light emitting device or light receiving device 9.10.1
1.12 are attached to the side ends 20 and 21 of the slab waveguide layer 3, respectively. Next, the operation of the wavelength multiplexing transmission device shown in the first embodiment will be explained. The semiconductor light emitting device 9 uses a semiconductor laser with a wavelength λ1 (1.55 μm in this case), and the light receiving device 11 uses a Ge-APD (germanium PD) for receiving an optical signal with a wavelength of 1.2 μm.
An avalanche photodiode) was used for the light receiving element 12, and a Ge-APD for receiving an optical signal with a wavelength of 1.3 μm was used. The optical filter 7 has a wavelength of 1.3 μm, 1.55
A long wavelength pass filter is used that passes an optical signal with a wavelength of 1.2 μm but reflects an optical signal with a wavelength of 1.2 μm, and the optical filter 8 has a wavelength of 1.2 μm.

1.55/jmの光信号を通すが、波長1.3μmの光
信号を反射させる帯域阻止型フィルタを用いた。そして
光フアイバ17内を矢印19の方向へ1.55μmの光
信号を伝搬させ、矢印18の方向から伝搬してきた波長
1.2μmおよび1.3μmの光信号を受光素子11お
よび12で受光させる。なお10は半導体発光素子9の
出射光信号をモニタするための受光素子である。半導体
発光素子および受光素子は、基板lに液相成長させて形
成してもよく、また素子を外付けしてもかまわない。
A band rejection filter was used that passes an optical signal with a wavelength of 1.55/jm but reflects an optical signal with a wavelength of 1.3 μm. Then, a 1.55 μm optical signal is propagated in the direction of arrow 19 within the optical fiber 17, and optical signals with wavelengths of 1.2 μm and 1.3 μm propagated from the direction of arrow 18 are received by the light receiving elements 11 and 12. Note that 10 is a light receiving element for monitoring the output light signal of the semiconductor light emitting element 9. The semiconductor light emitting device and the light receiving device may be formed by liquid phase growth on the substrate 1, or the devices may be externally attached.

第5図は本発明の第2実施例である波長多重伝送デバイ
スを示した図で、(a)は正面図、(b)は側面図を示
している。第2実施例は3次元導波路構造のデバイスで
、第4図に示した第1実施例と同一番号を付したものは
、同様の機能を有するものである。第5図において、2
2は導波路層であり、本実施例では盛土形措造を用いた
が、リッジ形、拡散形などでも差支えない。23および
24は帯域通過型フィルタであり、23は1.2μmの
波長の光信号だけを通し、24は1.3μmの波長の光
信号だけを通す6第6図は本発明の波長多重伝送デバイ
スの第3実施例を示す図で、受光素子11.12の前の
導波路層にテーパ部25.26を設けて、不要光信号を
抑制するようにしたものである。上記テーパ部25.2
6を設けた以外は上記第5図に示す第2実施例と同様で
ある。
FIG. 5 is a diagram showing a wavelength division multiplexing transmission device according to a second embodiment of the present invention, in which (a) shows a front view and (b) shows a side view. The second embodiment is a device having a three-dimensional waveguide structure, and those having the same numbers as those of the first embodiment shown in FIG. 4 have the same functions. In Figure 5, 2
2 is a waveguide layer, and although an embankment-shaped structure is used in this embodiment, a ridge-shaped, diffused-type, etc. may also be used. 23 and 24 are band-pass filters, 23 passing only an optical signal with a wavelength of 1.2 μm, and 24 passing only an optical signal having a wavelength of 1.3 μm. 6 Figure 6 shows a wavelength division multiplexing transmission device of the present invention. This is a diagram showing a third embodiment of the present invention, in which tapered portions 25 and 26 are provided in the waveguide layer in front of the light receiving elements 11 and 12 to suppress unnecessary optical signals. The above tapered part 25.2
The second embodiment is the same as the second embodiment shown in FIG. 5 above, except that 6 is provided.

第7図は本発明の波長多重伝送デバイスの第4実施例を
示す図である。本実施例では半導体発光素子9に波長1
.3μmの半導体レーザを用い、受光素子11には波長
1.2μmの光信号を受光する受光素子を用い、受光素
子12には波長1.55μmの光信号を受光する受光素
子を用いた。光フィルタ27,28゜29にはそれぞれ
上記第2図に示した帯域通過型フィルタを用いた。すな
わち、第2図において、光フィルタ27には1.3μm
の光信号を通過させ、1.2μmおよび1.55μmの
光信号を反射させる1、3μm帯域通過型フィルタ(B
PF)を用い、光フィルタ28には1.2μm帯域通過
型フィルタを、また光フィルタ29には1.55μm帯
域通過型フィルタを用いた。
FIG. 7 is a diagram showing a fourth embodiment of the wavelength division multiplexing transmission device of the present invention. In this embodiment, the semiconductor light emitting device 9 has a wavelength of 1
.. A 3-μm semiconductor laser was used, the light-receiving element 11 was a light-receiving element that received an optical signal with a wavelength of 1.2 μm, and the light-receiving element 12 was a light-receiving element that received an optical signal with a wavelength of 1.55 μm. For the optical filters 27, 28 and 29, band-pass filters shown in FIG. 2 were used, respectively. That is, in FIG. 2, the optical filter 27 has a thickness of 1.3 μm.
A 1 and 3 μm bandpass filter (B
PF), a 1.2 μm bandpass filter was used as the optical filter 28, and a 1.55 μm bandpass filter was used as the optical filter 29.

第8図は本発明の波長多重伝送デバイスの第5実施例を
示す図である。本実施例は矢印38方向に1.2μm、
  1.3μmの光信号を伝送させ、逆方向の矢印39
の方向から1.55μmの光信号が伝送されてくる場合
における、いわゆる3波長多重伝送デバイスの実施例を
示している。第8図において、31゜32はそれぞれ波
長1.2μm、波長1.3μmの半導体レーザであり、
33および34は上記半導体レーザ31および32の出
射光をそれぞれモニタするための受光素子である。30
は1.2μmと1.3μmのレーザ出射光を合波する合
波素子であり、光フィルタ36は1.2μmと1.3μ
mの光信号をそれぞれ通過させ、1.55μmの光信号
を反射させる短波長通過型、あるいは帯域阻止型フィル
タである。また光フィルタ37は、1.55μmの光信
号を通過させ、1.2μmおよび1.3μmの光信号を
反射させる長波長通過型フィルタである。
FIG. 8 is a diagram showing a fifth embodiment of the wavelength division multiplexing transmission device of the present invention. In this example, 1.2 μm in the direction of arrow 38,
Transmit an optical signal of 1.3 μm, and arrow 39 in the opposite direction
An example of a so-called three-wavelength multiplexing transmission device is shown in which a 1.55 μm optical signal is transmitted from the direction of . In FIG. 8, 31° and 32 are semiconductor lasers with wavelengths of 1.2 μm and 1.3 μm, respectively.
33 and 34 are light receiving elements for monitoring the emitted light from the semiconductor lasers 31 and 32, respectively. 30
is a combining element that combines 1.2 μm and 1.3 μm laser beams, and the optical filter 36 has 1.2 μm and 1.3 μm laser beams.
It is a short wavelength pass type or band rejection type filter that allows optical signals of 1.55 μm to pass through and reflects optical signals of 1.55 μm. The optical filter 37 is a long-wavelength passing filter that passes a 1.55 μm optical signal and reflects 1.2 μm and 1.3 μm optical signals.

本発明は上記各実施例に限定されない。まず、波長多重
数は上記実施例のように3波に限定されず、2波以上何
波でも拡張できる。半導体発光素子は半導体レーザ、発
光ダイオードでもよい。また第4図に示した第1実施例
は、半導体レーザが基板と垂直にレーザ光を出射する面
発光型のレーザであってもよい。受光素子にはGe−A
PD以外に、InGa As−APD、あるいはInG
aAs−PINPD(PINホトダイオード)でもよい
。溝5−1〜5−5内に埋込む膜6はSi O2単体組
成以外に、TiO2゜GeO2、Pe Os 、 Zn
O,A1203などの屈折率を制御するドーパントを含
んでいてもよい。さらにはInGaAsP、 At G
aAs、 GaAsなどの半導体材料や強誘電体、磁性
体などでもよい。光伝送方式は双方向伝送用以外に、片
方向伝送としての光合波デバイス、または光分波デバイ
スであってもよい。
The present invention is not limited to the above embodiments. First, the number of wavelengths to be multiplexed is not limited to three as in the above embodiment, but can be extended to any number of wavelengths greater than or equal to two. The semiconductor light emitting device may be a semiconductor laser or a light emitting diode. Further, the first embodiment shown in FIG. 4 may be a surface emitting type laser in which the semiconductor laser emits laser light perpendicularly to the substrate. Ge-A is used for the light receiving element.
In addition to PD, InGaAs-APD or InG
It may also be an aAs-PINPD (PIN photodiode). The film 6 buried in the grooves 5-1 to 5-5 has a composition of TiO2゜GeO2, PeOs, Zn, in addition to the simple composition of SiO2.
It may also contain a dopant that controls the refractive index, such as O or A1203. Furthermore, InGaAsP, AtG
Semiconductor materials such as aAs and GaAs, ferroelectric materials, magnetic materials, etc. may be used. The optical transmission system may be an optical multiplexing device or an optical demultiplexing device for unidirectional transmission in addition to bidirectional transmission.

すなわち、これらは光素子が半導体発光素子だけとする
か、受光素子だけにするかによって達成できる。また第
2図において、基板lに例えばSiを用い、クラッド層
2にはS + OzにB2O3を含んだ層高屈折率の膜
を形成させれば、ガラス導波路型光フィルタを構成する
ことができる。上記光フィルタの場合には、半導体材料
を用いた場合に比して、非常に低損失な特性を実現する
ことができる。第3図(b)に示す溝5−1〜5−5の
加工方法としては、イオンビームエツチング、高周波ス
パッタエツチング、反応性高周波スパッタエツチング、
プラズマエツチング、イオン照射増速エツチングなどの
ドライエツチング、ないしはそれに準じるエツチング技
術を用いることができる。
That is, these can be achieved by using only semiconductor light-emitting elements or only light-receiving elements as optical elements. In addition, in FIG. 2, if Si is used as the substrate 1 and a high refractive index film containing B2O3 in S+Oz is formed as the cladding layer 2, a glass waveguide type optical filter can be constructed. can. In the case of the above-mentioned optical filter, characteristics with extremely low loss can be realized compared to the case where a semiconductor material is used. Processing methods for the grooves 5-1 to 5-5 shown in FIG. 3(b) include ion beam etching, high frequency sputter etching, reactive high frequency sputter etching,
Dry etching such as plasma etching, ion irradiation accelerated etching, or similar etching techniques can be used.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による光フィルタおよび該光フィル
タを用いた波長多重伝送デバイスは、スラブあるいは3
次元光導波路の導波路層に、所望周期間隔、所望幅で上
記導波路層の厚さよりも深い溝を光伝搬方向に沿って複
数個形成し、上記溝に上記導波路層の屈折率と異る屈折
率を有する材質の膜を埋込んで光フィルタを形成し、上
記光フィルタを透過した光信号側および上記光フィルタ
により反射した光信号側に、半導体発光素子または受光
素子のいずれか一方、あるいは両方を配置してモノリシ
ック状に形成することにより、従来の半導体発光素子や
受光素子を形成するプロセスを用いて、新しい構成の光
フィルタを形成することができ、また上記光フィルタを
用いて、より簡易で経済的な波長多重伝送デバイスを実
現することが可能である。
As described above, the optical filter according to the present invention and the wavelength division multiplexing transmission device using the optical filter can be applied to a slab or three wavelength multiplexing transmission device.
In the waveguide layer of the dimensional optical waveguide, a plurality of grooves having a desired periodic interval and a desired width and deeper than the thickness of the waveguide layer are formed along the light propagation direction, and the grooves have a refractive index different from that of the waveguide layer. an optical filter is formed by embedding a film made of a material having a refractive index, and either a semiconductor light emitting element or a light receiving element is provided on the side of the optical signal transmitted through the optical filter and the side of the optical signal reflected by the optical filter, Alternatively, by arranging both and forming them monolithically, it is possible to form an optical filter with a new configuration using the process of forming conventional semiconductor light emitting elements and light receiving elements, and using the above optical filter, It is possible to realize a simpler and more economical wavelength division multiplexing transmission device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光フィルタの一実施例を示す構造
図で、(a)は平面図、(b)は断面図、第2図は上記
実施例の波長特性計算結果を示す図、第3図(al 、
 (bl 、 (C1、(d)はそれぞれ上記実施例の
製造工程を示す図、第4図は本発明による波長多重伝送
デバイスの第1実施例を示す図で、(a)は正面図、t
blは側面図、第5図は上記デバイスの第2実施例を示
す図で、(a)は正面図、(b)は側面図、第6図は上
記デバイスの第3実施例を示す正面図、第7図は上記デ
バイスの第4実施例を示す正面図、第8図は上記デバイ
スの第5実施例を示す正面図、第9図は従来の干渉膜フ
ィルタの構成を示す図である。 3.22・・・光導波路 4−1.4−2〜4−m、 5−1.5−2〜5−5 
・・・溝6・・・膜
FIG. 1 is a structural diagram showing an embodiment of an optical filter according to the present invention, in which (a) is a plan view, (b) is a cross-sectional view, and FIG. 2 is a diagram showing the wavelength characteristic calculation results of the above embodiment. Figure 3 (al,
(bl, (C1, and (d) are diagrams showing the manufacturing process of the above embodiments, respectively; FIG. 4 is a diagram showing the first embodiment of the wavelength division multiplexing transmission device according to the present invention; (a) is a front view;
bl is a side view, FIG. 5 is a diagram showing a second embodiment of the above device, (a) is a front view, (b) is a side view, and FIG. 6 is a front view showing a third embodiment of the above device. , FIG. 7 is a front view showing a fourth embodiment of the above device, FIG. 8 is a front view showing a fifth embodiment of the above device, and FIG. 9 is a diagram showing the configuration of a conventional interference film filter. 3.22... Optical waveguide 4-1.4-2 to 4-m, 5-1.5-2 to 5-5
...Groove 6...Membrane

Claims (9)

【特許請求の範囲】[Claims] (1)スラブあるいは3次元光導波路の導波路層に、所
望周期間隔、所望幅で、上記導波路層の厚さよりも深い
溝を光伝搬方向に沿って複数個形成し、上記溝に導波路
層の屈折率と異る屈折率を有する材質の膜を埋込んだ光
フィルタ。
(1) In the waveguide layer of a slab or three-dimensional optical waveguide, a plurality of grooves are formed along the light propagation direction at desired periodic intervals and with a desired width, and the grooves are deeper than the thickness of the waveguide layer, and the waveguide is formed in the grooves. An optical filter embedded with a film made of a material that has a refractive index different from that of the layer.
(2)上記溝は、周期間隔が約n/2波長(n=1、3
、5・・・・・・)であり、溝幅が約n/4波長である
ことを特徴とする特許請求の範囲第1項に記載した光フ
ィルタ。
(2) The grooves have a periodic interval of about n/2 wavelength (n=1, 3
, 5...), and the groove width is approximately n/4 wavelength.
(3)上記溝は、複数個の約n/4波長幅の溝の途中に
、約n/2波長の幅の溝を少なくとも1個設けたことを
特徴とする特許請求の範囲第1項または第2項に記載し
た光フィルタ。
(3) The groove is characterized in that at least one groove with a width of about n/2 wavelength is provided in the middle of a plurality of grooves with a width of about n/4 wavelength. The optical filter described in Section 2.
(4)上記溝は、複数個の約n/2波長間隔の溝の途中
に、約3/4波長間隔の溝を少なくとも1個設けたこと
を特徴とする特許請求の範囲第1項ないし第3項のいず
れかに記載した光フィルタ。
(4) The above-mentioned grooves are characterized in that at least one groove having an interval of approximately 3/4 wavelength is provided in the middle of a plurality of grooves having an interval of approximately n/2 wavelengths. The optical filter described in any of Item 3.
(5)上記埋込んだ膜は、上記導波路面上を蔽っている
ことを特徴とする特許請求の範囲第1項ないし第4項の
いずれかに記載した光フィルタ。
(5) The optical filter according to any one of claims 1 to 4, wherein the embedded film covers the waveguide surface.
(6)上記埋込んだ膜の材質は、屈折率が上記導波路層
の屈折率よりも低いことを特徴とする特許請求の範囲第
1項ないし第5項のいずれかに記載した光フィルタ。
(6) The optical filter according to any one of claims 1 to 5, wherein the material of the embedded film has a refractive index lower than the refractive index of the waveguide layer.
(7)上記導波路は、該導波路を構成する基板が、半導
体、強誘電体、磁性体、あるいはガラスのいずれかであ
ることを特徴とする特許請求の範囲第1項ないし第6項
のいずれかに記載した光フィルタ。
(7) The waveguide is characterized in that the substrate constituting the waveguide is made of a semiconductor, a ferroelectric material, a magnetic material, or glass. The optical filter described in any of the above.
(8)スラブあるいは3次元光導波路の導波路層に、所
望周期間隔、所望幅で、上記導波路層の厚さよりも深い
溝を光伝搬方向に沿って複数個形成し、上記溝に導波路
層の屈折率と異る屈折率を有する材質の膜を埋込んで光
フィルタを形成し、上記光フィルタを光導波路に少なく
とも1個設け、上記光フィルタを透過した光信号側およ
び上記光フィルタにより反射した光信号側に、半導体発
光素子または受光素子のいずれか一方、あるいは両方を
配置して形成した波長多重伝送デバイス。
(8) Form a plurality of grooves in the waveguide layer of a slab or three-dimensional optical waveguide at desired periodic intervals and with a desired width and deeper than the thickness of the waveguide layer along the light propagation direction, and insert the waveguide in the grooves. An optical filter is formed by embedding a film made of a material having a refractive index different from that of the layer, at least one optical filter is provided in an optical waveguide, and the optical signal side transmitted through the optical filter and the optical filter A wavelength multiplexing transmission device formed by arranging either a semiconductor light emitting element or a light receiving element, or both, on the side of the reflected optical signal.
(9)上記光導波路は、上記光フィルタの入射側および
出射側にレンズを設けたことを特徴とする特許請求の範
囲第8項に記載した波長多重伝送デバイス。
(9) The wavelength multiplexing transmission device according to claim 8, wherein the optical waveguide is provided with lenses on the incident side and the output side of the optical filter.
JP25976085A 1985-11-21 1985-11-21 Optical filter and wavelength multiplex transmission device using the optical filter Pending JPS62121407A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25976085A JPS62121407A (en) 1985-11-21 1985-11-21 Optical filter and wavelength multiplex transmission device using the optical filter
US06/929,911 US4790614A (en) 1985-11-21 1986-11-13 Optical filter and optical device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25976085A JPS62121407A (en) 1985-11-21 1985-11-21 Optical filter and wavelength multiplex transmission device using the optical filter

Publications (1)

Publication Number Publication Date
JPS62121407A true JPS62121407A (en) 1987-06-02

Family

ID=17338576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25976085A Pending JPS62121407A (en) 1985-11-21 1985-11-21 Optical filter and wavelength multiplex transmission device using the optical filter

Country Status (1)

Country Link
JP (1) JPS62121407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432206A (en) * 1987-07-29 1989-02-02 Nippon Telegraph & Telephone Wavelength multiplex optical wiring circuit
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
JP2019008255A (en) * 2017-06-28 2019-01-17 京セラ株式会社 Optical waveguide filter and light source device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015568A (en) * 1973-06-07 1975-02-19
JPS57211104A (en) * 1981-06-22 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Directional coupler type optical demultiplexer having periodic structure
JPS592008A (en) * 1982-06-28 1984-01-07 Nippon Telegr & Teleph Corp <Ntt> Production of embedding type quartz optical waveguide
JPS59149304A (en) * 1983-02-16 1984-08-27 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical filter
JPS59188605A (en) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light mode filter
JPS602906A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of filter-attached optical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015568A (en) * 1973-06-07 1975-02-19
JPS57211104A (en) * 1981-06-22 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Directional coupler type optical demultiplexer having periodic structure
JPS592008A (en) * 1982-06-28 1984-01-07 Nippon Telegr & Teleph Corp <Ntt> Production of embedding type quartz optical waveguide
JPS59149304A (en) * 1983-02-16 1984-08-27 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical filter
JPS59188605A (en) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> Waveguide type light mode filter
JPS602906A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of filter-attached optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432206A (en) * 1987-07-29 1989-02-02 Nippon Telegraph & Telephone Wavelength multiplex optical wiring circuit
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
US6406196B1 (en) 1995-08-03 2002-06-18 Matsushita Electric Industrial Co., Ltd. Optical device and method for producing the same
JP2019008255A (en) * 2017-06-28 2019-01-17 京セラ株式会社 Optical waveguide filter and light source device

Similar Documents

Publication Publication Date Title
EP0234369A1 (en) Optical branching filter
US4790615A (en) Demultiplexing and/or multiplexing optical circuit
US5905827A (en) Optical multiplexer/demultiplexer and wavelength division multiplexing module
US20020181046A1 (en) Wavelength division multiplexing with narrow band reflective filters
JPH10319262A (en) Optical waveguide structure and planar optical waveguide device
US4790614A (en) Optical filter and optical device using same
JPH08304664A (en) Wavelength demultiplexing element
US6438291B1 (en) Coupling of light into a monolithic waveguide device
JPS62121407A (en) Optical filter and wavelength multiplex transmission device using the optical filter
JPH10268158A (en) Optical branching filter and optical coupling part
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
JPH05203830A (en) Optical multiplexer demultiplexer
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
JP2000131542A (en) Optical transmission and reception module
JPS62159105A (en) Optical module for bi-directional transmission
Reichelt et al. Wavelength-division multi demultiplexers for two-channel single-mode transmission systems
JPH0749430A (en) Optical circuit part
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
JPS63106606A (en) Optical multiplexer and demultiplexer
JP2001264572A (en) Interference light filter module device
JPS62159106A (en) Optical waveguide type filter
EP0947861A1 (en) Hybrid waveguiding optical device
JPS6330605B2 (en)
JPH11190809A (en) Multiplexer demultiplexer
JPS6152443B2 (en)