JPS6046682B2 - Optical multiplexing/demultiplexing circuit for optical beams - Google Patents

Optical multiplexing/demultiplexing circuit for optical beams

Info

Publication number
JPS6046682B2
JPS6046682B2 JP52081735A JP8173577A JPS6046682B2 JP S6046682 B2 JPS6046682 B2 JP S6046682B2 JP 52081735 A JP52081735 A JP 52081735A JP 8173577 A JP8173577 A JP 8173577A JP S6046682 B2 JPS6046682 B2 JP S6046682B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
light
multiplexing
demultiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081735A
Other languages
Japanese (ja)
Other versions
JPS5417044A (en
Inventor
功郎 小林
重時 杉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Selfoc Co Ltd
Original Assignee
Nippon Selfoc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Selfoc Co Ltd filed Critical Nippon Selfoc Co Ltd
Priority to JP52081735A priority Critical patent/JPS6046682B2/en
Publication of JPS5417044A publication Critical patent/JPS5417044A/en
Publication of JPS6046682B2 publication Critical patent/JPS6046682B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 この発明は、光ファイバ通信用光回路、特に複数の波
長成分を含む光を波長に従つて分離したり波長の異なる
複数の光をまとめたりする光ビーム用光波多重分波回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical circuit for optical fiber communication, and particularly to a light beam multiplexing circuit for separating light containing a plurality of wavelength components according to the wavelength or combining a plurality of lights with different wavelengths. Regarding wave circuits.

半導体光源や光ファイバ等の性能向上に伴つて光ファ
イバ通信が将来の新しい通信システムとして期待され、
実用化も一部実現されはじめている。
As the performance of semiconductor light sources and optical fibers improves, optical fiber communication is expected to become a new communication system of the future.
Some practical applications are also beginning to be realized.

光ファイバ通信においても、従来の電気通信におけると
同様に、さまざまな通信方式が考えられている。その中
に、一本の光ファイバで複数の光ビームを伝送する光多
重伝送がある。光多重の方法には色々あるが、光の波長
のちがいを利用するいわゆる光波長多重伝送が光ファイ
バの光波長に対する広帯域性を有効に利用できるという
点で光ファイバ通信に最も適していると思われる。その
ような光波長多重通信を実現する上で重要な光 回路の
一つに光波長多重分波回路としては、大きくわけてプリ
ズムや回折格子等の波長分散素子を用いたものと、干渉
フィルタ等の波長選択性の反射膜を用いたものがある。
前者は、プリズムや回折格子とレンズを組み合わせて構
成されているために、構造的にやや複雑で形状が大きく
なること、長時間の使用に対する安定度に欠けること等
の欠点の他に、プリズムや回折格子が高価なために分波
回路も高価になるという欠点がさけられなかつた。一方
、後者は、波長選択性反射膜が比較的安価にできるのて
多重分波回路も安価にできるが、独立の反射膜とレンズ
を組み合わせた分波回路は形状や安定度の点では前者と
同様な欠点を有している。波長選択性反射膜を用いてな
おかつ小型で安定な分波回路として、中心軸に垂直な断
面内で屈折率が中心から周辺に向つて徐々に減少してい
る二つの集束性光伝送体の端面間に波長選択性反射膜を
はさみ、集束性光伝送体中での光ビームの蛇行を利用し
たものがある。これについては例えばこの発明の出願人
による考案、「集束性光伝送体を用いた光波長分波器、
(実願昭51一176145月に詳しい。この多重分波
回路はレンズである集束性光伝送体がきわめて小型であ
る上に、その端面間に反射膜をはさんでいるので分波回
路全体としてもきわめて小型てしかも安定てある。しか
しながら、反射膜を用いる分波回路では、例えば二波長
の分波を例にすると反射膜によるある波長の光の透過と
それ以外の波長の光の反射により分波を行なうので、分
離された光は互いに異なる方向に出射される。前述の集
束性光伝送体を用いた多重分波回路では例えば分波され
た光はほぼ反対方向に出射されるし多重化するための光
はほS゛反対方向から多重分波回路へ入射させなければ
ならない。ところが多重分波回路の出射光は受信電気回
路に結合された光検出器により検出されるので、分波す
べき光の数が多い場合、すなわち多重度が高い場合には
受信電気回路を高密度に受信装置に組み込むために多重
分波回路の出射光はほぼ同じ方向へ出射していることが
望ましい。同様に多重の場合にも、送信電気回路を高密
度に組み込むためには多重するための光は多重分波回路
へほぼ同じ方向から入射することが望ましい。
In optical fiber communication, as in conventional telecommunications, various communication systems are being considered. Among them is optical multiplex transmission, which transmits multiple light beams through a single optical fiber. Although there are various methods of optical multiplexing, so-called optical wavelength division multiplexing transmission, which makes use of differences in the wavelengths of light, is considered to be the most suitable for optical fiber communication because it can effectively utilize the broadband properties of optical fibers for optical wavelengths. It will be done. Optical wavelength multiplexing/demultiplexing circuits are one of the important optical circuits in realizing such optical wavelength division multiplexing communications, and are broadly divided into those using wavelength dispersion elements such as prisms and diffraction gratings, and those using wavelength dispersion elements such as interference filters. Some use wavelength-selective reflective films.
The former is constructed by combining a prism or a diffraction grating with a lens, so it has disadvantages such as a somewhat complicated structure, a larger shape, and lack of stability for long-term use. Since the diffraction grating is expensive, the demultiplexing circuit is also expensive, which is an unavoidable drawback. On the other hand, in the latter case, the wavelength-selective reflective film can be made at a relatively low cost, so the multiple demultiplexing circuit can be made at low cost, but the demultiplexing circuit that combines an independent reflective film and a lens is not as good as the former in terms of shape and stability. It has similar drawbacks. The end faces of two convergent optical transmitters whose refractive index gradually decreases from the center to the periphery in a cross section perpendicular to the central axis are used to create a small and stable demultiplexing circuit using a wavelength selective reflective film. There is one that utilizes the meandering of a light beam in a convergent light transmitter by sandwiching a wavelength-selective reflective film between them. Regarding this, for example, the invention by the applicant of the present invention, ``An optical wavelength demultiplexer using a focusing optical transmitter,
(Details can be found in Utility Model Application No. 51-176-145.) In this multiplex demultiplexing circuit, the converging light transmitting body, which is a lens, is extremely small, and a reflective film is sandwiched between its end faces, so the demultiplexing circuit as a whole However, in a demultiplexing circuit that uses a reflective film, for example, when demultiplexing two wavelengths, the reflective film transmits light of a certain wavelength and reflects light of other wavelengths. Since the waves are transmitted, the separated lights are emitted in different directions.For example, in the multiplexing and demultiplexing circuit using the above-mentioned focusing optical transmitter, the demultiplexed lights are emitted in almost opposite directions and are multiplexed. The light for this purpose must be input into the multiplex demultiplexer circuit from almost the opposite direction.However, since the output light from the multiplex demultiplexer circuit is detected by a photodetector coupled to the receiving electric circuit, the demultiplexer is When the number of signals to be output is large, that is, when the degree of multiplicity is high, it is desirable that the output lights of the multiplexing/demultiplexing circuit are emitted in approximately the same direction in order to integrate the receiving electric circuit into the receiving device with high density. Even in the case of multiplexing, it is desirable that the light for multiplexing be incident on the multiplexing/demultiplexing circuit from approximately the same direction in order to incorporate the transmitting electric circuits at a high density.

集束性光伝送体を用いた従来の多重分波回路ては、多重
分波回路と光検出器あるいは光源の間を光ファイバ等で
接続することによつて分離された光が反対方向へ出射し
たり、多重化する光を反対方向から入射させたりするた
めに生じる不都合を取り除いているが、この方法は多重
分波回路に光検出器や光源を直接結合する方法に較べて
、多重分波回路と光ファイバの結合損失が余分に加わる
ために挿入損失が大きくなるという欠点がある。この発
明の目的は低挿入損失でしかも受信あるいは送信電気回
路を高密度に実装できる小型な光ビーム用光波多重分波
回路を提供することにあ.る。
In conventional multiplexing/demultiplexing circuits using converging optical transmitters, the separated lights are emitted in opposite directions by connecting the multiplexing/demultiplexing circuit and a photodetector or light source with an optical fiber, etc. However, compared to the method of directly coupling a photodetector or light source to a multiplexing/demultiplexing circuit, this method eliminates the inconvenience caused by inputting the light to be multiplexed from the opposite direction. The disadvantage is that the insertion loss increases due to the additional coupling loss of the optical fiber. An object of the present invention is to provide a compact optical multiplexing/demultiplexing circuit for light beams that has low insertion loss and can have receiving or transmitting electric circuits mounted in high density. Ru.

この発明によれば、中心軸に垂直な二つの端面を持ち、
前記中心軸に垂直な断面内で屈折率が中心から周辺に向
つて徐々に減少している二つの集束性光伝送体のそれぞ
れの一方の前記端面の間にj波長選択性のある反射膜を
はさんだ複数個の二波長光多重分波素子と、前記二波長
光多重分波素子の一方の端面間を光学的に結合するため
の光導波路を含む光ビーム用光波多重分波回路が得られ
る。
According to this invention, it has two end faces perpendicular to the central axis,
A reflective film with wavelength selectivity is provided between the end face of each of the two convergent light transmitting bodies whose refractive index gradually decreases from the center to the periphery in a cross section perpendicular to the central axis. A light beam multiplexing/demultiplexing circuit for a light beam including a plurality of sandwiched two-wavelength optical multiplexing/demultiplexing elements and an optical waveguide for optically coupling between one end face of the two-wavelength optical multiplexing/demultiplexing elements is obtained. .

この発明は、集束性光伝送体の端面の間に波長選択性反
射膜をはさんた二波長光多重分波素子を複数個用いて、
それらの一方の端面の間を光導波路て接続することによ
り、各二波長光多重分波素子の入射あるいは出射光ビー
ムの方向をほぼ同一の方向にしたものである。
This invention uses a plurality of two-wavelength optical multiplexing/demultiplexing elements in which a wavelength-selective reflective film is sandwiched between the end faces of a focusing optical transmission body.
By connecting one end face of these elements with an optical waveguide, the directions of the incident or output light beams of each two-wavelength optical multiplexing/demultiplexing element are made to be in substantially the same direction.

こうすることにより、二波長光多重分波素子と光検出器
あるいは光源の間を光ファイバを用いて接続する必要は
なく、光検波器や光源を直接二波長光多重分波素子の端
面へ近接して設置することが不能になり挿入挿失を小さ
くすることができる。さらに、光検波器とそれに続く受
信電気回路あるいは光源と送信電気回路を一体化してお
けば、多重度が大きい場合には)これらの複数の電気回
路をとなり合わせに高密度に受信あるいは送信装置の中
に組み込むことができる。以下図を参照してこの発明を
詳しく説明する。
By doing this, there is no need to use an optical fiber to connect the two-wavelength optical multiplexing/demultiplexing element and the photodetector or light source, and the optical detector or light source can be directly brought close to the end face of the two-wavelength optical multiplexing/demultiplexing element. This makes it impossible to install the device in a similar manner, thereby reducing insertion and loss. Furthermore, if the photodetector and subsequent receiving electric circuit or the light source and the transmitting electric circuit are integrated, these multiple electric circuits can be used together to form a high-density receiving or transmitting device (if the multiplicity is large). It can be incorporated inside. The present invention will be explained in detail below with reference to the drawings.

第1図はこの発明の第1の実施例の平面図を表・す。こ
の実施例は、それぞれ異なる波長λ1,λ2,λ3の光
を出射光として出射する三つの二波長光多重分波素子1
,2,3の入射側端面19,29,39の間を光導波路
4の導波部41,42て接続し、出射側端面20,30
,40に近接し″て受信電気回路12,22,32に接
続された光検出器11,21,31を設置したものであ
る。二波長光多重分波素子1,2,3は木願出願人の出
願による特願昭51−122653「光分岐結合デバイ
ス」を応用したものである。二波長光多重分波素子1を
例にとると、これは、中心軸に垂直な断面内で屈折率が
中心から周辺に向つて徐々に減少している集束性光伝送
体をその中心軸に垂直な端面間の長さが異軸入射光ビー
ムの蛇行周期の約114になるように両端面を切断研磨
した集束性光伝送体13の一方の端面に真空蒸着により
誘電体多層膜よりなる干渉フィルタ膜15をつけ、そこ
に集束性光伝送体13とほぼ同じ長さの別の集束性光伝
送体14を接着固定したものてある。次にその動作を説
明する。集束性光伝送体13の干渉フィルタ膜15をつ
けた側と反対の入射側端面19の中心軸からずれた位置
に光ファイバ8の端部を固定すると、その出射光ビーム
は蛇行してビーム径が拡大する光ビーム16となつて集
束性光伝送体13中を進み、干渉フィルタ膜15に入射
する。干渉フィルタ膜15の透過率の波長依存特性10
1を、他の二波長光多重分波素子2,3の干渉フィルタ
膜25,35の同持性102,103とともに第2図に
示す。すなわち、干渉フィルタ膜15は、波長λ1附近
の光はほとんど透過しそれ以外の波長の光はほとんど反
射する性質を持つているので、光ビーム16は波長λ1
附近の光よりなる光ビーム17とそれ以外の波長の光よ
りなる光ビーム18に、干渉フィルタ膜15の透過、反
射によりそれぞれ分離される。
FIG. 1 shows a plan view of a first embodiment of the invention. This embodiment consists of three two-wavelength optical multiplexing/demultiplexing elements 1 that emit light of different wavelengths λ1, λ2, and λ3 as output light.
, 2 and 3 are connected by the waveguide portions 41 and 42 of the optical waveguide 4, and the output side end surfaces 20 and 30
, 40, and are connected to receiving electric circuits 12, 22, 32. The two-wavelength optical multiplexing/demultiplexing elements 1, 2, and 3 are the same as those disclosed in the patent application. This is an application of Japanese Patent Application No. 51-122653 "Optical branching/coupling device" filed by Mr. Taking the two-wavelength optical multiplexing/demultiplexing element 1 as an example, this is a convergent optical transmission body whose refractive index gradually decreases from the center to the periphery in a cross section perpendicular to the central axis. An interference film made of a dielectric multilayer film by vacuum deposition is placed on one end face of the convergent light transmitter 13, which has both end faces cut and polished so that the length between the vertical end faces is about 114 times the meandering period of the different-axis incident light beam. A filter film 15 is attached, and another convergent light transmitter 14 having approximately the same length as the convergent light transmitter 13 is adhesively fixed thereto. Next, its operation will be explained. When the end of the optical fiber 8 is fixed at a position offset from the central axis of the incident side end face 19 opposite to the side on which the interference filter film 15 is attached to the convergent light transmitter 13, the output light beam meanders and the beam diameter changes. becomes an expanding light beam 16, travels through the convergent light transmission body 13, and enters the interference filter film 15. Wavelength dependent characteristic 10 of transmittance of interference filter film 15
1 is shown in FIG. 2 along with the coherence characteristics 102 and 103 of the interference filter films 25 and 35 of other two-wavelength optical multiplexing and demultiplexing elements 2 and 3. In other words, the interference filter film 15 has a property of transmitting almost all the light around the wavelength λ1 and reflecting almost all the light around the wavelength λ1, so that the light beam 16 has the property of transmitting almost all the light around the wavelength λ1.
The light is separated into a light beam 17 consisting of nearby light and a light beam 18 consisting of light of other wavelengths by transmission and reflection of the interference filter film 15, respectively.

したがつて、集束性光伝送体14の出射側端面20より
出射する光は波長λ1附近の光よりなるので、光検出器
11で検出し受信電気回路で処理すれば、波長λ1附近
の光で送られて来た信号を他の波長の光信号の干渉を受
けることなく再生することができる。一方、波長λ1附
近以外の波長の光よりなる光ビーム18は干渉フィルタ
膜15で反射された後、集束性光伝送体13中をやはり
蛇行しながら光ビーム16と反対方向に進み入射側端面
19の光ファイバ8の端部を設置したところとは異なる
場所から出射する。それでこの部分と次の二波長光多重
分波素子2の入射側端面29の間を光導波路4の導波部
41で接続し、波長λ1附近以外の光を次の二波長光多
重分波素子2に入射させると、上に述べたのと同様に波
長λ2の附近の光のみか出射側端面30より出射する。
以下同様にして二波長光多重分波素子3の出射側端面4
0より波長λ3の附近の光のみが出射し、波長分波が実
現する。集束性光伝送体13,14,23,24,33
,34はガラス丸棒に通常よく知られたイオン交換法を
用いて製作したもので直径約2?、長さ約5順である。
光導波部4には、ガラス平板にマスクをかけやはりイオ
ン交換を行なうことによりU字形の導波部41,42を
形成したものを用いた。第1図からすぐわかるように、
各二波長光多重分波素子1,2,3の出射光は同一方向
へ出射し、しかも各出射光の間隔は光導波路4の導波部
41,42の形状および寸法を適当に選ぶことによつて
ほぼ任意に決めることができるので、光検出器11,2
1,31および受信電気回路12,22,32を並列に
高密度に受信装置の中へ設置することができる。
Therefore, since the light emitted from the output side end face 20 of the convergent optical transmitter 14 consists of light with a wavelength of around λ1, if it is detected by the photodetector 11 and processed by the receiving electric circuit, it will become light with a wavelength of around λ1. The transmitted signal can be reproduced without interference from optical signals of other wavelengths. On the other hand, the light beam 18 consisting of light having a wavelength other than the wavelength λ1 is reflected by the interference filter film 15 and then travels in the direction opposite to the light beam 16 while meandering through the convergent light transmission body 13 and reaches the end surface 19 on the incident side. The light is emitted from a location different from where the end of the optical fiber 8 is installed. Therefore, this part and the input side end face 29 of the next two-wavelength optical multiplexing/demultiplexing element 2 are connected by the waveguide section 41 of the optical waveguide 4, and the light other than the wavelength λ1 is transferred to the next two-wavelength optical multiplexing/demultiplexing element. 2, only light around the wavelength λ2 is emitted from the output side end face 30, as described above.
Thereafter, in the same manner, the output side end face 4 of the two-wavelength optical multiplexing/demultiplexing element 3
Only light with wavelength λ3 near 0 is emitted, and wavelength demultiplexing is realized. Focusing light transmission body 13, 14, 23, 24, 33
, 34 is a glass round rod made using the well-known ion exchange method and has a diameter of about 2? , approximately 5 in length.
The optical waveguide section 4 used was one in which U-shaped waveguide sections 41 and 42 were formed by covering a glass flat plate with a mask and also performing ion exchange. As you can easily see from Figure 1,
The emitted light from each of the two-wavelength optical multiplexing/demultiplexing elements 1, 2, and 3 is emitted in the same direction, and the interval between each emitted light is determined by appropriately selecting the shape and dimensions of the waveguide portions 41, 42 of the optical waveguide 4. Therefore, the photodetectors 11 and 2 can be determined almost arbitrarily.
1, 31 and receiving electric circuits 12, 22, 32 can be installed in parallel and densely in the receiving device.

さらに光検出器11,21,31は二波長光多重分波素
子1,2,3の出射側端面20,30,40に直接近接
して設置できるので、光ファイバ等を用いてこの間を結
合する場合に較べて挿入損失を小さくすることができ、
光多重分波回路全体としても低損失化が実現てきた。第
3図はこの発明の第2の実施例の平面図をあられす。こ
の実施例では、第1の実施例の光導波路4の導波部41
のかわりに、集束性光伝送体51,61斜めの反射面を
もつ透明体52,62からなる光導波路5を用いて二波
長光多重分波素子1,2の間を結合したものである。二
波長光多重分波素子1の干渉フィルタ膜15で反射され
た光ビーム18は集束性光伝送体51で径の大きなほぼ
平行の光ビーム54に変換された後透明体52,62の
斜めの反射面で全反射され、別の集束性光伝送体61へ
入射し、集束されて次の二波長光多重分波素子2へ入射
する。図では省略したが以下同様にして多波長の分波が
行なえる。この実施例でも、各二波長光多重分波素子に
より分波された光はほぼ同一方向へ出射されるので、光
検出器および受信電気回路を高密度に受信装置の中へ組
み込むことができる。また、各二波長光多重分波素子の
出射側端面へ直接光検出器を近つけて設置できるので挿
入損失も小さくできる。この実施例では透明体52,6
2中の光ビーム54,55は径が大きいので、透明体5
2と透明体62の間の相対的な位置にはそれほどきびし
い精度が要求されない。つまり透明体52と透明体62
は密着していても良いし少し離れていても良い。また、
両者の光軸が多少ずれていても良い。したがつて例えば
、二波長分波素子2、集束性光伝送体61,63透明体
62,64光検出器21それに受信電気回路22をひと
つのユニットとしてあらかじめ組み立てておき、これら
を必要に応じて複数個次々と接続することができる。こ
のような構成にすれば、伝送容量を後になつて増やした
いとき等に比較的容易に多重度を増すことが可能になる
。第4図は、この発明の第3の実施例の導波路7を説明
するための平面図をあられす。
Furthermore, since the photodetectors 11, 21, and 31 can be installed directly adjacent to the output side end faces 20, 30, and 40 of the two-wavelength optical multiplexing and demultiplexing elements 1, 2, and 3, the optical fibers or the like can be used to couple these together. The insertion loss can be reduced compared to the case where
Low loss has also been achieved in the entire optical multiplexing and demultiplexing circuit. FIG. 3 shows a plan view of a second embodiment of the invention. In this embodiment, the waveguide section 41 of the optical waveguide 4 of the first embodiment is
Instead, the two-wavelength optical multiplexing and demultiplexing elements 1 and 2 are coupled using an optical waveguide 5 consisting of a convergent optical transmission body 51 and 61 and a transparent body 52 and 62 having oblique reflective surfaces. The light beam 18 reflected by the interference filter film 15 of the two-wavelength optical multiplexing and demultiplexing element 1 is converted into a substantially parallel light beam 54 with a large diameter by the converging light transmission body 51, and then the light beam 18 is converted into a substantially parallel light beam 54 with a large diameter. It is totally reflected by the reflecting surface, enters another convergent optical transmission body 61, is focused, and enters the next two-wavelength optical multiplexing/demultiplexing element 2. Although not shown in the figure, multiple wavelengths can be demultiplexed in a similar manner. In this embodiment as well, since the light demultiplexed by each two-wavelength optical multiplexing/demultiplexing element is emitted in substantially the same direction, it is possible to incorporate the photodetector and the receiving electric circuit into the receiving device with high density. Furthermore, since the photodetector can be installed directly close to the output side end face of each two-wavelength optical multiplexing/demultiplexing element, insertion loss can also be reduced. In this embodiment, transparent bodies 52, 6
Since the light beams 54 and 55 in 2 have large diameters, the transparent body 5
2 and the transparent body 62 does not require great precision. In other words, the transparent body 52 and the transparent body 62
may be in close contact with each other or may be a little apart. Also,
The optical axes of both may be slightly shifted. Therefore, for example, the two-wavelength demultiplexing element 2, the focusing optical transmission bodies 61, 63, the transparent bodies 62, 64, the photodetector 21, and the receiving electric circuit 22 are assembled in advance as one unit, and these can be assembled as needed. Multiple pieces can be connected one after another. With such a configuration, it becomes possible to increase the multiplicity relatively easily when it is desired to increase the transmission capacity later. FIG. 4 is a plan view for explaining the waveguide 7 of the third embodiment of the present invention.

ここては二波長光多重分波素子2と3の間を接続する導
波部7を例にとつて説明する。この導波路7は二波長光
多重分波素子2,3の入射側端面に近接して設置された
集束性光伝送体71,72透明体80反射膜81ででき
ている。集束性光伝送体71,72の長さは光ビーム蛇
行周期の約114に選んだ二波長光多重分波素子2中の
光ビーム28は集束性光伝送体71に異軸で入射し、径
の大きなほぼ平行な光ビーム74となつて斜めに集束性
光伝送体71から出射される。
Here, a description will be given taking as an example the waveguide section 7 that connects the two-wavelength optical multiplexing/demultiplexing elements 2 and 3. This waveguide 7 is made up of convergent light transmitters 71, 72, a transparent body 80, and a reflective film 81, which are installed close to the incident side end faces of the two-wavelength optical multiplexing/demultiplexing elements 2, 3. The length of the convergent optical transmitters 71 and 72 is selected to be approximately 114 times the meandering period of the optical beam.The optical beam 28 in the two-wavelength optical multiplexing/demultiplexing element 2 enters the convergent optical transmitter 71 on different axes, and the diameter A large, almost parallel light beam 74 is obliquely emitted from the convergent light transmission body 71.

この光ビーム74は透明体80の一方の面につけられた
反射膜81により折り返されて光ビーム75となり、再
び別の集束性光伝送体72で集束され光ビーム76とな
つて次の二波長光多重分波素子3へ入射する。この実施
例の導波路7でも第2の実施例の導波路5,6と同様に
、二波長光多重分波素子の出射光ビームを集束性光伝送
体によつて径が大きくほぼ平行な光ビームに変換してか
ら反射させているのて、透明体80と集束性光伝送体7
1,72の相対的な位置精度はそれほどきびしくなく光
多重分波回路の組立は比較的容易である。
This light beam 74 is reflected by a reflective film 81 attached to one surface of a transparent body 80 to become a light beam 75, which is again focused by another convergent light transmission member 72 to become a light beam 76, which is then converted into a light beam 76, which becomes the next two-wavelength light beam. The light is incident on the multiplexing and demultiplexing element 3. In the waveguide 7 of this embodiment, similarly to the waveguides 5 and 6 of the second embodiment, the output light beam of the two-wavelength optical multiplexing/demultiplexing element is converted into a substantially parallel light beam with a large diameter by a focusing optical transmission body. The transparent body 80 and the convergent light transmitting body 7 are used to convert the beam into a beam and then reflect it.
The relative positional accuracy of 1 and 72 is not so strict, and the assembly of the optical multiplexing/demultiplexing circuit is relatively easy.

以上実施例に基づいてこの発明を説明したが、光多重分
波回路の主要な構成要素である二波長光多重分波素子は
直径約2wn1長さ約10TInと小さいので、どの実
施例てもきわめて小型な光多重分波回路が実現された。
Although the present invention has been described above based on the embodiments, the two-wavelength optical multiplexing and demultiplexing element, which is the main component of the optical multiplexing and demultiplexing circuit, is small with a diameter of about 2wn and a length of about 10TIn, so any embodiment is extremely A compact optical multiplexing/demultiplexing circuit has been realized.

ここではこの発明による多波長光多重分波回路を分波回
路として用いる場合について述べた。実施例の光検出器
および受信電気回路のかわりに光源および送信電気回路
を用いれば高密度に送信装置の中に光源および送信電気
回路を組み込むことか可能な多波長用の光多重回路とし
ても用いることができる。二波長光多重分波素子の一方
の端面の間を光学〜的に結ぶ光導波路は実施例に示した
ものに限らず、半導体多層構造を用いたりイオン打ち込
みを利用したりした半導波路等であつても良い。
Here, a case has been described in which the multi-wavelength optical multiplexing/demultiplexing circuit according to the present invention is used as a demultiplexing circuit. If a light source and a transmitting electric circuit are used instead of the photodetector and receiving electric circuit of the embodiment, the light source and the transmitting electric circuit can be incorporated in a transmitting device with high density.It can also be used as an optical multiplexing circuit for multiple wavelengths. be able to. The optical waveguide that optically connects one end face of the two-wavelength optical multiplexing/demultiplexing element is not limited to the one shown in the embodiment, but may also be a semi-waveguide using a semiconductor multilayer structure or using ion implantation. It's okay if it's hot.

二波長光多重分波素子の干渉フィルタ膜は第2図に示し
た特性のものでなくとも良く、ある波長以上の光のみを
透過(あるいは反射)する特性のものも使うことができ
る。
The interference filter film of the two-wavelength optical multiplexing/demultiplexing element does not have to have the characteristics shown in FIG. 2, and may also have the characteristics of transmitting (or reflecting) only light of a certain wavelength or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の平面図、第2図はそ
こに用いられる干渉フィルタ膜の透過率゛特性をあられ
す図、第3図はこの発明の第2の実施例の平面図、第4
図はこの発明の第3の実施例の部分平面図をそれぞれあ
られす。 図において1,2,3・・・・・・二波長光多重分波素
子、4,5,6,7・・・・・・光導波路、8・・・・
・・光ファイバ、11,21,31・・・・・・光検出
器、12,22,32・・・・・受信電気回路、13,
14,23,24,33,34,51,61,63,7
1,72・・・・・・集束性光伝送体、15,25,3
5・・・・・・干渉フィルタ膜、16,17,18,2
6,27,28,36,37,54,55,56,57
,58,59,73,74,75,76・・・・・光ビ
ーム、19,29,39・・・・入射側端面、20,3
0,40・・・・・・出射側端面、41,42・・・・
光導波部、52,62,64,80・・・・透明体、8
1・・・反射膜、101,102,103・・・・・・
透過率特性をそれぞれあられす。
Fig. 1 is a plan view of the first embodiment of the present invention, Fig. 2 is a diagram showing the transmittance characteristics of the interference filter film used therein, and Fig. 3 is a plan view of the second embodiment of the invention. Floor plan, 4th
The figures each show a partial plan view of a third embodiment of the invention. In the figure, 1, 2, 3... two-wavelength optical multiplexing/demultiplexing element, 4, 5, 6, 7... optical waveguide, 8...
...Optical fiber, 11,21,31...Photodetector, 12,22,32...Reception electric circuit, 13,
14, 23, 24, 33, 34, 51, 61, 63, 7
1,72...Focusing optical transmission body, 15,25,3
5...Interference filter membrane, 16, 17, 18, 2
6, 27, 28, 36, 37, 54, 55, 56, 57
, 58, 59, 73, 74, 75, 76... light beam, 19, 29, 39... incident side end surface, 20, 3
0, 40... Output side end surface, 41, 42...
Optical waveguide section, 52, 62, 64, 80...transparent body, 8
1... Reflective film, 101, 102, 103...
The transmittance characteristics are shown separately.

Claims (1)

【特許請求の範囲】[Claims] 1 中心軸に垂直な二つの端面を持ち、前記中心軸に垂
直な断面内で屈折率が中心から周辺に向つて徐々に減少
している二つの集束性光伝送体のそれぞれの一方の前記
端面の間に波長選択性を有する膜をはさんだ複数個の二
波長分波素子と、前記二波長分波素子の一方の端面の間
を光学的に結合する光導波路とを含む光ビーム用光波多
重分波回路。
1. One end surface of each of two convergent optical transmission bodies having two end surfaces perpendicular to the central axis, the refractive index of which gradually decreases from the center to the periphery within a cross section perpendicular to the central axis. Optical wave multiplexing for light beams, comprising a plurality of two-wavelength demultiplexing elements with a film having wavelength selectivity sandwiched therebetween, and an optical waveguide optically coupling between one end face of the two-wavelength demultiplexing elements. Branching circuit.
JP52081735A 1977-07-07 1977-07-07 Optical multiplexing/demultiplexing circuit for optical beams Expired JPS6046682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52081735A JPS6046682B2 (en) 1977-07-07 1977-07-07 Optical multiplexing/demultiplexing circuit for optical beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52081735A JPS6046682B2 (en) 1977-07-07 1977-07-07 Optical multiplexing/demultiplexing circuit for optical beams

Publications (2)

Publication Number Publication Date
JPS5417044A JPS5417044A (en) 1979-02-08
JPS6046682B2 true JPS6046682B2 (en) 1985-10-17

Family

ID=13754676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52081735A Expired JPS6046682B2 (en) 1977-07-07 1977-07-07 Optical multiplexing/demultiplexing circuit for optical beams

Country Status (1)

Country Link
JP (1) JPS6046682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268893A (en) * 2007-03-26 2008-11-06 Kyocera Corp Optical multiplexer/demultiplexer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter
EP0054363B1 (en) * 1980-12-17 1985-06-12 Imperial Chemical Industries Plc Apparatus for gathering data from a plurality of condition responsive optical sensors
JPS5868713A (en) * 1981-10-21 1983-04-23 Nec Corp Optical demultiplexing circuit
JPS58209710A (en) * 1982-05-31 1983-12-06 Nippon Telegr & Teleph Corp <Ntt> Multistage optical demultiplexing and multiplexing circuit
JPS60128729A (en) * 1983-12-16 1985-07-09 Hitachi Ltd Bidirectional transmission system
JPS6291610U (en) * 1986-11-26 1987-06-11
US7130502B2 (en) 2004-02-06 2006-10-31 Nippon Sheet Glass Co., Ltd. Wavelength division multiplexing optical coupler
US7356223B2 (en) 2005-01-19 2008-04-08 Nippon Sheet Glass Company, Limited Optical filter element and wavelength division multiplexing optical coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268893A (en) * 2007-03-26 2008-11-06 Kyocera Corp Optical multiplexer/demultiplexer

Also Published As

Publication number Publication date
JPS5417044A (en) 1979-02-08

Similar Documents

Publication Publication Date Title
US4274706A (en) Wavelength multiplexer/demultiplexer for optical circuits
US4244045A (en) Optical multiplexer and demultiplexer
JPS60101508A (en) Light wavelength multiplexer and demultiplexer for bidirectional
JPH11507738A (en) Optoelectronic circuit
JP4311579B2 (en) Optical module and optical wavelength multiplexer / demultiplexer
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
JP2001223642A (en) Optical communication unit
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
JP2000028847A (en) Multiplexer
JPS5868713A (en) Optical demultiplexing circuit
JPH0527136A (en) Optical multiplexer/demultiplexer
US6829096B1 (en) Bi-directional wavelength division multiplexing/demultiplexing devices
JP2000131542A (en) Optical transmission and reception module
US6704478B2 (en) Wavelength separation optical device and multiple wavelength light transmission module
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JPS61103110A (en) Optical multiplexer and demultiplexer
US6621959B2 (en) Planar waveguide diffractive beam splitter/coupler
JPH03291603A (en) Optical multiplexer/demultiplexer
JPS6049882B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
JPS59131908A (en) Photo coupling device and manufacture thereof
CA2211644C (en) Optical demultiplexor
JPS6152443B2 (en)
JPS60191210A (en) Optical waveguide device
JP2004094242A (en) Optical module
KR100655534B1 (en) Interleaver for optical communication system