JPS60191210A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPS60191210A
JPS60191210A JP4646684A JP4646684A JPS60191210A JP S60191210 A JPS60191210 A JP S60191210A JP 4646684 A JP4646684 A JP 4646684A JP 4646684 A JP4646684 A JP 4646684A JP S60191210 A JPS60191210 A JP S60191210A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
light
input
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4646684A
Other languages
Japanese (ja)
Inventor
Kazuyuki Asanuma
浅沼 和志
Takashi Yokota
横田 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4646684A priority Critical patent/JPS60191210A/en
Publication of JPS60191210A publication Critical patent/JPS60191210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a small-sized and functional optical waveguide device by connecting an optical waveguide body, a curved surface prism, and optical transmission mediums into one body and arranging an optical film having an optical branching or demultiplexing function or the like in a required position and arranging the transmission mediums for input/output with optical axes parallel with one another. CONSTITUTION:An optical waveguide body 31, an optical branching film 32, and curved surface prisms 33-35 are connected into a one-body structure and are fixed on a bottom plate 37 of an attaching structure body, and input/output optical fibers 11-13 are adhered to input/output planes of curved surface prisms 33-35 through a supporting block 38 so that their optical axes are parallel with one another, thus constituting an optical branching and coupling device 30. The incident light from the optical fiber 11 for input is totally reflected on the curved surface prism 33 to become a parallel beam P and is transmitted through the body 31 and is branched to a transmitted light P1 and a reflected light P2 by the branching film 32. These lights P1 and P2 are totally reflected on curved surface prisms 34 and 35 respectively and are condensed and are inputted to optical fibers 12 and 13 for output and are transmitted. Thus, the small- sized and functional optical waveguide device is obtained.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明は、光伝送回路に用いられる光導波路デバイスに
関し、特に、その構成要素でおる光導波本体と光伝送媒
体との結合構造に関するものである。尚、本明細書にお
いて、光導波路デバイスとは、光の分岐・結合、分波・
合波、又はこれに類する作用を行なう光デバイスのこと
をいう。また、光学膜とは、光の一部を透過すると共に
他部を反射して光の分岐又は分波等の機能を有する光学
膜のことをいう。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an optical waveguide device used in an optical transmission circuit, and particularly relates to a coupling structure between an optical waveguide body and an optical transmission medium, which are the constituent elements thereof. be. Note that in this specification, an optical waveguide device refers to a device for branching/coupling light, demultiplexing/demultiplexing, etc.
Refers to an optical device that performs multiplexing or similar functions. Furthermore, the term "optical film" refers to an optical film that transmits part of the light and reflects the other part, thereby having functions such as branching or demultiplexing the light.

(ロ)技術の背景 光伝送回路には各種の光デバイスが用いられると共に上
述の如き光導波路デバイスが多用されている。この種の
光導波路デバイスは、他の光デバイスと共に光伝送回路
に実装されるに除し、その実装面積が小さいことが鼠ま
しく、従って、小形化が可能な構造のものでおることが
望まれている。
(b) Background of the Technology Various optical devices are used in optical transmission circuits, and optical waveguide devices such as those described above are often used. Although this type of optical waveguide device is mounted in an optical transmission circuit together with other optical devices, its mounting area is small and it is therefore desirable to have a structure that can be miniaturized. It is rare.

(ハ)従来技術と問題点 第1図と第2図は従来例を説明するための図であって、
第1図は光導波路デバイスの一例として従来の光分岐器
の基本構成を示す図、第2図は他の例として従来の光分
波・合波器の基本構成を示す図である。尚、これらの図
において同一部分又は相当部分は同一符号をもって示し
である。
(c) Prior art and problems Figures 1 and 2 are diagrams for explaining a conventional example,
FIG. 1 is a diagram showing the basic configuration of a conventional optical branching device as an example of an optical waveguide device, and FIG. 2 is a diagram showing the basic configuration of a conventional optical demultiplexer/multiplexer as another example. In these figures, the same or equivalent parts are indicated by the same reference numerals.

第1図に示す従来例において、符号11,12゜13は
光ファイバ(光伝送媒体)、16.17゜18はレンズ
、21はハーフミラ−(分岐膜)をそれぞれ示す。そし
て、これらの各部分(部品)は空間を介して個別に配置
され、筐体等の固定構造体(図示なし)Kよって所定位
置に固定される。
In the conventional example shown in FIG. 1, reference numerals 11, 12.degree. 13 indicate optical fibers (optical transmission media), 16.17.degree. 18 indicate lenses, and 21 indicates a half mirror (branching film), respectively. Each of these parts (components) is arranged individually with a space between them, and is fixed at a predetermined position by a fixing structure (not shown) K such as a housing.

人力用の光ファイバ11から射出された信号光Pはレン
ズ16によって平行ビームに変換されてハーフミラ−2
1に入射し、このハーフミラ−21によって透過光Pl
と反射光P2とに分岐される。
The signal light P emitted from the optical fiber 11 for human power is converted into a parallel beam by the lens 16, and the half mirror 2
1 and transmitted light Pl by this half mirror 21.
and reflected light P2.

透過光tlはレンズ17によって集光されてから出力用
の光ファイバ12に入力されて伝送される。
The transmitted light tl is condensed by a lens 17, and then input to an output optical fiber 12 and transmitted.

他方、反射光P2はレンズ18によって集光されてから
出力用の光ファイバ13に入力されて伝送される。しか
しながら、この光分岐器は反射光(分岐光)P2を伝送
する出力用の光ファイ/<13の光軸を入力用の光ファ
イバ11の光軸に対し直角状に配置する必要があるため
大形化されるという問題がある。また、たとえ、ノー−
7ミラー21の配置角匿(傾斜角度)を変えても、光フ
ァイノく13は光ファイバ11に対して斜め方向に配置
する必要があるため、大形化の間聰を解決することはで
きない。さらに、光ファイバ11〜13と、レンズ16
〜18と、ノ−−ミラー21とが空間を介して個別に配
置されているため、これも大形化の原因となっている。
On the other hand, the reflected light P2 is focused by the lens 18, and then input to the output optical fiber 13 and transmitted. However, this optical splitter requires the optical axis of the output optical fiber/<13 that transmits the reflected light (branched light) P2 to be arranged at right angles to the optical axis of the input optical fiber 11, which makes it difficult to use. There is a problem of being formalized. Also, even if no-
Even if the arrangement angle (inclination angle) of the mirror 21 is changed, the optical fiber 13 needs to be arranged diagonally with respect to the optical fiber 11, so the problem of increasing the size cannot be solved. Furthermore, optical fibers 11 to 13 and a lens 16
18 and the no-mirror 21 are arranged separately with a space between them, which also causes an increase in size.

第2図に示す従来例において、符号11〜15は光ファ
イバ、16〜20はレンズ、22〜24は干渉膜フィル
ター(分波膜)をそれぞれ示す。
In the conventional example shown in FIG. 2, reference numerals 11 to 15 indicate optical fibers, 16 to 20 indicate lenses, and 22 to 24 indicate interference film filters (branching films), respectively.

そして、これらの%部分(部品)は、前出の第1図の従
来例と同様に、空間を介して個別に配置され、筐体等の
固定構造体(図示なし)によって所定位置に固定される
。入力用の光ファイバ11から射出された信号光Pは複
数種の異なる波長λl。
Similar to the conventional example shown in FIG. 1 above, these parts (components) are arranged individually with space between them, and are fixed at predetermined positions by a fixing structure (not shown) such as a housing. Ru. The signal light P emitted from the input optical fiber 11 has a plurality of different wavelengths λl.

λ2.λ3.λ4を含む信号光であり、レンズ16によ
って平行ビームに変換されてフィルター22に入射する
。フィルター22は波長λ1の信号光Piのみ透過させ
、他の信号光P2(λ2)I”3(λ3)。
λ2. λ3. The signal light includes λ4, is converted into a parallel beam by the lens 16, and enters the filter 22. The filter 22 transmits only the signal light Pi having the wavelength λ1, and transmits the other signal light P2(λ2)I''3(λ3).

P4(λ4)は反射させる。透過された信号光Pt(λ
1)はレンズ17によって集光されてから出力用の光フ
ァイバ12に入力されて伝送される。他方、反射された
信号光P2. Ps、 P4はフィルター23に入射さ
れる。フィルター23は波長λ2の信号光P2のみ透過
させ、他の信号光Ps(λ3)lP4(λ4)は反射さ
せる。透過された信号光Pz(λ2)はレンズ18によ
って集光されてから出力用の光ファイバ13に人力され
て伝送される。他方、反射された信号光Ps(2g、)
+P4(λ4)はフィルター24に入射される。フィル
ター24は波長λ3の信号光P3のみ透過させ、他の信
号光P4(λ4)は反射させる。透過された信号光Pg
(λ3)はレンズ19によって集光されてから出力用の
光ファイバ14に入力されて伝送される。他方、反射さ
れた信号光P4(λ4)はレンズ20によって集光され
てから出力用の光ファイバ15に入力されて伝送される
P4 (λ4) is reflected. The transmitted signal light Pt(λ
1) is condensed by a lens 17, then input to an output optical fiber 12 and transmitted. On the other hand, the reflected signal light P2. Ps and P4 are input to the filter 23. The filter 23 transmits only the signal light P2 having the wavelength λ2, and reflects the other signal light Ps(λ3)lP4(λ4). The transmitted signal light Pz (λ2) is collected by a lens 18 and then manually transmitted to an output optical fiber 13. On the other hand, the reflected signal light Ps(2g,)
+P4 (λ4) is input to the filter 24. The filter 24 transmits only the signal light P3 having the wavelength λ3, and reflects the other signal light P4 (λ4). Transmitted signal light Pg
(λ3) is focused by the lens 19 and then input to the output optical fiber 14 and transmitted. On the other hand, the reflected signal light P4 (λ4) is focused by the lens 20, and then input to the output optical fiber 15 and transmitted.

このように、出力用光ファイバ11から射出された′信
号光P(λl、λ2.λ3.λ4)は各波長毎に分波さ
れて伝送される。すなわち、第2図に図示の場合は分波
器としての役割を果している。尚、第2図において、各
信号光の人出方向を図示の方向と逆にすれば合波器の役
割を果すことになる。しかしながら、この光分波・合波
器の場合も、前出の従来例(第1図)と同様に、入力用
の光7アイパ11の光軸と出力用の光ファイバ12〜1
5の光軸を交互に斜め方向に配置する必要があるため大
形化されるという問題がある。また、光ファイバ11〜
15と、レンズ16〜20と、フィルタ22〜24とが
それぞれ空間を介して個別に配置されているため、これ
により大形化されるという問題がめる。また、これらの
従来例は、例えば、光の分岐と分波機能を組合せた複合
回路を形成する場合、構造的に非常に作シにくく、組合
せによる機能的な効果が出しにくいという問題もある。
In this way, the signal light P (λl, λ2.λ3.λ4) emitted from the output optical fiber 11 is demultiplexed into each wavelength and transmitted. That is, in the case shown in FIG. 2, it functions as a duplexer. In addition, in FIG. 2, if the direction in which each signal light emerges is reversed from the direction shown, it will function as a multiplexer. However, in the case of this optical demultiplexer/multiplexer, the optical axis of the input optical 7-eyeper 11 and the optical fibers 12 to 1 for output are connected as in the conventional example (Fig. 1).
Since it is necessary to arrange the optical axes of No. 5 in diagonal directions alternately, there is a problem in that the size is increased. Moreover, the optical fiber 11~
15, lenses 16 to 20, and filters 22 to 24 are individually arranged with space between them, which causes a problem of increased size. Further, these conventional examples have the problem that, for example, when forming a composite circuit that combines optical branching and demultiplexing functions, it is structurally very difficult to construct, and it is difficult to produce functional effects by combining them.

に)発明の目的 本発明の目的は、上記従来技術の問題点に鑑み、光導波
路デバイスの入出力の光軸が互に平行位置関係となるよ
うに構成し、かつ各構成部品を一体化した一体構造で小
形化が可能でしかも機能的な光導波路デバイスを提供す
ることにある。
B) Purpose of the Invention In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an optical waveguide device in which the input and output optical axes of the optical waveguide device are arranged parallel to each other, and each component is integrated. The object of the present invention is to provide an optical waveguide device that has an integrated structure, can be miniaturized, and is functional.

(ホ)発明の構成 そして、上記目的を達成するために、本発明に依れば、
透光性物質から略平行な対向平面を有する光導波本体を
形成し、前記対向平面の予め定められた所定部分に入射
光の一部を透過させると同時に他部を反射させる機能を
有する光学膜を設け、面角が略90°をなす人出光平面
と反射2次曲面とを有する複数個の曲面プリズムを、そ
の人出光平面の一方が前記光導波本体の対向平面におけ
る光入出力部にそれぞれ固着された形態で配設し、光伝
送媒体?前記曲面プリズムの人出光平面の他方にそれぞ
れ接続固着させると共に該光伝送媒体の光軸が互に略平
行状態かつ前記光導波本体の対向平面とも略平行状態に
なるように配設したことを特徴とする光導波路デバイス
が提供される。
(e) Structure of the invention In order to achieve the above object, according to the present invention,
An optical film having a function of forming an optical waveguide body having substantially parallel opposing planes from a light-transmitting material and transmitting a part of incident light to a predetermined part of the opposing plane while simultaneously reflecting the other part. , and a plurality of curved prisms each having an outgoing light plane and a reflecting quadratic curved surface with a face angle of approximately 90°, one of which outgoing light planes is located at the light input/output portion of the opposing plane of the optical waveguide body, respectively. Arranged in a fixed form and optical transmission medium? The curved prism is connected and fixed to the other of the light output planes, and the optical axes of the optical transmission medium are arranged so that they are substantially parallel to each other and substantially parallel to the opposing plane of the optical waveguide body. An optical waveguide device is provided.

(へ)発明の実施例 以下、本発明の実施例を図面に基づいて詳細に説明する
(F) Embodiments of the Invention Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図から第7図は本発明の詳細な説明するための図で
ある。尚、これらの図において、前出の第1,2図と同
一部分は同一符号をもって示しである。
3 to 7 are diagrams for explaining the present invention in detail. In these figures, the same parts as in the above-mentioned Figs. 1 and 2 are designated by the same reference numerals.

第3図は本発明の光導波路デバイスの第1実施例である
光分岐・結合器30の斜視図(但し、取付構造体の底板
37上に取付けた状態で示す)、第4図は第3図の矢印
A方向からみた光分岐・結合器30の平面図、第5図は
第4図の曲面プリズム33(34,35)の単体側面図
、第6図は第5図の矢印B方向からみた曲面プリズム3
3の正面図である。これらの図において、符号31は光
導波本体、32は光の分岐膜、33,34.35は曲面
プリズム、37は取付構造体(図示なし)の底板、38
は光フアイバ支持ブロックをそれぞれ示す。光導波本体
31は光学ガラス(例えば、BK−7)から直方体状に
形成され、特に側平面31a、31bが光学面として互
に平行な対向平面に形成されている。光分岐膜32は誘
電体多層膜(例えば、TiO2と5i02を交互に蒸着
して形成したもの)から成り、本体31の側平面31b
上に固着され、入射光の一部を透過させ、他部を反射さ
せる機能を有している。曲面プリズム33゜34.35
は共に同一形状に形成され、かつ本体31の屈折率と同
じ屈折率を有している。第5図と第6回に示すように、
曲面プリズム33(代表として示す)は面角90°をな
す人出光平面33a。
FIG. 3 is a perspective view of an optical branch/coupler 30 which is a first embodiment of the optical waveguide device of the present invention (however, it is shown mounted on the bottom plate 37 of the mounting structure), and FIG. A plan view of the optical splitter/combiner 30 seen from the direction of arrow A in the figure, FIG. 5 is a side view of the curved prism 33 (34, 35) of FIG. Viewed curved prism 3
It is a front view of No. 3. In these figures, reference numeral 31 is an optical waveguide body, 32 is an optical branching film, 33, 34, 35 are curved prisms, 37 is a bottom plate of a mounting structure (not shown), 38
indicate optical fiber support blocks, respectively. The optical waveguide body 31 is formed from optical glass (for example, BK-7) in the shape of a rectangular parallelepiped, and in particular, side planes 31a and 31b are formed as optical surfaces parallel to each other and opposing planes. The light branching film 32 is made of a dielectric multilayer film (for example, formed by alternately depositing TiO2 and 5i02), and is formed on the side plane 31b of the main body 31.
It has the function of transmitting part of the incident light and reflecting the other part. Curved prism 33°34.35
are both formed in the same shape and have the same refractive index as that of the main body 31. As shown in Figure 5 and Part 6,
The curved prism 33 (shown as a representative) has a light plane 33a with a surface angle of 90°.

33bと、凸状の反射2次曲面(例えば、放物面。33b, and a convex reflective quadratic curved surface (for example, a paraboloid).

双曲面等)33cとヲ准して形成されている。そして、
曲面プリズム33は、その人出光平面33aに垂直状に
光ファイバ11が光学接着され、人出光平面33bが本
体31の側平面31aの予め定められた入出力部に光学
接着さnる。これと同様に曲面プリズム34.35も光
ファイバ12.13が接着され、かつ本体31の側平面
31a、31bの予め定められた入出力部にそれぞれ光
学接着される。但し、曲面プリズム34は分岐膜32上
に接着される(第4図参照)。そして、本体31は、第
3図に示すように、底板37上に固着され、かつ光7ア
イパ11.12.13は底板37上に固定された支持ブ
ロック38によってそれぞれ支持固定される。さて、第
5図と第6同に示すように、曲面プリズム33の反射2
次曲面33cはその境界面の内側面が凹面鏡の役割を果
すもので、光ファイバ11から任意の拡がυ角で入射さ
れた光ビームPを全反射によシ平行ビームに変換して出
力させるか、又はこれと逆に入射された平行ビームを全
反射により集光して光ファイバ11に入力させる特性を
有するものである。すなわち、この反射2次曲面33c
は入射光の各点における入射角が臨界角以上になるよう
に形成されている。従って、曲面プリズム33.34.
35は反射鏡と集光レンズの機能を兼有するように形成
されたものである。
(hyperboloid, etc.) 33c. and,
In the curved prism 33, the optical fiber 11 is optically bonded perpendicularly to the outgoing light plane 33a, and the outgoing light plane 33b is optically bonded to a predetermined input/output portion of the side plane 31a of the main body 31. Similarly, the curved prisms 34.35 are also optically bonded to the optical fibers 12.13 and to predetermined input/output portions of the side planes 31a, 31b of the main body 31, respectively. However, the curved prism 34 is bonded onto the branch membrane 32 (see FIG. 4). As shown in FIG. 3, the main body 31 is fixed on a bottom plate 37, and the optical components 11, 12, and 13 are supported and fixed by support blocks 38 fixed on the bottom plate 37, respectively. Now, as shown in FIGS. 5 and 6, the reflection 2 of the curved prism 33
The inner surface of the boundary surface of the next curved surface 33c plays the role of a concave mirror, and converts the light beam P incident from the optical fiber 11 at an arbitrary divergence angle υ into a parallel beam by total internal reflection and outputs it. Or, conversely, it has a characteristic of condensing an incident parallel beam by total reflection and inputting it into the optical fiber 11. That is, this reflective quadratic curved surface 33c
is formed so that the angle of incidence of the incident light at each point is greater than or equal to the critical angle. Therefore, the curved prisms 33.34.
Reference numeral 35 is formed to have both the functions of a reflecting mirror and a condensing lens.

次に、この光分岐・結合器30の光分岐作用全第4図を
参照して説明する。入力用の光ファイバ11から任意の
拡がり角で射出され曲面プリズム33に入射した信号光
Pは、曲面プリズム33に・よって全反射されると同時
に平行ビームPに変換きれ、本体31を透過して分岐膜
32に入射される。そして、この平行ビームの信号光P
は分岐膜32によって透過光Plと反射光P2に分岐さ
れる。
Next, the optical branching operation of the optical branching/coupling device 30 will be explained with reference to FIG. The signal light P that is emitted from the input optical fiber 11 at an arbitrary divergence angle and enters the curved prism 33 is totally reflected by the curved prism 33 and simultaneously converted into a parallel beam P, which passes through the main body 31. The light is incident on the branching film 32. Then, this parallel beam signal light P
is branched by the branching film 32 into transmitted light Pl and reflected light P2.

透過光P1は曲面プリズム34によって全反射されると
同時に集光されてから出力用の光ファイバ12に入力さ
れて伝送される。他方、反射光P2は本体31を透過し
て曲面プリズム35に入射され、曲面プリズム35によ
って全反射されると同時に集光されてから出力用の光フ
ァイバ13に入力されて伝送される。このよりにして、
光ファイバ11から入力された信号光Pは信号光Plと
P2に分岐されて光ファイバ12と13によって、それ
ぞれ伝送される。尚、この光分岐・結合器30は、入出
力信号光P*PltP2の方向を第4図に示す場合と逆
方向にして、信号光P1とP2 t”光ファイバ12と
13からそれぞれ入力させると、信号光P1とP2が結
合された信号光Pが光ファイバ11から出力され、光結
合器として作用する。また、さらには、この光分岐・結
合器30は、分岐膜32を分波膜に置き換えることによ
り、簡単に光分波・合波器に変形することができる。
The transmitted light P1 is totally reflected and condensed by the curved prism 34, and then input to the output optical fiber 12 and transmitted. On the other hand, the reflected light P2 passes through the main body 31, enters the curved prism 35, is totally reflected by the curved prism 35, and at the same time is condensed, and then input to the output optical fiber 13 and transmitted. Based on this,
Signal light P input from optical fiber 11 is branched into signal lights Pl and P2, and transmitted through optical fibers 12 and 13, respectively. Note that this optical branching/coupling device 30 can be constructed by setting the direction of the input/output signal light P*PltP2 in the opposite direction to that shown in FIG. , the signal light P in which the signal lights P1 and P2 are combined is output from the optical fiber 11 and acts as an optical coupler.Furthermore, this optical branching/coupling device 30 converts the branching film 32 into a splitting film. By replacing it, it can be easily transformed into an optical demultiplexer/combiner.

上述の如く、この光分岐・結合器30は、光導波本体3
1、分岐膜32、曲面プリズム33゜34.35.及び
入出力用の光ファイバ11,12゜13が一体化された
一体構造に形成され、しかも入出力用の光ファイバ11
.12.13の光軸が互に平行状態で、かつ本体31の
側平面31a。
As mentioned above, this optical branching/coupling device 30 includes an optical waveguide main body 3
1, branch membrane 32, curved prism 33°34.35. and input/output optical fibers 11, 12, 13 are formed into an integrated structure, and the input/output optical fiber 11
.. The optical axes of 12 and 13 are parallel to each other, and the side plane 31a of the main body 31.

31bとも平行状態に配置されて形成されたものであり
、このため大幅な小形化が可能である。
31b are also formed in a parallel state, and therefore it is possible to significantly reduce the size.

第7図は本発明の光導波路デバイスの第2実施例である
光分波・合波器40の平面図である。尚、同図において
、前出の第1.2図(従来例)及び第3〜6図(第1実
施例)と同一部分又は相当部分は同−符をもって示しで
ある。この場合、光導波本体41は、2個の結合用光導
波体42と43とが第1の分波膜44と第2の分波膜4
5とを介して一体化されて構成されている。結合用光導
波一体42.43は共に光学ガラス(例えば、BK−7
)から直方体状に形成され、それぞれの側平面42aと
42b1及び43aと43bが光学面として互に平行な
対向平面に形成されている。そして、結合用光導波体4
2と43は、その側平面42bと43aとの所要箇所に
形成された第1の分波膜44及び第2の分波膜45を介
して互に光学接着されている。そして、側平面42aと
43bの所要箇所にも第1の分波膜44と、第2の分波
膜45とがそれぞれ形成′されている。第1と第2の分
波膜(干渉膜フィルター)44と45は共に誘電体多層
膜(例えば、TiO2と8402とを交互に蒸着して形
成したもの)から形成されたものであるが、後述するよ
うに、それぞれの分波機能が異なるものである。曲面プ
リズム33,34,35゜36は前出の第1実施例の場
合と同様に形成され、かつ同様の要領で光導波本体41
の側平面42a。
FIG. 7 is a plan view of an optical demultiplexer/combiner 40 which is a second embodiment of the optical waveguide device of the present invention. In this figure, the same or equivalent parts as in FIG. 1.2 (conventional example) and FIGS. 3 to 6 (first embodiment) are indicated by the same symbols. In this case, the optical waveguide main body 41 has two coupling optical waveguides 42 and 43 connected to the first wavelength division film 44 and the second division ratio film 4.
5. The coupling optical waveguides 42 and 43 are both made of optical glass (for example, BK-7
), and the respective side planes 42a and 42b1 and 43a and 43b are formed as optical surfaces parallel to each other and facing each other. And the coupling optical waveguide 4
2 and 43 are optically bonded to each other via a first splitting film 44 and a second splitting film 45 formed at required locations on the side planes 42b and 43a. A first wavelength division film 44 and a second division ratio film 45 are also formed at required locations on the side planes 42a and 43b, respectively. The first and second splitting films (interference film filters) 44 and 45 are both formed from a dielectric multilayer film (for example, formed by alternately depositing TiO2 and 8402), which will be described later. As shown, the demultiplexing functions of each are different. The curved prisms 33, 34, 35° 36 are formed in the same manner as in the first embodiment, and the optical waveguide body 41 is formed in the same manner.
side plane 42a.

43bの予め定められた人出力部にそれぞれ光学接着さ
れている。そして、光ファイバ11,12゜13.14
も同様の要領で曲面プリズム33゜34.35.36に
それぞれ光学接着され、それぞれの光軸が互に平行状態
でかつ本体41の側平面42g、43bとも平行状態で
配置されている。
They are each optically bonded to a predetermined human output portion of 43b. And optical fiber 11, 12° 13.14
are optically bonded to the curved prisms 33, 34, 35, and 36 in the same manner, and are arranged so that their optical axes are parallel to each other and parallel to the side planes 42g and 43b of the main body 41.

但し、曲面プリズム36は第2の分波膜45を介して側
平面43b上に光学接着され、また取付形態が他の曲面
プリズム(33,34,35)と異なって固着されてい
る(すなわち、前出の第5図の人出光面33aに相当す
る人出光面が固着され、33bに相当する人出光面に光
ファイバ14が固着されている)。さらに、曲面プリズ
ム36の反射2次曲面部には反射膜(凹面反射ミラー)
46が形成されている。この反射膜46は入射光が局部
的に臨界角以下になる部分を透過させずに全反射させる
ために設けられたものである。′従って、この曲面プリ
ズム36の反射2次曲面部を、他の曲面プリズム33,
34.35の反射2次曲面部の形状と異なる形状に変更
して全反射するよう゛に形成して反射膜46を省略する
こともできる。
However, the curved prism 36 is optically bonded onto the side plane 43b via the second splitting film 45, and the mounting form is different from the other curved prisms (33, 34, 35) (i.e., A light surface corresponding to the light surface 33a in FIG. 5 mentioned above is fixed, and an optical fiber 14 is fixed to the light surface 33b. Furthermore, a reflective film (concave reflective mirror) is provided on the reflective quadratic curved surface of the curved prism 36.
46 is formed. This reflective film 46 is provided to completely reflect the incident light without transmitting the portion where the angle is locally below the critical angle. 'Therefore, the reflective quadratic curved surface portion of this curved prism 36 is connected to other curved prisms 33,
It is also possible to omit the reflective film 46 by changing the shape of the reflection quadratic curved surface portion of 34 and 35 so as to cause total reflection.

さて、この光分波・合波器40は上述したよりに構成さ
れたものであるが、その分波作用は次に述べるように行
なわれる。入力用の光ファイバ11には波長λ1.λ2
及び23 の光を含んだ信号光Pが伝送されてくる。そ
して、この信号光Pは光ファイバ11から任意の拡が9
角で射出され曲面プリズム33に入射される。信号光P
は曲面プリズム33によって全反射されると同時に平行
ビームPに変換され、結合用光導波体42を透過して第
1の分波膜44に入射される。この第1の分波膜44は
信号光Pのうち波長λ1の信号光p、だけを反射さぜ、
他の波長λ2の信号光P2と、波長λ3の信号光P3と
を透過させる。そして1、反射された信号光P1(λl
)は一対の第1の分波膜44間で反射をくり返して曲面
プリズム34に入射され、この曲面プリズム34によっ
て全反射されると同時に集光されてから出力用の光ファ
イバ12に入力されて伝送される。他方、透過光P2(
λ2)IP!(λ3)は結合用光導波体43を透過して
第2の分波膜45に入射される。この第2の分波膜45
は信号光P2 e Plのうち波長λ2の信号光P2だ
けを反射させ、他の波長λ3の信号光P3を透過させる
。そして、反射された信号光P2(λ2)は一対の第2
の分波膜45間で反射をくり返して曲面プリズム35に
入射され、この曲面プリズム35によって全反射される
と同時に集光されてから出力用の光ファイバ13に人力
されて伝送される。他方、透過光P3(λ3)は曲面プ
リズム36に入射され、この曲面プリズム36によって
全反射されると同時に集光されてから出力用の光ファイ
バ14に入力されて伝送される。このようにして、光フ
ァイバ11から入力された信号光P(λl、λ2.λ3
)は信号光PI(λt)tP2(λ2)。
Now, this optical demultiplexer/combiner 40 is constructed as described above, and its demultiplexing action is performed as described below. The input optical fiber 11 has wavelengths λ1. λ2
Signal light P containing light of 23 and 23 is transmitted. Then, this signal light P is transmitted from the optical fiber 11 to an arbitrary spread of 9
The light is emitted at the corner and is incident on the curved prism 33. Signal light P
is totally reflected by the curved prism 33 and simultaneously converted into a parallel beam P, transmitted through the coupling optical waveguide 42 and incident on the first splitting film 44 . This first splitting film 44 reflects only the signal light p of wavelength λ1 out of the signal light P.
Another signal light P2 having a wavelength λ2 and a signal light P3 having a wavelength λ3 are transmitted. 1. Reflected signal light P1 (λl
) is repeatedly reflected between the pair of first splitting films 44 and is incident on the curved prism 34, where it is totally reflected by the curved prism 34, simultaneously condensed, and then input into the output optical fiber 12. transmitted. On the other hand, transmitted light P2 (
λ2) IP! (λ3) passes through the coupling optical waveguide 43 and enters the second splitting film 45. This second splitting film 45
reflects only the signal light P2 of the wavelength λ2 out of the signal light P2 e Pl, and transmits the other signal light P3 of the wavelength λ3. Then, the reflected signal light P2 (λ2) is transmitted to a pair of second
The light is repeatedly reflected between the wavelength splitting films 45 and is incident on the curved prism 35, where it is totally reflected and condensed, and then manually transmitted to the output optical fiber 13. On the other hand, the transmitted light P3 (λ3) is incident on the curved prism 36, is totally reflected by the curved prism 36, is condensed, and is then input to the output optical fiber 14 and transmitted. In this way, the signal light P(λl, λ2.λ3
) is the signal light PI(λt)tP2(λ2).

Ps(λ3)に分波(分離〕されて光ファイバ12゜1
3.14によってそれぞれ伝送される。尚、この光分波
・合波器40は入出力信号光P* Pl + P2 +
P3の方向を第7図に示す場合と逆方向に設定すると、
光合波器として作用する。また、この光分波・合波器4
0は、光導波本体41を上述と同様な要領でさらに多層
の結合体、例えば結合用光導波体(42,43)が3層
あるいは4層形態で一体化された結合体に形成すること
により、分波数(又は合波数)1−さらに増加すること
ができる。
Ps (λ3) is split (separated) into optical fiber 12゜1
3.14 respectively. Note that this optical demultiplexer/combiner 40 has an input/output signal light P* Pl + P2 +
If the direction of P3 is set opposite to that shown in Fig. 7,
Acts as an optical multiplexer. In addition, this optical demultiplexer/combiner 4
0, by forming the optical waveguide body 41 into a multi-layer composite body in the same manner as described above, for example, a composite body in which the coupling optical waveguides (42, 43) are integrated in a three-layer or four-layer configuration. , the number of demultiplexers (or the number of multiplexers) 1 - can be further increased.

尚、本発明は上記実施例に限定されるものではなく、例
えば、分岐膜と分波膜とを適宜混在させて配置すること
により、分岐及び分波の両機能を備えた複合回路を簡単
に形成することが可能であり、また、その他の棟々の変
形例にも適用可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, by appropriately arranging branching films and branching films in a mixed manner, it is possible to easily create a composite circuit having both branching and branching functions. It is also applicable to other variations of the ridges.

(ト)発明の効果 以上、詳細に説明したように、本発明の光導波路デバイ
スは、光導波本体と、入出力インタフェースとしての曲
面プリズムと、光伝送媒体(生として、光ファイバ)と
を巧みに結合した一体構造とし、所要箇所に光の分岐、
分波等の機能を有する光学膜を配設しかつ入出力用の光
伝送媒体の光軸を互に平行状態に配置することにより、
大幅な小形化が可能であり、また複合回路等の形成が構
造的に容易で機能的であるという効果大なるものがあり
、光装置の組立工数の低減化、信頼性の向上前に寄与す
るものである。
(G) Effects of the Invention As explained in detail above, the optical waveguide device of the present invention skillfully connects the optical waveguide body, the curved prism as an input/output interface, and the optical transmission medium (in raw form, an optical fiber). It has an integrated structure that is combined with the
By providing an optical film with functions such as demultiplexing, and arranging the optical axes of the optical transmission media for input and output in parallel with each other,
It has the great effect of being able to be significantly miniaturized, and the formation of complex circuits, etc. is structurally easy and functional, which contributes to reducing the number of assembly steps and improving reliability of optical devices. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光導波路デバイスの一例として従来の光分岐器
の基本構成を示す図、第2図は他の例として従来の光分
波・合波器の基本構成を示す図、第3図は本発明の光導
波路デバイスの第1実施例である光分岐・結合器30の
斜視図(但し、取付構造体の底板37上に取付けた状態
で示す)、第4図は第3図の矢印A方向からみた光分岐
・結合器30の平面図、第5図は第4図の曲面プリズム
33(34,35)の単体側面図、第6図は第5図の矢
印B方向からみた正面図、第7図は本発明の光導波路デ
バイスの第2実施例である光分波・合波器40の平面図
である。 30・・・本発明の先導波路デバイスの第1実施例であ
る光分岐・結合器、40・・・本発明の光導波路デバイ
スの第2実施例である光分波・合波器、11.12,1
3.14・・・光ファイバ(光伝送媒体)、31.41
−・・光導波本体、31a、31b、42a。 42b、43a、43b−−−側平面(光学面)、32
−・・光の分岐膜、33.34,35.36・・・曲面
プリズム、33a、33b・・・人出光面、33c・・
・反射2次曲面、42.43・・・結合用光導波体、4
4・・・第1の分波膜、45・・・第2の分波膜、46
・・・反射膜側面反射ミラー)。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 朗1図
Fig. 1 is a diagram showing the basic configuration of a conventional optical branching device as an example of an optical waveguide device, Fig. 2 is a diagram showing the basic configuration of a conventional optical demultiplexer/multiplexer as another example, and Fig. 3 is a diagram showing the basic configuration of a conventional optical splitter/multiplexer as an example of an optical waveguide device. A perspective view of an optical branch/coupler 30 that is a first embodiment of the optical waveguide device of the present invention (however, it is shown mounted on a bottom plate 37 of a mounting structure), and FIG. 4 is an arrow A in FIG. 3. 5 is a side view of the curved prism 33 (34, 35) in FIG. 4, and FIG. 6 is a front view as seen from the direction of arrow B in FIG. 5. FIG. 7 is a plan view of an optical demultiplexer/combiner 40 which is a second embodiment of the optical waveguide device of the present invention. 30... Optical branching/combining device which is the first embodiment of the guiding waveguide device of the present invention, 40... Optical branching/combining device which is the second embodiment of the optical waveguide device of the present invention, 11. 12,1
3.14...Optical fiber (optical transmission medium), 31.41
--- Optical waveguide body, 31a, 31b, 42a. 42b, 43a, 43b---side plane (optical surface), 32
-...Light branching film, 33.34, 35.36...Curved prism, 33a, 33b...Popular light surface, 33c...
・Reflection quadratic curved surface, 42.43... Optical waveguide for coupling, 4
4...First wavelength splitting film, 45...Second wavelength splitting film, 46
...reflective film side reflection mirror). Patent applicant Fujitsu Ltd. Patent application representative Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate 1) Yukio Patent attorney Akiyuki Yamaguchi Figure 1

Claims (1)

【特許請求の範囲】 1、透光性物質から略平行な対向平面を有する光導波本
体を形成し、前記対向平面の予め定められた所定部分に
入射光の一部を透過させると同時に他部を反射させる機
能を有する光学膜を設け、面角が略90°をなす人出光
平面と反射2次曲面とを有する複数個の曲面プリズムを
、その人出光平面の一方が前記光導波本体の対向平面に
おける光入出力部にそれぞれ固着された形態で配設し、
光伝送媒体を前記曲面プリズムの大田光平面の他方にそ
れぞれ接続固着させると共に該光伝送媒体の光軸が互に
略平行状態かつ前記光導波本体の対向平面とも略平行状
態になるように配設したことを%徴とする光導波路デバ
イス。 2、前記光導波本体は、直方体状に形成され略平行な対
向平面’lする複数個の結合用光導波体をその対向平面
同士が接層された形態で一体化して形成されたものであ
る特許請求の範囲第1項に記載の光導波路デバイス。
[Scope of Claims] 1. An optical waveguide body having substantially parallel opposing planes is formed from a light-transmitting material, and a part of the incident light is transmitted to a predetermined part of the opposing plane, while another part is transmitted. A plurality of curved prisms are provided with an optical film having a function of reflecting light, and have a plurality of curved prisms each having an outgoing light plane and a reflection quadratic curved surface with a face angle of approximately 90°, one of the outgoing light planes facing the optical waveguide body. They are arranged in a fixed form at the optical input and output parts on a plane,
An optical transmission medium is connected and fixed to the other Ota optical plane of the curved prism, and arranged so that the optical axes of the optical transmission medium are approximately parallel to each other and approximately parallel to the opposing plane of the optical waveguide body. Optical waveguide device with % characteristics. 2. The optical waveguide body is formed by integrating a plurality of coupling optical waveguides formed in the shape of a rectangular parallelepiped and having substantially parallel opposing planes with their opposing planes in contact with each other. An optical waveguide device according to claim 1.
JP4646684A 1984-03-13 1984-03-13 Optical waveguide device Pending JPS60191210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4646684A JPS60191210A (en) 1984-03-13 1984-03-13 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4646684A JPS60191210A (en) 1984-03-13 1984-03-13 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPS60191210A true JPS60191210A (en) 1985-09-28

Family

ID=12747942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4646684A Pending JPS60191210A (en) 1984-03-13 1984-03-13 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPS60191210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608785A1 (en) * 1986-12-19 1988-06-24 Thomson Csf DEVICE FOR CONNECTING OPTICAL FIBERS TO AN INTEGRATED OPTICAL CIRCUIT AND METHOD FOR PRODUCING THE SAME
JP2000162466A (en) * 1998-11-24 2000-06-16 Agilent Technol Inc Optical demultiplexer
JP2003504661A (en) * 1999-07-02 2003-02-04 ブレイズ、ネットワーク、プロダクツ、インコーポレーテッド Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
EP1677131A1 (en) * 2004-12-30 2006-07-05 Proximion Fiber Systems AB Optical coupler with fibre Bragg grating and Fabry Perot cavity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608785A1 (en) * 1986-12-19 1988-06-24 Thomson Csf DEVICE FOR CONNECTING OPTICAL FIBERS TO AN INTEGRATED OPTICAL CIRCUIT AND METHOD FOR PRODUCING THE SAME
US4836645A (en) * 1986-12-19 1989-06-06 Thomson-Csf Device for the connection of optic fibers to an integrated optic circuit and method for making the said device
JP2000162466A (en) * 1998-11-24 2000-06-16 Agilent Technol Inc Optical demultiplexer
JP2003504661A (en) * 1999-07-02 2003-02-04 ブレイズ、ネットワーク、プロダクツ、インコーポレーテッド Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
EP1677131A1 (en) * 2004-12-30 2006-07-05 Proximion Fiber Systems AB Optical coupler with fibre Bragg grating and Fabry Perot cavity
WO2006069789A2 (en) * 2004-12-30 2006-07-06 Proximion Fiber Systems Ab Optical coupler
WO2006069789A3 (en) * 2004-12-30 2006-10-05 Proximion Fiber Systems Ab Optical coupler
US7260292B2 (en) 2004-12-30 2007-08-21 Proximion Fiber Systems Ab Optical coupler

Similar Documents

Publication Publication Date Title
JP4286351B2 (en) Optical add / drop circuit
CN101246239B (en) Planar lightwave circuit based tunable 3 port filter
WO2016065865A1 (en) Miniature same-wavelength single-core bidirectional optical transceiving module
WO2020186926A1 (en) Single-fiber bidirectional optical transceiving assembly
JP4311579B2 (en) Optical module and optical wavelength multiplexer / demultiplexer
KR20040016406A (en) Optical module
JP2001281493A (en) Wavelength demultiplexing and multiplexing module
JPS60191210A (en) Optical waveguide device
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
US6760507B2 (en) Optical device
JP2004240215A (en) Optical communication device and optical communication system
JP3736435B2 (en) Optical multiplexer / demultiplexer
JP3577438B2 (en) Add-drop optical circuit module
JPS6218888B2 (en)
JPS6191607A (en) Optical coupling component
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
JP2004094242A (en) Optical module
KR100655534B1 (en) Interleaver for optical communication system
JPH04361208A (en) Optical multiplexer/demultiplexer and manufacture of the same
TW591254B (en) Optical device
JPH03291603A (en) Optical multiplexer/demultiplexer
JP3493497B2 (en) Wavelength add / drop circuit
JPH0926521A (en) Optical demultiplexer
JP2004072604A (en) Optical branching and inserting device