JPS58209710A - Multistage optical demultiplexing and multiplexing circuit - Google Patents

Multistage optical demultiplexing and multiplexing circuit

Info

Publication number
JPS58209710A
JPS58209710A JP9266882A JP9266882A JPS58209710A JP S58209710 A JPS58209710 A JP S58209710A JP 9266882 A JP9266882 A JP 9266882A JP 9266882 A JP9266882 A JP 9266882A JP S58209710 A JPS58209710 A JP S58209710A
Authority
JP
Japan
Prior art keywords
light
light guide
fiber
travels
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9266882A
Other languages
Japanese (ja)
Inventor
Takaichi Watanabe
隆市 渡辺
Koichi Sano
浩一 佐野
Tetsuya Yamazaki
哲也 山崎
Eiji Okuda
奥田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Sheet Glass Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Nippon Sheet Glass Co Ltd
Priority to JP9266882A priority Critical patent/JPS58209710A/en
Publication of JPS58209710A publication Critical patent/JPS58209710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29364Cascading by a light guide path between filters or filtering operations, e.g. fibre interconnected single filter modules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To perform optical redemultiplexing and remultiplexing, by arranging plural light guides having a uniform cross section nearly in a semicircle shape in parallel at intervals, arranging a couple of substrates so that their light guide exposure surfaces face each other, while a partially reflective and transmissive layer is interposed and closely arranged over the entire surfaces or necessary parts of the light guides and connecting a prescribed optical fiber to each light guide end part. CONSTITUTION:In an optical demultiplexing circuit, a light beam 14 from an input fiber 7 to a light guide 4A travels in a sine curve, and reaches the surface of a substrate 2A at an about 1/4-pitch position, where 50% of the beam is reflected by a semitransparent film 6; and the reflected beam travels in the same light guide and enters the other directly-connected fiber 12. The remaining light transmitted through the semitransparent film 6 travels in a light guides and then enters the other directly-connected fiber 13. The light entering the fiber 12 enters a light guide 3A and further travels similarly and is divided into two by the semitransparent film 6; and they enters optical fibers 10 and 11 respectively. The light entering the fiber 13, on the other hand, travels in a light guide 5B and is divided by the semitransparent film 6 into two, which enter output fibers 8 and 9 respectively.

Description

【発明の詳細な説明】 本発明は7本の光ファイバーで伝送されてくる光を複数
本の光フアイバー均等に分岐人力さゼたり、あるいは特
定波長毎に別個の光ファイバーへ分波入力させる場合に
適した光分割回路に関する。
[Detailed Description of the Invention] The present invention is suitable for manually branching light transmitted through seven optical fibers into multiple optical fibers equally, or for inputting separate optical fibers for each specific wavelength. This invention relates to a light splitting circuit.

従来この種の装置として、円柱状屈折率分布型レンズを
半割としてこの間に部分透光層を介在させレンズの両端
面に入力用及び出力用の光フアイバ一端を接続したもの
が知られている。
Conventionally, this type of device is known in which a cylindrical gradient index lens is cut in half, a partially transparent layer is interposed between the halves, and one end of optical fibers for input and output are connected to both end surfaces of the lens. .

ここで部分透光層は、装置の機能によってその機能が異
なり、一本の光ファイバーで送られてくる九閂を複数の
光ファイバーへ均等に配分入力したりあるいは逆に合流
させる分岐・合流回路の場合はL記部分透光層として反
射率SO%の半透明膜あるいは光束の出射面積の半分を
覆う全反射膜が用いられる。
Here, the function of the partially transparent layer differs depending on the function of the device, and in the case of a branching/merging circuit where the nine bars sent through one optical fiber are equally distributed and input to multiple optical fibers, or vice versa, they are merged. In the case of L, a semi-transparent film with a reflectance of SO% or a total reflection film covering half of the emission area of the light beam is used as the partially transparent layer.

また、二種以−トの波長の光を含む混合光を各波長の光
に分割してそれぞれ別個の光ファイバーに人力させたり
逆に各波長の光を合流させて混合光とする九分波・合波
回路では上記部分透光層として特定の波長光のみを選択
的に透過し他は反射する「渉膜フィルターが使用される
In addition, mixed light containing light of two or more wavelengths can be divided into light of each wavelength and manually connected to separate optical fibers, or conversely, light of each wavelength can be combined to form mixed light. In the multiplexing circuit, an interfering film filter is used as the partially transparent layer, which selectively transmits only light of a specific wavelength and reflects light of other wavelengths.

以下本明細書では特にことわらないかぎり上記分岐およ
び分波を含めて光の分割とよび、分岐機能層及び分波機
能層を含めて「部分透光層」とよぶことにする。
Hereinafter, in this specification, unless otherwise specified, the above-mentioned branching and splitting will be referred to as light splitting, and the branching functional layer and the splitting functional layer will be referred to as a "partially transparent layer".

前述した半割の円柱状屈折率分布型レンズを用いた従来
の光分割回路では非常に小寸法の繊維状レンズを研磨す
る必要があるため高精度に加工することが困難であり、
光軸合せ等の組立作業も非常に煩雑で熟練を要し、した
がって特K1回分割した光を再度さらにはそれ以上の回
数にわたり分割する多重分割回路を組む場合には製作に
極めて多くの工数を要してあまり実用的でないという問
題があった。
In the conventional light splitting circuit using the halved cylindrical gradient index lens described above, it is difficult to process with high precision because it requires polishing a very small fibrous lens.
Assembly work such as optical axis alignment is also very complicated and requires skill. Therefore, when building a multiple division circuit that divides the light that has been divided once once again and even more times, it requires an extremely large number of man-hours to manufacture. In short, there was a problem that it was not very practical.

本発明は上記従来の問題点を解決し、製作が非常に容易
であり高精度のものが得られ、しかも装置全体を非常に
コンパクトにまとめることのできる新規な多段光分割合
流回路を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a novel multi-stage light splitting/combining circuit that is very easy to manufacture, can be highly accurate, and can be made very compact as a whole. With the goal.

すなわち本発明の光分割合流回路は、平行平面をもつガ
ラスあるいは合成樹脂からなる透明基板内に、屈折率が
基板よりも大で光の進行方向に垂直な断面内において屈
折率が基板表面を最大とし内部に向けて漸減する分布を
もち、しかも九の進行方向には屈折率が一様な断面がほ
ぼ半円形の導光路を間隔をおいて平行KFj数個設け、
該基板の一対を導光路露出面を対向させ、且つ前記導光
路表向の全域又は要部に部分反射透光層を介在させて密
接配置し、前記導光路の一端に光ファイバーを接続し、
該導光路の他端側または(、および)該導光路に対向す
る導光路の他端側に直結用光ファイバーの一端を接続す
るとともにその他端を基板の同一面側にある隣接導光路
端に接続し、これにより光の再分割または再合流を行な
うようにしたことを特徴とする光分割合流回路である。
In other words, the light splitting and merging circuit of the present invention has a transparent substrate made of glass or synthetic resin with parallel planes, the refractive index of which is greater than that of the substrate, and whose refractive index is the highest at the substrate surface in a cross section perpendicular to the direction of light propagation. A number of parallel light guide paths KFj are provided at intervals, and have a distribution that gradually decreases toward the inside, and have a uniform refractive index and a substantially semicircular cross section in the direction of movement of the light beam.
The pair of substrates are closely arranged with the exposed surfaces of the light guide facing each other, and a partially reflective transparent layer is interposed over the entire area or main part of the surface of the light guide, and an optical fiber is connected to one end of the light guide,
One end of the direct coupling optical fiber is connected to the other end of the light guide or (and) the other end of the light guide opposite the light guide, and the other end is connected to the end of the adjacent light guide on the same side of the board. This is a light splitting/combining circuit characterized in that the light is divided or recombined thereby.

」二記構成によれば、入力用光7アイパーを通して基板
内の1つの導光路内に導入された光束は、サインカーブ
を描いて進行し、光路内の屈折率分布によって定まる特
定の距離進行した地点で基板表面に至り、この面に設け
られた部分透光層を一部の光が透過して対向するもう一
方の導光路に入り、残りは部分透光層で反射された後、
同一の導光路内を進行する。
According to the configuration described in Section 2, the light flux introduced into one light guide path in the substrate through the input light 7 eyeper travels in a sine curve, and travels a specific distance determined by the refractive index distribution in the optical path. At this point, the light reaches the substrate surface, some of the light passes through the partially transparent layer provided on this surface and enters the other opposing light guide path, and the rest is reflected by the partially transparent layer.
Proceeds within the same light guide path.

このように分割された光は上記のいずれか一方の導光路
の他端に接続された直結光ファイバーに導かれて隣接す
る他の導光路内に基板の同一側[IIIにおいて入れら
れ、前述と同様の過程を経て再分割される。
The light thus divided is guided to a direct-coupled optical fiber connected to the other end of one of the light guides mentioned above, and is input into the other adjacent light guide on the same side of the substrate [III, as described above. It will be re-divided through the process of

そして再分割された光は上記導光路またはこれに対向す
る導光路Kl’2続した出力用ファイバーで取り出す。
Then, the re-divided light is taken out through the output fiber connected to the light guide path or the light guide path Kl' opposite thereto.

あるいはここに第2の中継ファイバーを接続するととも
にこの中継ファイバーの他端を第3の隣接導光路に基板
の同一側面側において接続して光の分割を繰り返す。
Alternatively, a second relay fiber is connected here, and the other end of this relay fiber is connected to a third adjacent light guide path on the same side of the substrate to repeat the division of light.

同様にして三段階以上の直列的な光分割を行なうことが
できる。
Similarly, it is possible to perform serial light splitting in three or more stages.

上記した構成によれば共通の基板中に複数段の光分割回
路を一体に設けているので、従来のように個々の小さな
素子を正しい相対位置関係で配置固定する煩雑な作業が
不要となり、個々の分割回路間を結合する中継ファイバ
ーの接続も非常に容易であり、また平板状であるため取
扱い易く他の部材との結合組み立ても容易で社産に適し
ている。    ゛以F本発明を図面に示した実施例に
つき詳細に説明する。
According to the above configuration, multiple stages of light splitting circuits are integrated on a common substrate, so there is no need for the complicated work of arranging and fixing individual small elements in the correct relative positional relationship as in the past. It is very easy to connect the relay fiber that connects the divided circuits, and since it is flat, it is easy to handle and assemble with other parts, making it suitable for in-house production. The present invention will now be described in detail with reference to embodiments shown in the drawings.

第1図は本発明を適用した光分岐回路の斜視図であり、
第2図は同横断面図である。
FIG. 1 is a perspective view of an optical branch circuit to which the present invention is applied;
FIG. 2 is a cross-sectional view of the same.

分岐回路/は断面がほぼ半円形の三本の導光路3A。The branch circuit/is three light guide paths 3A having a substantially semicircular cross section.

9A、5Aを相互に間隔をおき平行に設けた透明基板コ
Aと、同様の配置関係で三本の導光路JB、i。
A transparent substrate A in which 9A and 5A are arranged parallel to each other at intervals, and three light guide paths JB and i in a similar arrangement.

夕Bを設けた他の透明基板−Bとを、間に部分反射透光
層6としてSO%反射の半透明膜を介して導光路露出面
を対向させて密接配置し、各導光路端部に所定の光ファ
イバーを接続して構成されている。
Another transparent substrate-B provided with a transparent substrate B is closely placed with the exposed surfaces of the light guides facing each other with an SO% reflective semi-transparent film interposed therebetween as a partially reflective transparent layer 6. It is constructed by connecting a predetermined optical fiber to the

さらに詳しくは、第1図に示すようにガラスあるいは合
成樹脂からなる透明基板2Aの一向側に側面を露出させ
て設けられた各導光路3A、llA、3Aは屈折率が基
板の屈折率ns よりも大であり、往つ第5図に/T(
すように屈折率が基板面上での幅方向中央の屈折率no
を最大として光の進行方向に垂直な断面内では内部へ向
けてほぼ、 n=no(/−4J2r2)  −(1)の式に従って
次第に減小する分布をなしている。
More specifically, as shown in FIG. 1, each light guide path 3A, 11A, 3A, which is provided with its side surface exposed on one side of a transparent substrate 2A made of glass or synthetic resin, has a refractive index that is lower than the refractive index ns of the substrate. is also large, and in Figure 5 /T(
The refractive index at the center in the width direction on the substrate surface is no.
The distribution has a maximum value of n=no(/-4J2r2)-(1), and gradually decreases toward the inside in a cross section perpendicular to the direction of travel of the light.

ここでrは上記の基板面上中心部からの距離でAは分布
定数である。
Here, r is the distance from the center on the substrate surface, and A is a distribution constant.

また、導光路内の屈折率分布は光の進行方向においては
一定とな−、ている。
Further, the refractive index distribution within the light guide path is constant in the direction in which the light travels.

1−記のような屈折率分布を有する導光路を基板内に形
成するに当−7ては例えば、平行平面をもつガラス基板
の片面にチタン等をスパッタリングなどで付着させてこ
の面全体を被覆する金属薄膜をつくり、この薄膜K1本
または間隔をおいて複数本のストライプ状の開口部をつ
くる。
In order to form a light guide path having a refractive index distribution as described in 1-7 in a substrate, for example, titanium or the like is deposited on one side of a glass substrate having parallel planes by sputtering to cover the entire surface. A metal thin film is made, and one or more stripe-shaped openings are made in this thin film K at intervals.

ここでフォトリソグラフィーの技術を利用する場合には
上記薄膜の上にフォトレジスト膜をつけ、ストライプ状
の開口をもつマスクを置いてフォトレジスト膜を露光し
、現像、エツチングの後」−記金属膜をエツチングして
これにストライプ状の開口部をつくりレジスト膜を除去
して後のイオン交換処理時のイオン透過防止マスクとす
る。
When using photolithography technology, a photoresist film is applied on top of the thin film, a mask with striped openings is placed, the photoresist film is exposed, and after development and etching, the metal film is etched. This is etched to form striped openings, and the resist film is removed to serve as a mask for preventing ion transmission during the subsequent ion exchange treatment.

次にこの基板のマスク面を高温溶融塩に接触させ、マス
クの開口部を通じて一価のたとえばTl+、Os+ある
いはAg十等のイオンを一種または二種以上拡散させて
ガラス内部に高屈折率部を形成し、さらに空気中で高温
熱処理することによって所望の滑らかな屈折率分布を有
する導光路、?A、4(A、tAをつくることができる
Next, the mask surface of this substrate is brought into contact with a high-temperature molten salt, and one or more monovalent ions, such as Tl+, Os+, or Ag10, are diffused through the openings of the mask to form a high refractive index portion inside the glass. A light guide with the desired smooth refractive index distribution, by forming and further high temperature heat treatment in air? A, 4(A, tA can be made.

また、プラスチックを基材として例えば相対的に高屈折
率の基板の表面所要部に設けたマスク周辺から相対的に
低屈折率のモノマーを基板内に拡散させて重合反応させ
てつくることもできる。
Alternatively, it can be made using plastic as a base material, for example, by diffusing a monomer with a relatively low refractive index into the substrate from around a mask provided on a required portion of the surface of the substrate having a relatively high refractive index, and causing a polymerization reaction.

以上のようにして得た基板−A、−Bのいずれが一方ま
たは両方の面にスパッタリング等により薄膜を付着させ
て部分透光層6を形成する。
A partially transparent layer 6 is formed by attaching a thin film to one or both surfaces of the substrates -A and -B obtained as described above by sputtering or the like.

この部分透九層乙は必ずしも基板全面にわたり設ける必
要はなく、導光路、tA (jB) 、 l (4El
) 、 5A(3B)の露出面のみに限定して、さらに
は光束が透過(反射)する区域だけに限定して設けても
よい。
This partially transparent nine layer B does not necessarily need to be provided over the entire surface of the substrate, and the light guide path, tA (jB), l (4El
), 5A (3B), or may be further limited to only the area through which the luminous flux is transmitted (reflected).

そして合#1′6本の導光路のうち中央に位置する一対
の導光路4(A、41Bの一方の導光路9A端向に人力
用光ファイバー7を接続し、基板の同一側向側において
隣接する各一対の導光路3に、3B、3A 。
Then, a pair of light guide paths 4 (A, 41B) located in the center of the total of six light guide paths #1' is connected to the optical fiber 7 for human power use toward the end of the light guide path 9A, and is adjacent to each other on the same side of the board. 3B and 3A for each pair of light guide paths 3.

SBの各端面に出力用光ファイバーざ、 9 、10.
 //をそれぞれ接続する。
Output optical fibers are provided on each end face of the SB, 9, 10.
//Connect each.

また、基板の他側IIu fljlにおいて可及的に短
かくしたFlf、Mt41光ファイバー/、2の両端を
人力ファイバー7が接続されている導光路+A及び隣接
する導光路3Aの各端面にそれぞれ接続する。
In addition, on the other side IIu fljl of the board, both ends of the Flf, Mt41 optical fiber/, 2 made as short as possible are connected to each end face of the light guide path +A to which the human power fiber 7 is connected and the adjacent light guide path 3A. .

さらに別の+ti結用尤ファイバー/30両端をそれぞ
れ、入力ファイバー7が接続された導光路4(Aに対向
する導光路4<Bおよびこれと同一基板内で隣接する導
光路jBの端面に接続する。
Furthermore, both ends of another +ti coupling fiber/30 are connected to the end face of the light guide path 4 to which the input fiber 7 is connected (light guide path 4<B opposite to A and the adjacent light guide path jB in the same substrate). do.

ここで基板の光進行方向における長さLは略2分の/周
期長(ピッチ)K選定する。
Here, the length L of the substrate in the light traveling direction is selected to be approximately 2/period length (pitch) K.

上記ピッチPと前述(1)式における屈折率分布定数A
との間には、 P=−π/VK・・・・・・・・・・ (−)の関係が
ある。
The above pitch P and the refractive index distribution constant A in the above equation (1)
There is a relationship between P=-π/VK... (-).

上述構造の光分割回路/において入力ファイバー7から
出射して導光路111に入った光t@iyはサインカー
ブを描いて進行し、約q分のlピンチの地点で基板−へ
の表面に至り半透明膜tで50%の光量が反射されて同
一導光路内を進行した後、直結ファイバー/−に入射す
る。
In the light splitting circuit/with the above structure, the light t@iy that is emitted from the input fiber 7 and enters the light guide path 111 travels in a sine curve, and reaches the surface of the substrate at a point of about q/l pinch. After 50% of the light is reflected by the semi-transparent film t and travels within the same light guide path, it enters the direct-coupled fiber /-.

また半透明膜gを透過した光は導光路3B内を進行した
後、他の直結ファイバー73に入射する。
Further, the light that has passed through the semi-transparent film g travels through the light guide path 3B and then enters another direct-coupled fiber 73.

直結ファイバーノコに人うた光は導光路3Aに人1.て
ト述と同様の過程を経て′#透明膜6で!分割され、そ
れぞれ出力ファイバー10及び//ニ入射する。
Directly connected fiber saw light is connected to light guide path 3A. After going through the same process as described above, we made #transparent film 6! The output fibers are split and input into output fibers 10 and/or 2, respectively.

また、もう一方の直結ファイバー/3に入った光は導光
路5B内を進行した後、半透明膜6で一分割された後そ
れぞれ出力ファイバーざ、9に入る。
Further, the light that has entered the other direct-coupled fiber /3 travels through the light guide path 5B and is divided into parts by the semi-transparent film 6, and then enters the output fibers 9, respectively.

このようにして一本の光ファイバー7で伝送された光が
均等に1分割されて出力ファイバーざ、9゜10、//
から取り出される。
In this way, the light transmitted through one optical fiber 7 is divided into 1 equal parts, and the output fiber is divided into 9°10, //
taken from.

第7図に他の実施例を示す。FIG. 7 shows another embodiment.

本例では部分透九層乙として半分の面積の全反射膜を用
いたものであり、人力ファイバー7で伝送され、導光路
lIA[入った光は基板、2Aの[mlK至り、ここで
その半分が全反射膜6で反射された後直結ファイバー/
−に入射する。
In this example, a total reflection film with half the area is used as the partially transparent nine layer B, and the light is transmitted through the human fiber 7, and the light entering the light guide path IIA reaches the substrate, 2A [mlK, where half of it is After being reflected by the total reflection film 6, the direct coupling fiber /
− is incident.

また全反射膜6が設けられていない部分を透過した光は
導光路4tB内を進行した後、直結ファイバー73に入
る。
Further, the light transmitted through the portion where the total reflection film 6 is not provided enters the direct-coupled fiber 73 after traveling through the light guide path 4tB.

第4図に本発明を光分波回路に適用した例をil<す。FIG. 4 shows an example in which the present invention is applied to an optical demultiplexing circuit.

本例は基板jA及び2Bにそれぞれ一対の導光路1.3
k及び<13.jBを設け、一方の対向導光路&Aとq
Bとの間には特定波長λ1の光を反射し他の波長の光を
透過する干渉膜フィルターtAを介在し、他方の対向導
光路jA、jB間に特定波長λ3の光を反射し他の波長
の光を透過する干渉膜フィル&−IBを介在させる。
In this example, a pair of light guide paths 1.3 are provided on the substrates jA and 2B, respectively.
k and <13. jB, one opposing light guide &A and q
An interference film filter tA that reflects light with a specific wavelength λ1 and transmits light with other wavelengths is interposed between the other opposing light guide paths jA and jB, and reflects light with a specific wavelength λ3 and transmits light with other wavelengths. An interference film filter &-IB that transmits light of the same wavelength is interposed.

そして導光路4fBの端面に入力ファイバー7を接続し
、この導光路44Bの他端面に出力ファイバー10を接
続し、これの導光路と対向する導光路グA及びこれに隣
接する導光路tAに直結ファイバー72の両端を接続す
る。また導光路5AおよびjBの端面に出力ファイバー
ざ、9を接続する。
Then, the input fiber 7 is connected to the end surface of the light guide path 4fB, and the output fiber 10 is connected to the other end surface of this light guide path 44B, and is directly connected to the light guide path A facing this light guide path and the light guide path tA adjacent thereto. Connect both ends of fiber 72. Further, an output fiber cable 9 is connected to the end faces of the light guide paths 5A and jB.

以上の回路において入力ファイバー7を通して波長λ1
.λ2およびλ3の混合光を伝送すると波長λ1の光は
干渉膜フィルター乙Aで反射されて導光路QBtt進行
した後、出力ファイバー7OK入る。
In the above circuit, the wavelength λ1 is passed through the input fiber 7.
.. When the mixed light of λ2 and λ3 is transmitted, the light of wavelength λ1 is reflected by the interference film filter A and travels through the light guide QBtt, and then enters the output fiber 7OK.

またフィルター乙Aを透過した波長λ2とλ3 の混合
光は導光路<jAを進行した後、直結ファイバー72に
入り、導光路5Aに伝送される。
The mixed light of wavelengths λ2 and λ3 that has passed through the filter A travels through the light guide path <jA, enters the direct-coupled fiber 72, and is transmitted to the light guide path 5A.

導光路5A内を進行して干渉膜フィルター6Bに至ると
ここでλ3の光は反射されてさらに同一導光路内を進行
した後、出力ファイバータに入る。
When the light of λ3 travels through the light guide path 5A and reaches the interference film filter 6B, it is reflected there, and after further traveling through the same light guide path, it enters the output fiber.

また、フィルター6Bを透過した波長λ2の光は導光路
5B内を進行した後、出力ファイバー、rK。
Further, the light having the wavelength λ2 that has passed through the filter 6B travels through the light guide path 5B and then reaches the output fiber rK.

入る。enter.

このようにして波長λ1.λ2.λ3の混合光が各波長
の光に分波されて出力される。
In this way, the wavelength λ1. λ2. The mixed light of λ3 is demultiplexed into light of each wavelength and output.

以」―に説明した図75例では直結ファイバー/−21
3はいずれも同一基板内での隣接導光路間に+(って設
けるようにしたが、他方の基板の隣接導光路に連結する
(例えば導光路lAがら導光路3B)ようにしてもよい
In the example shown in FIG.
3 are provided between adjacent light guide paths on the same substrate, but they may be connected to adjacent light guide paths on the other substrate (for example, from light guide path 1A to light guide path 3B).

またさらに多くの導光路対を設けて3段階以上の光分割
を行なうことも可能である。
It is also possible to provide more pairs of light guide paths to perform light division in three or more stages.

また多数本の光ファイバーで伝送されてくる種々の波長
の単色光または混合光を7本の光ファイバーに合流され
る合流回路としても使用できることはいうまでもない。
It goes without saying that it can also be used as a merging circuit in which monochromatic light or mixed light of various wavelengths transmitted through a large number of optical fibers is merged into seven optical fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した光分岐回路の斜視図。 第2図・第3図は第7図の要部横断面図、第1図は本発
明で使用する基板を示すM視図、第5図は同基板の屈折
率分布を不すグラフ、第を図は本発明を充分波回路に適
用した例を示す斜視図、第7図は第を図の要部横断面図
である。 ハ・・・・・・・光分割回路 2AljB・・・・・・
・・透明基板3A 、 、?B l 41A 、 II
B t 3A l jB・・用…導光路乙・・・・・・
・・部分透光層 7・・・・・・・・人力ファイバー!
、り、 10 、 //川・・・・・uJJカフアイバ
ー/J 、 /3・・・・・・・・直結ファイバー特許
出願人 日本電信電話公社 第1図 OF3 第2図 第3図 スΔ B 第4図
FIG. 1 is a perspective view of an optical branch circuit to which the present invention is applied. 2 and 3 are cross-sectional views of the main parts of FIG. 7, FIG. 1 is an M view showing the substrate used in the present invention, FIG. 5 is a graph showing the same substrate with no refractive index distribution, and FIG. Fig. 7 is a perspective view showing an example in which the present invention is applied to a full wave circuit, and Fig. 7 is a cross-sectional view of the main part of Fig. 7. C......Light splitting circuit 2AljB...
...Transparent substrate 3A, ,? B l 41A, II
B t 3A l jB...For...Light guide path O...
・・Partially transparent layer 7・・・・・・・Man-powered fiber!
, ri, 10, //river... uJJ cuff eye bar/J, /3... Direct fiber patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 OF3 Figure 2 Figure 3 S Δ B Figure 4

Claims (1)

【特許請求の範囲】 〕) 平行平向をもつ透明基板内に、屈折率が基板より
も大で光の進行方向に垂直な断面内において、屈折率が
基板表面を最大とし、内部に向けて漸減する分布をもち
しかも光の進行方向には屈折率が一様な断面がほぼ半円
形の導光路を間隔をおいて平行vc複数個設け、該基板
の一対を導光結露出血を対向させ且つ前記導光路表面の
全域又は要部に部分反14透九層を介在させて密接配置
し、前記導光路の一端に光ファイバーを接続し、該導光
路の他端側または(および)該導光路に対向する導光路
の他端側に直結用光ファイバーの一端を接続するときも
にその他端を基板の同一側面側にある隣接導光路端に接
続し、これにより光の再分割または再合流を行なうよう
にしたことを特徴とする多段光分割合流[[J1路。 2) 部分反射透光層は光量の略半分を透過し他を反射
する機能をもつ薄膜であることを特徴とする特許請求の
範囲第1項記載の多段光分割合流回路。 3) 部4分反射透光層は特定波長の光のみを透過し、
他を反射する機能をもつ薄膜であることを特徴とする特
許請求の範囲第1項記載の多段光分割合流回路。
[Claims] ]) In a transparent substrate with parallel planes, the refractive index is larger than the substrate and in a cross section perpendicular to the direction of light propagation, the refractive index is maximum at the substrate surface and directed toward the inside. A plurality of parallel VC light guide paths having a gradually decreasing distribution and a uniform refractive index in the traveling direction of the light and a substantially semicircular cross section are provided at intervals. A partially transparent 14 transparent layer is interposed over the entire area or main part of the surface of the light guide and is closely arranged, an optical fiber is connected to one end of the light guide, and an optical fiber is connected to the other end of the light guide or (and) When connecting one end of the direct coupling optical fiber to the other end of the opposing light guide, the other end is connected to the end of the adjacent light guide on the same side of the board, thereby re-splitting or recombining the light. Multi-stage light splitting and merging [[J1 road. 2) The multi-stage light splitting and merging circuit according to claim 1, wherein the partially reflective light transmitting layer is a thin film having a function of transmitting approximately half of the amount of light and reflecting the rest. 3) The partially reflective transparent layer transmits only light of a specific wavelength,
2. The multistage light splitting/merging circuit according to claim 1, wherein the multistage light splitting/merging circuit is a thin film having a function of reflecting light.
JP9266882A 1982-05-31 1982-05-31 Multistage optical demultiplexing and multiplexing circuit Pending JPS58209710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266882A JPS58209710A (en) 1982-05-31 1982-05-31 Multistage optical demultiplexing and multiplexing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266882A JPS58209710A (en) 1982-05-31 1982-05-31 Multistage optical demultiplexing and multiplexing circuit

Publications (1)

Publication Number Publication Date
JPS58209710A true JPS58209710A (en) 1983-12-06

Family

ID=14060849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266882A Pending JPS58209710A (en) 1982-05-31 1982-05-31 Multistage optical demultiplexing and multiplexing circuit

Country Status (1)

Country Link
JP (1) JPS58209710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878728A (en) * 1983-12-17 1989-11-07 U.S. Philips Corporation Multilayer integrated optical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417044A (en) * 1977-07-07 1979-02-08 Nippon Selfoc Co Ltd Light wave multiple separation circuit for light beams
JPS5421747A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Optical distributor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417044A (en) * 1977-07-07 1979-02-08 Nippon Selfoc Co Ltd Light wave multiple separation circuit for light beams
JPS5421747A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Optical distributor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878728A (en) * 1983-12-17 1989-11-07 U.S. Philips Corporation Multilayer integrated optical device

Similar Documents

Publication Publication Date Title
US4693544A (en) Optical branching device with internal waveguide
US4790615A (en) Demultiplexing and/or multiplexing optical circuit
US6266464B1 (en) Optical arrayed waveguide grating devices
US4878727A (en) Multimode channel waveguide optical coupling devices and methods
JPH08304664A (en) Wavelength demultiplexing element
JPH09189817A (en) Optical waveguide for optical branching unit
JP2001318253A (en) Optical waveguide-type directional coupler and optical waveguide circuit using the optical waveguide type directional coupler
JP2002323626A (en) Optical wavelength multiplexing and demultiplexing device and optical multiplexing and demultiplexing system
WO2007020778A1 (en) Optical reflector and optical system
JPH08313744A (en) Optical circuit parts
EP0463779A1 (en) Fibre optic waveguide beam splitter
JPS62183405A (en) Optical waveguide circuit with taper and its production
JPS58209710A (en) Multistage optical demultiplexing and multiplexing circuit
JPH03171115A (en) Optical multiplexer/demultiplexer
KR101227651B1 (en) A splitter planar lightwave circuit element
JPH03213829A (en) Waveguide type optical branching element operating at wide-wavelength-range
JPH08122545A (en) Waveguide type optical multiplexer/demultiplexer
JPH0798419A (en) Integrated optical waveguide circuit
JP2003149473A (en) Waveguide type optical device
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
KR100988910B1 (en) Photonics device
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
JPH0749430A (en) Optical circuit part
JP3396477B2 (en) Integrated optical waveguide circuit
JPH03291603A (en) Optical multiplexer/demultiplexer