WO2007020778A1 - Optical reflector and optical system - Google Patents

Optical reflector and optical system Download PDF

Info

Publication number
WO2007020778A1
WO2007020778A1 PCT/JP2006/314756 JP2006314756W WO2007020778A1 WO 2007020778 A1 WO2007020778 A1 WO 2007020778A1 JP 2006314756 W JP2006314756 W JP 2006314756W WO 2007020778 A1 WO2007020778 A1 WO 2007020778A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
reflector
input
wavelength
Prior art date
Application number
PCT/JP2006/314756
Other languages
French (fr)
Japanese (ja)
Inventor
Rei Yamamoto
Nobuo Miyadera
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Publication of WO2007020778A1 publication Critical patent/WO2007020778A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29364Cascading by a light guide path between filters or filtering operations, e.g. fibre interconnected single filter modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12104Mirror; Reflectors or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12119Bend

Definitions

  • the present invention relates to an optical reflector and an optical system.
  • FIG. 7 is a schematic diagram of a crossed light reflector.
  • the crossed light reflector 100 is provided at a portion where two linear optical waveguides intersect with the first linear optical waveguide 102 and the second linear optical waveguide 104 that intersect each other at an angle ⁇ .
  • a mirror 106 which is a reflecting member.
  • the mirror 106 has an equivalent reflection center plane 106a passing through the intersection 108 of the optical axes 102a and 104a of the linear optical waveguides 102 and 104, and the first linear optical waveguide 102 and the second linear optical waveguide 104.
  • the light incident on the first linear optical waveguide 102 is reflected by the mirror 106 and propagates to the second linear optical waveguide 104.
  • the mirror 106 is arranged in the position and orientation described above, the light incident on the first linear optical waveguide 102 is Regardless of the difference in the wavelength of light, the light is reflected by the mirror 106 and is incident on the second straight optical waveguide 104.
  • the position and orientation force of the mirror 106 deviate even slightly, the light reflected by the mirror 106 does not enter the second linear optical waveguide 104, and the light to the second linear optical waveguide 104 is reflected. Insertion loss increases significantly.
  • FIG. 8 shows an optical reflector disclosed in Patent Document 2.
  • the first optical waveguide 112 and the second optical waveguide 114 intersect and overlap at a branch angle ⁇ .
  • the width of the converging optical waveguide 116 which is an overlapping portion, is increased and, optionally, the length thereof is increased, so that light is transmitted to the converging optical waveguide 116. Interference is thereby created, thereby avoiding the exact placement of the mirror or reflective film 118.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-177882 (FIG. 19)
  • Patent Document 2 Japanese Patent Laid-Open No. 11 237517 (FIG. 10)
  • the input / output port of the light reflector in parallel with the mirror 106 to connect the light reflector and another optical module.
  • the crossed light reflector is elongated.
  • FIG. 9 and FIG. 9 and 10 are schematic views of a crossed light reflector in which input / output ports are added to the crossed light reflector shown in FIG.
  • the crossed light reflector 120 since the optical waveguides 102 and 104 intersect at an angle ⁇ at the mirror 106, the respective input / output ports 102b and 104b are arranged in parallel with the mirror 106. Therefore, it is necessary to adjust the light propagation angle (path) according to the angle ⁇ using the maximum radius of curvature R allowed for the optical waveguides 102 and 104, and the larger the angle ⁇ , the more the element (light reflection ) The length of 110 L01 was long.
  • the pitch A force will be larger than the pitch B of the existing optical fiber array connected to the input / output ports 102b and 104b.
  • an S-shaped optical waveguide 132 for adjusting the pitch A to B is required, and the length L02 of the element (light reflector) 130 is further increased.
  • the angle ⁇ force is 16 °
  • the input / output port pitch is 250 m
  • the optical waveguides 102, 104, and 132 follow the paths shown in FIG.
  • an object of the present invention is to provide an optical reflector and an optical system that can alleviate the strictness of the arrangement of the reflecting member, and that can be shortened when the input / output port and the reflecting member are arranged in parallel. It is to provide. Means for solving the problem
  • an optical system is provided on a substrate, and is provided with an incident / exit end face on which light enters and exits and a reflecting member that reflects light of a predetermined wavelength.
  • a single multimode optical waveguide having a reflection end face, and a first light input / output means and a second light input / output means connected to the multimode optical waveguide in the input / output end face,
  • the first light input / output means and the second light input / output means have a first axis and a second axis, respectively, and the first tangent and the second axis of the first axis at the input / output end face
  • the second tangents are characterized by parallel forces or crossing after passing through the multimode optical waveguide and beyond the reflection end face.
  • the light is decomposed into multimode light, and the decomposed light interferes with each other, thereby generating interference fringes corresponding to the light intensity distribution in the multimode optical waveguide.
  • the position of the peak of the light intensity distribution moves laterally with respect to the propagation direction as light propagates through the multimode optical waveguide. If the position and orientation of the reflecting member are as designed, the peak position of the light intensity distribution is reflected by the reflecting member and then comes to the position of the second light input / output means. Thereby, light is propagated to the second light input / output means.
  • the position of the reflecting member is slightly shifted, the position of the peak of the light intensity distribution is slightly shifted, but most of the light is incident on the second light input / output means.
  • the insertion loss can be prevented from significantly increasing. As a result, the strictness of the arrangement of reflecting members such as mirrors can be relaxed.
  • first tangent and the second tangent cross each other in parallel force, or force cross over the reflection end surface through the multimode optical waveguide, so that the length of the multimode optical waveguide is shortened.
  • first tangent of the first axis and the second tangent of the second axis are parallel to each other means that they are substantially parallel to each other, and the amount of deviation of the parallel force is 0. Preferably less than 2 degrees.
  • an inorganic material substrate such as glass or quartz, a semiconductor substrate such as silicon, gallium arsenide, aluminum or titanium, a metal material, a polymer material such as polyimide or polyamide
  • a plate-like member, a film-like member, or a sheet-like member such as an organic material substrate using the above may be used, and an integrated structure in which part of the optical waveguide functions as a substrate may be used.
  • the reflection end face is substantially parallel to the incident / exit end face.
  • the substrate is provided with a groove, a stepped portion or an installation surface for installing the reflecting member on the reflecting end surface.
  • the first and second light input / output means are preferably single mode optical waveguides.
  • the reflector according to the present invention is provided with a reflecting member on the reflecting end face of the optical system.
  • the reflecting member may reflect light of a predetermined wavelength and transmit light of other wavelengths.
  • a multiplexer / demultiplexer can be provided.
  • light having a predetermined wavelength may be reflected with a predetermined reflectance, and a part of the light may be transmitted.
  • an optical power monitor can be provided.
  • the optical reflector and the optical system according to the present invention can alleviate the strictness of the arrangement of the reflecting member, and can shorten the length when the input / output port and the reflecting member are arranged in parallel.
  • FIG. 1 is a schematic diagram of an MMI (Multi Mode Interference) type optical reflector, which is a first embodiment of the optical reflector according to the present invention.
  • MMI Multi Mode Interference
  • an MMI-type light reflector 1 is formed on a substrate (not shown) and has a single multi-layer having an incident / exit end face 16 and a reflecting end face 18 through which light enters and exits.
  • Mode light waveguide 2, reflection member 12 installed on reflection end face 18 of multimode optical waveguide 2 and first light input / output means connected to multimode optical waveguide 2 in input / output end face 16
  • the reflection end face 18 is preferably substantially parallel to the entrance / exit end face 16 and the parallelism between the entrance / exit end face 16 and the reflection end face 18 is preferably within ⁇ 5 degrees.
  • the planar shape of the multimode optical waveguide 2 is substantially rectangular.
  • the multimode optical waveguide 2 has an axis 14 extending in the light propagation direction parallel to one side of the rectangle.
  • the multi-mode optical waveguide 2 has a core 2a and a clad 2b formed in a stacked manner on a Si substrate (not shown), and the core 2a and the clad 2b are preferably formed of a polymer.
  • the first single mode optical waveguide 4 and the second single mode optical waveguide 8 have one end connected to the multimode optical waveguide 2 at the junction position 16, and the other end, that is, an input / output port. 4c and 8c are connected to the first optical fiber 6 and the second optical fiber 10, respectively.
  • the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are suitable for the positional relationship between the first optical fiber 6 and the second optical fiber 10 and the multi-mode optical waveguide 2. They are arranged so that an optical connection satisfying the positional relationship between the first single mode optical waveguide 4 and the second single mode optical waveguide 8 to be connected is realized.
  • the distance between the first optical fiber 6 and the second optical fiber 10 is preferably 100 ⁇ m or more, whereas the first single-mode optical waveguide 4 and the second single optical fiber 4 are separated from each other. Since the interval between the mode optical waveguide 8 and the multimode optical waveguide 2 is preferably about 10 m, the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are S-shaped. And optically connected.
  • the first single mode optical waveguide 4 and the second single mode optical waveguide 8 each have a first axis 4d and a second axis 8d.
  • the first tangent line 4e of the first axis 4d and the second tangent line 8e of the second axis 8d on the input / output end face 16 are parallel to each other.
  • the first tangent 4e and the second tangent 8e should form an angle ⁇ , cross the multimode optical waveguide 2 and beyond the reflection end face 18 before crossing.
  • the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are cores 4a, 8a formed on a Si substrate (not shown) together with the multi-mode optical waveguide 2, respectively.
  • the cores 4a and 8a and the clads 4b and 8b are preferably formed of a polymer.
  • an optical circuit having other functions between the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 and the first optical fiber 6 and the second optical fiber 10. May be accumulated.
  • the first optical fiber 6 and the second optical fiber 10 have cores 6a and 10a and claddings 6b and 10b, respectively.
  • the first optical fiber 6 and the second optical fiber 10 are disposed substantially parallel to the axis 14 (within a range of 5 degrees), and are fixed to the multimode optical waveguide 2 with an adhesive or the like. ing.
  • the reflecting member 12 is preferably formed of a dielectric multilayer film, but any material can be used as long as it can reflect light, and reflects light of a predetermined wavelength to reflect light of other wavelengths.
  • the distance L1 from the joining position 16 to the equivalent reflection center plane 12a of the reflecting member 12 is preferably 1Z4 of the interference period of the wavelength of the reflected light.
  • the reflection center plane 12a of the reflection member 12 is more preferably substantially perpendicular to the axis 14 and preferably within a range of 90 ⁇ 5 degrees.
  • the reflecting member 12 may be installed on the end surface 18 by a groove, a stepped portion, an installation surface, or the like provided on a substrate (not shown), or may be installed directly on the end surface 18 by an adhesive or the like.
  • light incident from the first optical fiber 6 enters the multimode optical waveguide 2 via the first single mode optical waveguide 4 and is decomposed into multimode light and decomposed light. Interfere with each other, thereby generating interference fringes in the multi-mode optical waveguide 2 corresponding to the light intensity distribution.
  • the position of the peak of the light intensity distribution moves laterally with respect to the direction of the axis 14.
  • the distance L from the joining position 16 to the reflecting member 12 is 1Z4, which is the interference period of the light wavelength, the peak position of the light intensity distribution is reflected by the reflecting member 12 and returned to the joining position 16.
  • the second single-mode optical waveguide 8 and the multimode optical waveguide 2 are joined.
  • the light is incident on the second optical fiber 10 through the second single-mode optical waveguide 8.
  • the position of the peak of the light intensity distribution is slightly misaligned with the second light input / output means, but most of the light is in the second light input / output means. Therefore, unlike the conventional cross-type optical reflector, the insertion loss can be prevented from increasing significantly.
  • FIG. 2 is a schematic diagram of the optical reflector according to the present invention when the pitch of the optical input / output port is changed.
  • the MMI optical reflector of FIG. 1 is shown.
  • the pitch between the input and output ports can be designed freely. It is easy to design according to the pitch of a fiber array or the like.
  • FIG. 3 is a schematic plan view of a CWDM multiplexer / demultiplexer including an optical system according to the present invention.
  • the CWDM multiplexer / demultiplexer 50 includes three optical multiplexers / demultiplexers 52, 54, 56 arranged in series with an edge filter inserted in the crossed optical waveguide, and arranged in the subsequent stage. And a light reflector 58 according to the present invention. As an example of the light reflector 58, the light reflector 1 of the first embodiment is adopted.
  • the CDWM multiplexer / demultiplexer 50 includes optical input / output ports 50a and 50b of the first optical multiplexer / demultiplexer 52, optical input / output port 50c of the second optical multiplexer / demultiplexer 54, and third optical multiplexer / demultiplexer.
  • the optical input / output port 50d of 56 and the optical input / output port 50e of the optical reflector 58 are provided. These optical input / output ports 50a to 50e are provided on one end face 51 of the CWDM multiplexer / demultiplexer 50. ing.
  • the first optical multiplexer / demultiplexer 52 reflects the light ⁇ 1 of the first wavelength, transmits the light of the second to fourth wavelengths ⁇ 2 to 4, and the second optical multiplexer / demultiplexer 54 Second wavelength light ⁇ 2 is reflected, the third and fourth wavelengths of light ⁇ 3 and ⁇ 4 are transmitted, and the third optical multiplexer / demultiplexer 56 reflects the third wavelength of light ⁇ 3 and the fourth wavelength.
  • the light reflector 58 reflects the light 4 having the fourth wavelength. In Fig. 3, the propagation path of each wavelength of the optical signal is indicated by arrows.
  • each arrow indicates that the direction of all arrows indicating the signal propagation path when operating the CWDM multiplexer / demultiplexer 50 as a demultiplexer can be reversed.
  • the CWDM multiplexer / demultiplexer 50 can be operated as a multiplexer.
  • the 4-wavelength CWDM multiplexer / demultiplexer 50 is operated as a demultiplexer will be described with reference to FIG.
  • the four-wavelength optical signal of wavelength 4 is reflected by the first optical multiplexer / demultiplexer 52, and the light of wavelength ⁇ 1 of the first wavelength is reflected and emitted to the optical input / output port 50b, while the remaining first optical multiplexer / demultiplexer 52
  • the optical signal of the three wavelengths of the light 2 of the second wavelength 2, the light ⁇ 3 of the third wavelength, and the light ⁇ 4 of the fourth wavelength is transmitted and propagated to the second optical multiplexer / demultiplexer 54.
  • the optical signals of these three wavelengths are reflected by the second optical multiplexer / demultiplexer 54, and the light of the second wavelength is reflected and emitted to the optical input / output port 50c, while the rest
  • the second wavelength light signal ⁇ 3 and the fourth wavelength light ⁇ 4 are transmitted and propagated to the third optical multiplexer / demultiplexer 56.
  • the optical signals of these two wavelengths are reflected by the third optical multiplexer / demultiplexer 56, and the light of the third wavelength of light 3 is reflected and emitted to the optical input / output port 50d, while the remaining fourth optical signals are output.
  • the optical signal having the wavelength ⁇ 4 is transmitted and propagated to the optical reflector 58.
  • the optical signal of the light ⁇ 4 having the fourth wavelength is reflected by the light reflector 58 and emitted from the light input / output port 50e.
  • the CWDM multiplexer / demultiplexer 50 is operated as an optical demultiplexer.
  • the arrows in FIG. 3 are reversed, and the optical input / output ports 50e, 50d, 50c, 50b are When a light signal having a wavelength of 4 of ⁇ 4, light of the third wavelength ⁇ 3, light of the second wavelength ⁇ 2, light of the first wavelength ⁇ 1 is incident, the light described above The first wavelength light ⁇ 1, the second wavelength light ⁇ 2, the third wavelength light ⁇ 3, and the fourth wavelength light from the optical input / output port 50a through the reverse path of The four-wavelength optical signals of 4 are combined and emitted.
  • the CWDM multiplexer / demultiplexer 50 can be operated as an optical multiplexer.
  • Compact optical multiplexer / demultiplexer with input / output ports arranged by combining input / output optical signals with optical input / output ports 50a to 50e using a lens or the like (not shown) It can be operated as If an optical fiber (not shown) is connected to the optical input / output ports 50a to 50e, it operates as a compact optical fiber bigtail optical multiplexer / demultiplexer with input / output ports arranged on one side. Can be made.
  • the existing optical fiber array can be used to connect all the optical input / output ports 50a to 50e at once. It can be realized. As a result, the manufacturing process of the optical fiber bigtail optical multiplexer / demultiplexer can be shortened and manufactured at low cost.
  • a guide groove for mounting a fiber for example, a groove generally called a V-groove having a V-shaped cross section
  • An optical fiber big tail type optical multiplexer / demultiplexer can be manufactured by using a single optical fiber mounting process using an existing optical fiber ribbon.
  • FIG. 4 is a diagram showing a modification of the CWDM multiplexer / demultiplexer similar to FIG. As shown in FIG. 4, the multiplexing / demultiplexing circuit of Patent Document 1 may be applied as the three optical multiplexer / demultiplexers 52, 54, and 56. The operation of the CWDM multiplexer / demultiplexer shown in Fig. 4 is the same as Fig. 3.
  • the CWDM multiplexer / demultiplexer 50 shown in FIGS. 3 and 4 is an example of a 4-wavelength multiplexer / demultiplexer.
  • the three optical multiplexer / demultiplexers 52, 54, 56 are, for example, seven If added to an optical multiplexer / demultiplexer, it can be used as an 8-wavelength multiplexer / demultiplexer.
  • FIG. 5 is a schematic plan view of a CWDM receiver including an optical system according to the present invention.
  • the CWDM receiver 60 includes three optical reflectors 62, 64, 66 according to the present invention arranged in series, the optical input port 60a of the first optical reflector 62, and the optical output of the third optical reflector 66.
  • the optical input port 60a, the optical output port 60b, and the second optical reflector 64 are arranged on one end face 61 of the CWDM receiver 60, and the first optical reflector 62 and the third optical reflector 66 are The other end face 63 is disposed.
  • light receivers 68a to 68d are disposed adjacent to the first to third light reflectors 62, 64 and 66 and the light output port 60b, respectively.
  • the light reflector 1 of the first embodiment is used as the light reflectors 62, 64, 66.
  • a wavelength filter is used as the reflecting member to be used. That is, the first light reflector 62 transmits the light ⁇ 1 of the first wavelength, reflects the light of the second to fourth wavelengths ⁇ 2 to 4, and the second light reflector 64 Transmits light 2 of the second wavelength, reflects light 3 and ⁇ 4 of the third and fourth wavelengths, and the third light reflector 66 transmits light ⁇ 3 of the third wavelength. Reflects the light 4 of the fourth wavelength.
  • the propagation path of each wavelength of the optical signal is indicated by an arrow.
  • the four-wavelength optical signal 4 is transmitted by the first optical reflector 62 and transmitted to the optical receiver 68a through which the first wavelength light ⁇ 1 is transmitted, while being converted into an electrical signal.
  • the optical signal of the three wavelengths of the light ⁇ 2 of the second wavelength, the light ⁇ 3 of the third wavelength, and the light ⁇ 4 of the fourth wavelength is reflected and propagated to the second optical reflector 64.
  • these three-wavelength optical signals are transmitted by the second light reflector 64 through the second wavelength light 2 and propagated to the light receiver 68b to be converted into electrical signals, while the remaining light signals are transmitted to the receiver 68b.
  • the second wavelength light 3 and the fourth wavelength light ⁇ 4 are reflected and propagated to the third light reflector 66.
  • these two-wavelength optical signals are transmitted by the third light reflector 66 through the third wavelength of light 3 and propagated to the light receiver 68c, where they are converted into electrical signals, while the remaining light signals are transmitted.
  • the optical signal of the fourth wavelength of light ⁇ 4 is reflected, propagated to the light receiver 68d, and converted into an electrical signal.
  • an optical input signal is coupled to the optical input port 60a using a lens or the like (not shown), the optical input port 60a can be operated as an optical receiver for CWDM.
  • an optical fiber (not shown in the figure) is coupled to the optical input port 6 Oa, it can be operated as an optical fiber pigtail type CWDM optical receiver.
  • an optical fiber can be coupled instead of the light receivers 68a to 68d to form an optical multiplexer / demultiplexer for CWDM.
  • the CWDM receiver 60 exemplifies a 4-wavelength demultiplexing receiver, but if the three optical reflectors 6 2, 64, 66 are increased to, for example, seven optical reflectors, an 8-wavelength demultiplexing receiver is provided. It can be used as a receiver.
  • a CWDM transmitter which is an application example of the optical reflector according to the present invention, will be described with reference to FIG.
  • FIG. 6 is a schematic plan view of a CWDM transmitter including an optical system according to the present invention.
  • the CWDM transmitter 70 includes three optical reflectors 72, 74, 76 according to the present invention arranged in series, the optical output port 70a of the first optical reflector 72, and the optical input of the third optical reflector 76.
  • the optical output port 70a, the optical input port 70b, and the second optical reflector 74 are arranged on one end surface 71 of the CWDM receiver 70, and the first optical reflector 72 and the third optical reflector 76 are The other end face 73 is disposed.
  • light emitters 78a to 78d are arranged through lenses 77 and the like adjacent to the first to third light reflectors 72, 74 and 76 and the light input port 70b, respectively.
  • the light reflector 1 of the first embodiment is used as the light reflectors 72, 74, and 76.
  • a wavelength filter is used as the reflecting member to be used. That is, the first light reflector 72 transmits the light ⁇ 1 of the first wavelength, reflects the light of the second to fourth wavelengths 2 to 4, and the second light reflector 74 The second wavelength light ⁇ 2 is transmitted, the third and fourth wavelength light ⁇ 3 and ⁇ 4 are reflected, and the third light reflector 76 transmits the third wavelength light ⁇ 3. And reflects the light 4 of the fourth wavelength.
  • the light emitters 78a to 78d are elements that emit light of the first wavelength ⁇ 1, light of the second wavelength ⁇ 2, light of the third wavelength ⁇ 3, and light of the fourth wavelength ⁇ 4, respectively.
  • Semiconductor lasers, LEDs, etc. can be used.
  • the propagation path of each wavelength of the optical signal is indicated by arrows.
  • the operation of the CWDM transmitter 70 will be described.
  • the optical signals transmitted from the light emitters 78a to 78d are respectively incident on the light reflectors 72, 74, 76 and the light input port 70b.
  • the optical signal is collected and entered by the lens 77, etc., but if necessary, it can be entered directly without going through the lens 77.
  • the light signal of light 4 of the fourth wavelength incident on the light input port 70b from the light emitter 78d is propagated to the third light reflector 76 and reflected, and then propagated to the second light reflector 74.
  • the light is reflected, propagated to the first light reflector 72, reflected, and emitted to the light output port 70a.
  • the light signal of light 3 of the third wavelength incident on the third light reflector 76 from the light emitter 78c is transmitted through the third light reflector 76 and propagated to the second light reflector 74.
  • the light is reflected, propagated to the first light reflector 72, reflected, and emitted to the light output port 70a.
  • the light signal of light 2 of the second wavelength incident from the light emitter 78b to the second light reflector 74 is the second light.
  • the light passes through the reflector 74, propagates to the first light reflector 72, is reflected, and is emitted to the light output port 70a.
  • the optical signal of the first wavelength light ⁇ 1 incident on the first light reflector 72 from the light emitter 78a is transmitted through the first light reflector 72 and emitted to the light output port 70a.
  • the output optical signal is coupled to the optical output port 70a using a lens or the like (not shown), it can be operated as an optical transmitter for CWDM. If an optical fiber or the like (not shown in the figure) is coupled to the optical output port 7 Oa, it can be operated as an optical fiber pigtail type CWDM optical transmitter. In addition, in FIG. 6, it is possible to obtain an optical multiplexer / demultiplexer for CWDM by coupling optical fibers instead of the light emitters 78a to 78d.
  • Transmitter for CWDM 70 is an example of a four-wavelength combined transmitter. If three optical reflectors 7 2, 74, 76 are increased to seven optical reflectors, for example, an eight-wavelength combined transmitter is transmitted. It can be used as a container.
  • the case where light is propagated from the first light input / output means to the second light input / output means has been described.
  • the second light input / output means power is also available to the first light. May be propagated to.
  • the light reflector of the present invention has been described with the reflecting member 12 attached.
  • the present invention is not limited to this, and the light reflector is actually reflected as a product and reflected from the light reflector. Even an optical system from which the member 12 has been removed is within the scope of the present invention if it becomes a light reflector of the present invention if the reflecting member 12 is attached.
  • part or all of the optical fiber described above may be replaced with an optical waveguide, or part or all of the optical waveguide may be replaced with one optical fiber. Also, if the optical waveguide and one optical fiber are connected, either of them may be omitted. Yes.
  • the incident-side optical fiber 1 may be replaced with a light-emitting element with a corresponding wavelength, or the output-side optical fiber 1 may be replaced with a light-receiving element with a corresponding wavelength. Good.
  • the positions where the first and second light input / output means 4 and 8 are arranged with respect to the multimode optical waveguide 2 can be determined according to the wavelength, the dimensions of the multimode optical waveguide 2, and the like. I like it.
  • the shapes, dimensions, relative positions, etc. of the multimode optical waveguide 2 and each optical input / output means are determined according to the design of insertion loss, crosstalk, and return loss. Further, for example, the widths of the single mode optical waveguides 4 and 8 may be the same or different from each other.
  • FIG. 1 is a schematic plan view of an MMI-type light reflector that is a first embodiment of a light reflector according to the present invention.
  • FIG. 2 is a schematic view of a light reflector according to the present invention when the pitch of input / output ports is changed.
  • FIG. 3 is a schematic plan view of a CWDM multiplexer / demultiplexer using an optical reflector according to the present invention.
  • FIG. 4 is a schematic plan view of a CWDM multiplexer / demultiplexer using an optical reflector according to the present invention.
  • FIG. 5 is a schematic plan view of a CWDM receiver using an optical reflector according to the present invention.
  • FIG. 6 is a schematic plan view of a CWDM transmitter using an optical reflector according to the present invention.
  • FIG. 7 is a schematic plan view of a conventional cross-type light reflector.
  • FIG. 8 is a schematic plan view of a conventional light reflector.
  • FIG. 9 is a schematic view of a crossed light reflector having an input / output port.
  • FIG. 10 is a schematic view of a crossed light reflector having an input / output port.

Abstract

Provided are an optical reflector and an optical system which modify strictness in optical filter arrangement and permit the length to be shortened when an input/output port and a reflection member are arranged in parallel. The optical reflector is formed on a substrate. The optical reflector is provided with an incoming/outgoing end plane (16) from which light enters and exits; a single multimode optical waveguide (2) having a reflection end plane (18) whereupon the reflection member (12) is arranged for reflecting light having a prescribed wavelength; and first light input/output means (4, 6) and second light input/output means (8, 10) connected to the multimode optical waveguide (2) in the incoming/outgoing end plane (16). Tangent lines (4e, 8e) of a first axis line (4d) of the first light input/output means (4) and a second axis line (8d) of the first light input/output means (8) on the incoming/outgoing plane (16) are parallel to each other or intersect with each other beyond the reflection end plane (18).

Description

明 細 書  Specification
光反射器及び光システム  Optical reflector and optical system
技術分野  Technical field
[0001] 本発明は、光反射器及び光システムに関する。  [0001] The present invention relates to an optical reflector and an optical system.
背景技術  Background art
[0002] 特許文献 1に開示されて!ヽる交差型 (直線光導波路型)光反射器を、図 7を参照し て説明する。図 7は、交差型光反射器の概略図である。交差型光反射器 100は、互 いに角度 Θで交差している第 1の直線光導波路 102及び第 2の直線光導波路 104と 、 2つの直線光導波路が交差している部分に設けられた反射部材であるミラー 106と を有している。ミラー 106は、その等価的な反射中心面 106aが上記直線光導波路 1 02、 104のそれぞれの光軸 102a、 104aの交点 108を通り且つ第 1の直線光導波路 102と第 2の直線光導波路 104とが反射中心面 106aに対して鏡像の関係になる向 きに配置されている。  A cross-type (straight optical waveguide type) optical reflector disclosed in Patent Document 1 will be described with reference to FIG. FIG. 7 is a schematic diagram of a crossed light reflector. The crossed light reflector 100 is provided at a portion where two linear optical waveguides intersect with the first linear optical waveguide 102 and the second linear optical waveguide 104 that intersect each other at an angle Θ. And a mirror 106 which is a reflecting member. The mirror 106 has an equivalent reflection center plane 106a passing through the intersection 108 of the optical axes 102a and 104a of the linear optical waveguides 102 and 104, and the first linear optical waveguide 102 and the second linear optical waveguide 104. Are arranged in a direction that is a mirror image of the reflection center plane 106a.
第 1の直線光導波路 102に入射された光は、ミラー 106で反射して第 2の直線光導 波路 104に伝搬される。  The light incident on the first linear optical waveguide 102 is reflected by the mirror 106 and propagates to the second linear optical waveguide 104.
[0003] 上述した特許文献 1に開示されている交差型光反射器 100においては、ミラー 106 が上述した位置及び向きに配置されていれば、第 1の直線光導波路 102に入射され た光は、光の波長の違いとは無関係に、ミラー 106で反射され、第 2の直線光導波路 104に入射される。し力しながら、ミラー 106が上述した位置及び向き力も少しでもず れると、ミラー 106で反射した光が第 2の直線光導波路 104に入射せず、第 2の直線 光導波路 104への光の挿入損失が著しく増大する。第 2の直線光導波路 104への 光の挿入損失を低減するためには、ミラー 106を上述した位置及び向きに厳密に配 置することが必要であり、これを実現するにはかなりの手間が力かる。  In the crossed light reflector 100 disclosed in Patent Document 1 described above, if the mirror 106 is arranged in the position and orientation described above, the light incident on the first linear optical waveguide 102 is Regardless of the difference in the wavelength of light, the light is reflected by the mirror 106 and is incident on the second straight optical waveguide 104. However, if the position and orientation force of the mirror 106 deviate even slightly, the light reflected by the mirror 106 does not enter the second linear optical waveguide 104, and the light to the second linear optical waveguide 104 is reflected. Insertion loss increases significantly. In order to reduce the insertion loss of light into the second linear optical waveguide 104, it is necessary to precisely arrange the mirror 106 at the position and orientation described above, and this requires considerable effort. Help.
[0004] 図 8は、特許文献 2に開示されている光反射器である。図 8に示すように、光反射器 110は、第 1の光導波路 112及び第 2の光導波路 114が分岐角 Θで交差して重なり 合っている。この光反射器 110では、重なり合つている部分である合流光導波路 116 の幅を広げ、選択的にはその長さを長くすることによって、合流光導波路 116に光の 干渉を生じさせ、それにより、ミラー又は反射膜 118の配置の厳密さを回避している。 FIG. 8 shows an optical reflector disclosed in Patent Document 2. As shown in FIG. 8, in the optical reflector 110, the first optical waveguide 112 and the second optical waveguide 114 intersect and overlap at a branch angle Θ. In this optical reflector 110, the width of the converging optical waveguide 116, which is an overlapping portion, is increased and, optionally, the length thereof is increased, so that light is transmitted to the converging optical waveguide 116. Interference is thereby created, thereby avoiding the exact placement of the mirror or reflective film 118.
[0005] 特許文献 1:特開 2004 - 177882号公報(図 19) Patent Document 1: Japanese Patent Application Laid-Open No. 2004-177882 (FIG. 19)
特許文献 2 :特開平 11 237517号公報(図 10)  Patent Document 2: Japanese Patent Laid-Open No. 11 237517 (FIG. 10)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 光反射器の入出力ポートをミラー 106と平行に配置することが、光反射器と他の光 モジュールとを接続するのに好まし ヽ。特許文献 1に開示されて ヽる光反射器 100に おいて、入出力ポートをミラー 106と平行に配置する場合、交差型光反射器が長尺 化する。 [0006] It is preferable to arrange the input / output port of the light reflector in parallel with the mirror 106 to connect the light reflector and another optical module. In the light reflector 100 disclosed in Patent Document 1, when the input / output port is arranged in parallel with the mirror 106, the crossed light reflector is elongated.
このことを、図 9及び図 10を参照して詳細に説明する。図 9及び図 10は、図 7に示し た交差型光反射器に入出力ポートを追加した交差型光反射器の概略図である。 図 9に示すように、交差型光反射器 120は、ミラー 106で光導波路 102、 104が角 度 Θで交差しているため、それぞれの入出力ポート 102b、 104bをミラー 106と平行 に配置するためには、光導波路 102、 104に許容される最大の曲率半径 Rを用いて 角度 Θに応じた光の伝搬角度 (経路)を調整する必要があり、角度 Θが大きいほど素 子 (光反射器) 110の長さ L01が長くなつてしまう問題があった。更に、入出力ポート 1 02b、 104bをミラー 106と平行にしたときのピッチ A力 それに接続する既存の光ファ ィバアレイのピッチ Bよりも大きくなつてしまう場合、図 10に示す交差型光反射器 130 のように、ピッチ Aを Bに調整するための S字形光導波路 132などが必要となり、素子 (光反射器) 130の長さ L02が更に長尺化してしまう。例えば、角度 Θ力 16° 、曲率 半径 R= 20mm、入出力ポートのピッチが 250 mの場合、光導波路 102、 104、 1 32は、図 10に示す経路をとる。  This will be described in detail with reference to FIG. 9 and FIG. 9 and 10 are schematic views of a crossed light reflector in which input / output ports are added to the crossed light reflector shown in FIG. As shown in FIG. 9, in the crossed light reflector 120, since the optical waveguides 102 and 104 intersect at an angle Θ at the mirror 106, the respective input / output ports 102b and 104b are arranged in parallel with the mirror 106. Therefore, it is necessary to adjust the light propagation angle (path) according to the angle Θ using the maximum radius of curvature R allowed for the optical waveguides 102 and 104, and the larger the angle Θ, the more the element (light reflection ) The length of 110 L01 was long. Furthermore, if the input / output ports 102b and 104b are parallel to the mirror 106, the pitch A force will be larger than the pitch B of the existing optical fiber array connected to the input / output ports 102b and 104b. As described above, an S-shaped optical waveguide 132 for adjusting the pitch A to B is required, and the length L02 of the element (light reflector) 130 is further increased. For example, when the angle Θ force is 16 °, the radius of curvature is R = 20 mm, and the input / output port pitch is 250 m, the optical waveguides 102, 104, and 132 follow the paths shown in FIG.
[0007] また、特許文献 2に開示されている光反射器 110においても、分岐角 Θが小さくな るほど、ミラー又は反射膜 118の配置の厳密さが緩和されるが、合流光導波路 116 の長さが長くなり、その結果、光反射器 110が長尺化する。  [0007] Also, in the optical reflector 110 disclosed in Patent Document 2, as the branch angle Θ decreases, the strictness of the arrangement of the mirror or the reflective film 118 is reduced. As a result, the length of the light reflector 110 becomes longer.
[0008] そこで、本発明の目的は、反射部材の配置の厳密さを緩和でき、入出力ポートと反 射部材とを平行に配置したときの短尺化を可能にする光反射器及び光システムを提 供することにある。 課題を解決するための手段 Accordingly, an object of the present invention is to provide an optical reflector and an optical system that can alleviate the strictness of the arrangement of the reflecting member, and that can be shortened when the input / output port and the reflecting member are arranged in parallel. It is to provide. Means for solving the problem
[0009] 上記目的を達成するために、本発明による光システムは、基板の上に形成され、光 が入射及び出射する入出射端面と、所定の波長の光を反射する反射部材が設置さ れる反射端面と、を有する単一のマルチモード光導波路と、入出射端面内において マルチモード光導波路に接続された第 1の光入出力手段及び第 2の光入出力手段と 、を有し、第 1の光入出力手段及び第 2の光入出力手段はそれぞれ、第 1の軸線及 び第 2の軸線を有し、入出射端面における第 1の軸線の第 1の接線及び第 2の軸線 の第 2の接線は、互いに平行力、又は、マルチモード光導波路内を通って反射端面 を越えてから交差することを特徴として 、る。  In order to achieve the above object, an optical system according to the present invention is provided on a substrate, and is provided with an incident / exit end face on which light enters and exits and a reflecting member that reflects light of a predetermined wavelength. A single multimode optical waveguide having a reflection end face, and a first light input / output means and a second light input / output means connected to the multimode optical waveguide in the input / output end face, The first light input / output means and the second light input / output means have a first axis and a second axis, respectively, and the first tangent and the second axis of the first axis at the input / output end face The second tangents are characterized by parallel forces or crossing after passing through the multimode optical waveguide and beyond the reflection end face.
[0010] このように構成された光システムにおいて、第 1の光入出力手段力も光を入射すると [0010] In the optical system configured as described above, when the first light input / output means force is also incident on the light,
、光は多モード光に分解されると共に、分解された光が相互に干渉し、それにより、 光の強度分布に対応した干渉縞をマルチモード光導波路内に生じさせる。光の強度 分布の山の位置は、光がマルチモード光導波路内を伝搬するにつれて、伝搬方向 に対して横方向に移動する。反射部材の位置及び向きが設計通りであれば、光の強 度分布の山の位置は、反射部材で反射した後、第 2の光入出力手段の位置にくる。 それにより、光が第 2の光入出力手段に伝搬される。反射部材の位置等が少しずれ た場合、光の強度分布の山の位置が第 2の光入出力手段の位置力 すこしずれるが 、ほとんどの光が第 2の光入出力手段に入射するので、従来技術の交差型光反射器 と異なり、挿入損失が著しく増大することを防止することができる。その結果、ミラー等 の反射部材の配置の厳密さを緩和できる。 The light is decomposed into multimode light, and the decomposed light interferes with each other, thereby generating interference fringes corresponding to the light intensity distribution in the multimode optical waveguide. The position of the peak of the light intensity distribution moves laterally with respect to the propagation direction as light propagates through the multimode optical waveguide. If the position and orientation of the reflecting member are as designed, the peak position of the light intensity distribution is reflected by the reflecting member and then comes to the position of the second light input / output means. Thereby, light is propagated to the second light input / output means. When the position of the reflecting member is slightly shifted, the position of the peak of the light intensity distribution is slightly shifted, but most of the light is incident on the second light input / output means. Unlike prior art cross-type light reflectors, the insertion loss can be prevented from significantly increasing. As a result, the strictness of the arrangement of reflecting members such as mirrors can be relaxed.
[0011] また、第 1の接線及び第 2の接線は、互いに平行力、又は、マルチモード光導波路 内を通って反射端面を越えて力 交差するので、マルチモード光導波路の長さを短 くすることができ、その結果、第 1の光入出力手段及び第 2の光入出力手段の入出力 ポートと反射部材とを平行に配置したときの短尺化が可能になる。  [0011] Further, the first tangent and the second tangent cross each other in parallel force, or force cross over the reflection end surface through the multimode optical waveguide, so that the length of the multimode optical waveguide is shortened. As a result, it is possible to reduce the length when the input / output ports of the first light input / output means and the second light input / output means and the reflecting member are arranged in parallel.
[0012] ここで、第 1の軸線の第 1の接線と、第 2の軸線の第 2の接線とが、互いに平行とは、 実質的に平行であることをいい、平行力 のズレ量は 0. 2度未満であることが好まし い。また、基板としては、ガラス、石英等の無機材料基板、シリコン、ガリウムヒ素、ァ ルミ-ゥム、チタン等の半導体基板、金属材料、ポリイミド、ポリアミド等の高分子材料 を用いた有機材料基板等の板状、フィルム状、シート状の部材が挙げられ、光導波 路の一部が基板として機能するような一体構造であってもよい。 Here, that the first tangent of the first axis and the second tangent of the second axis are parallel to each other means that they are substantially parallel to each other, and the amount of deviation of the parallel force is 0. Preferably less than 2 degrees. In addition, as a substrate, an inorganic material substrate such as glass or quartz, a semiconductor substrate such as silicon, gallium arsenide, aluminum or titanium, a metal material, a polymer material such as polyimide or polyamide A plate-like member, a film-like member, or a sheet-like member such as an organic material substrate using the above may be used, and an integrated structure in which part of the optical waveguide functions as a substrate may be used.
[0013] この光システムにおいて、反射端面は、入出射端面とほぼ平行であることが好まし い。  In this optical system, it is preferable that the reflection end face is substantially parallel to the incident / exit end face.
また、この光システムにおいて、好ましくは、反射部材を反射端面に設置するため の溝、段部又は設置面が基板に設けられる。  In this optical system, preferably, the substrate is provided with a groove, a stepped portion or an installation surface for installing the reflecting member on the reflecting end surface.
また、上記光システムにおいて、好ましくは、第 1及び第 2の光入出力手段がシング ルモード光導波路である。  In the above optical system, the first and second light input / output means are preferably single mode optical waveguides.
[0014] また、上記目的を達成するために、本発明による反射器は、上記光システムの反射 端面に反射部材が設置される。 [0014] In order to achieve the above object, the reflector according to the present invention is provided with a reflecting member on the reflecting end face of the optical system.
本発明の反射器において、好ましくは、反射部材は、所定の波長の光を反射し、他 の波長の光を透過してもよい。このような構成にすることで、合分波器を提供できる。 また、所定の波長の光を所定の反射率で反射して、一部の光を透過させてもよい。こ のような構成とすることで、光パワーモニターを提供できる。  In the reflector of the present invention, preferably, the reflecting member may reflect light of a predetermined wavelength and transmit light of other wavelengths. With such a configuration, a multiplexer / demultiplexer can be provided. Alternatively, light having a predetermined wavelength may be reflected with a predetermined reflectance, and a part of the light may be transmitted. With such a configuration, an optical power monitor can be provided.
発明の効果  The invention's effect
[0015] 本発明による光反射器及び光システムにより、反射部材の配置の厳密さを緩和でき 、入出力ポートと反射部材とを平行に配置したときの短尺化が可能になる。  The optical reflector and the optical system according to the present invention can alleviate the strictness of the arrangement of the reflecting member, and can shorten the length when the input / output port and the reflecting member are arranged in parallel.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、図面を参照して、本発明による光反射器の実施形態を説明する。なお図面 を見やすくするために、以下に説明する図 1及び図 2において、光反射器の輪郭等 を点線で描いた。 Hereinafter, embodiments of a light reflector according to the present invention will be described with reference to the drawings. In order to make the drawings easier to see, the outline of the light reflector is drawn with dotted lines in FIGS. 1 and 2 described below.
先ず、本発明による光反射器の第 1の実施形態を説明する。図 1は、本発明による 光反射器の第 1の実施形態である MMI (Multi Mode Interference)型光反射器の概 略図である。  First, a first embodiment of a light reflector according to the present invention will be described. FIG. 1 is a schematic diagram of an MMI (Multi Mode Interference) type optical reflector, which is a first embodiment of the optical reflector according to the present invention.
[0017] 図 1に示すように、 MMI型光反射器 1は、基板(図示せず)の上に形成され、光が 入射及び出射する入出射端面 16及び反射端面 18を有する単一のマルチモード光 導波路 2と、マルチモード光導波路 2の反射端面 18に設置された反射部材 12と、入 出射端面 16内においてマルチモード光導波路 2に接続された第 1の光入出力手段 である第 1のシングルモード光導波路 4及び第 1の光ファイバ一 6、及び第 2の光入出 力手段である第 2のシングルモード光導波路 8及び第 2の光ファイバ一 10と、を有し ている。反射端面 18は、入出射端面 16とほぼ平行であることが好ましぐ入出射端 面 16と反射端面 18との間の平行度は、 ± 5度以内であることが好ましい。 As shown in FIG. 1, an MMI-type light reflector 1 is formed on a substrate (not shown) and has a single multi-layer having an incident / exit end face 16 and a reflecting end face 18 through which light enters and exits. Mode light waveguide 2, reflection member 12 installed on reflection end face 18 of multimode optical waveguide 2, and first light input / output means connected to multimode optical waveguide 2 in input / output end face 16 A first single-mode optical waveguide 4 and a first optical fiber 6, and a second single-mode optical waveguide 8 and a second optical fiber 10 as second optical input / output means. ing. The reflection end face 18 is preferably substantially parallel to the entrance / exit end face 16 and the parallelism between the entrance / exit end face 16 and the reflection end face 18 is preferably within ± 5 degrees.
マルチモード光導波路 2の平面形状は、ほぼ矩形である。また、マルチモード光導 波路 2は、矩形の一辺と平行に光の伝搬方向に延びる軸線 14を有している。マルチ モード光導波路 2は、 Si基板(図示せず)の上に積層式に形成されたコア 2a及びクラ ッド 2bを有し、コア 2a及びクラッド 2bは、ポリマーで形成されることが好ましい。  The planar shape of the multimode optical waveguide 2 is substantially rectangular. The multimode optical waveguide 2 has an axis 14 extending in the light propagation direction parallel to one side of the rectangle. The multi-mode optical waveguide 2 has a core 2a and a clad 2b formed in a stacked manner on a Si substrate (not shown), and the core 2a and the clad 2b are preferably formed of a polymer.
[0018] 第 1のシングルモード光導波路 4及び第 2のシングルモード光導波路 8は、一方の 端部がマルチモード光導波路 2と接合位置 16において接続され、他方の端部、即ち 、入出力ポート 4c、 8cがそれぞれ第 1の光ファイバ一 6及び第 2の光ファイバ一 10と 接続されている。また、第 1のシングルモード光導波路 4及び第 2のシングルモード光 導波路 8は、第 1の光ファイバ一 6及び第 2の光ファイバ一 10の位置関係と、マルチ モード光導波路 2へ好適に接続配置される第 1のシングルモード光導波路 4及び第 2 のシングルモード光導波路 8の位置関係とを満足する光学的接続が実現されるよう に配置されている。具体的には、第 1の光ファイバ一 6と第 2の光ファイバ 10との間隔 は 100 μ m以上離れていることが好ましいのに対し、第 1のシングルモード光導波路 4及び第 2のシングルモード光導波路 8がマルチモード光導波路 2に接続される間隔 は 10 m程度であることが好ましいので、第 1のシングルモード光導波路 4及び第 2 のシングルモード光導波路 8は、 S字型をなして光学的に接続されることが好ましい。  [0018] The first single mode optical waveguide 4 and the second single mode optical waveguide 8 have one end connected to the multimode optical waveguide 2 at the junction position 16, and the other end, that is, an input / output port. 4c and 8c are connected to the first optical fiber 6 and the second optical fiber 10, respectively. The first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are suitable for the positional relationship between the first optical fiber 6 and the second optical fiber 10 and the multi-mode optical waveguide 2. They are arranged so that an optical connection satisfying the positional relationship between the first single mode optical waveguide 4 and the second single mode optical waveguide 8 to be connected is realized. Specifically, the distance between the first optical fiber 6 and the second optical fiber 10 is preferably 100 μm or more, whereas the first single-mode optical waveguide 4 and the second single optical fiber 4 are separated from each other. Since the interval between the mode optical waveguide 8 and the multimode optical waveguide 2 is preferably about 10 m, the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are S-shaped. And optically connected.
[0019] 第 1のシングルモード光導波路 4及び第 2のシングルモード光導波路 8はそれぞれ 、第 1の軸線 4d及び第 2の軸線 8dを有している。入出射端面 16における第 1の軸線 4dの第 1の接線 4e及び第 2の軸線 8dの第 2の接線 8eは、互いに平行である。しかし ながら、第 1のシングルモード光導波路 4及び第 2のシングルモード光導波路 8が入 出射面 16に対して斜めに接続されてもよぐその場合、第 1の接線 4e及び第 2の接 線 8eは、角度 Θをなし、マルチモード光導波路 2内を通って反射端面 18を越えてか ら交差するのがよい。 0は、好ましくは 0. 5度以下であり、より好ましくは 0. 1〜0. 3 度であり、更に好ましくは 0. 15〜0. 25度である。 [0020] 第 1のシングルモード光導波路 4及び第 2のシングルモード光導波路 8はそれぞれ 、マルチモード光導波路 2と共に Si基板(図示せず)の上に積層式に形成されたコア 4a、 8aとクラッド 4b、 8bとを有し、コア 4a、 8a及びクラッド 4b、 8bは、ポリマーで形成 されることが好ましい。 [0019] The first single mode optical waveguide 4 and the second single mode optical waveguide 8 each have a first axis 4d and a second axis 8d. The first tangent line 4e of the first axis 4d and the second tangent line 8e of the second axis 8d on the input / output end face 16 are parallel to each other. However, if the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 may be obliquely connected to the input / output surface 16, the first tangent 4e and the second tangent 8e should form an angle Θ, cross the multimode optical waveguide 2 and beyond the reflection end face 18 before crossing. 0 is preferably 0.5 ° or less, more preferably 0.1 to 0.3 °, and still more preferably 0.15 to 0.25 °. [0020] The first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 are cores 4a, 8a formed on a Si substrate (not shown) together with the multi-mode optical waveguide 2, respectively. The cores 4a and 8a and the clads 4b and 8b are preferably formed of a polymer.
目的に応じて、第 1のシングルモード光導波路 4及び第 2のシングルモード光導波 路 8と第 1の光ファイバ一 6及び第 2の光ファイバ一 10との間に他の機能を有する光 回路が集積されていてもよい。  Depending on the purpose, an optical circuit having other functions between the first single-mode optical waveguide 4 and the second single-mode optical waveguide 8 and the first optical fiber 6 and the second optical fiber 10. May be accumulated.
[0021] 第 1の光ファイバ一 6及び第 2の光ファイバ一 10はそれぞれ、コア 6a、 10a及びクラ ッド 6b、 10bを有している。第 1の光ファイバ一 6及び第 2の光ファイバ一 10は、軸線 14に対してほぼ平行に(士 5度の範囲内に)配置され、マルチモード光導波路 2に接 着剤等により固定されている。  [0021] The first optical fiber 6 and the second optical fiber 10 have cores 6a and 10a and claddings 6b and 10b, respectively. The first optical fiber 6 and the second optical fiber 10 are disposed substantially parallel to the axis 14 (within a range of 5 degrees), and are fixed to the multimode optical waveguide 2 with an adhesive or the like. ing.
[0022] 反射部材 12は、誘電体多層膜で形成されていることが好ましいが、光を反射でき れば、その材料は任意であり、所定の波長の光を反射してその他の波長の光を透過 する光フィルタであってもよ 、し、全ての波長の光を反射する金属面であってもよ 、。 金属を使用する場合には、金を使用することが反射率の点で好ましい。また、所定の 割合の光を透過させるハーフミラーであってもよい。接合位置 16から反射部材 12の 等価的な反射中心面 12aまでの距離 L1は、反射する光の波長の干渉周期の 1Z4 であることが好ましい。  The reflecting member 12 is preferably formed of a dielectric multilayer film, but any material can be used as long as it can reflect light, and reflects light of a predetermined wavelength to reflect light of other wavelengths. An optical filter that transmits light or a metal surface that reflects light of all wavelengths. When using a metal, it is preferable to use gold in terms of reflectivity. Alternatively, a half mirror that transmits a predetermined ratio of light may be used. The distance L1 from the joining position 16 to the equivalent reflection center plane 12a of the reflecting member 12 is preferably 1Z4 of the interference period of the wavelength of the reflected light.
反射部材 12の反射中心面 12aは、軸線 14に対して 90± 5度の範囲内にあることが 好ましぐほぼ垂直であることがより好ましい。  The reflection center plane 12a of the reflection member 12 is more preferably substantially perpendicular to the axis 14 and preferably within a range of 90 ± 5 degrees.
反射部材 12は、基板 (図示せず)に設けられた溝、段部又は設置面等によって端 面 18に設置されても良いし、接着剤等によって端面 18に直接設置されてもよい。  The reflecting member 12 may be installed on the end surface 18 by a groove, a stepped portion, an installation surface, or the like provided on a substrate (not shown), or may be installed directly on the end surface 18 by an adhesive or the like.
[0023] 次に、本発明による光反射器の第 1の実施形態である MMI型光反射器の動作を 説明する。 Next, the operation of the MMI-type light reflector that is the first embodiment of the light reflector according to the present invention will be described.
例えば、第 1の光ファイバ一 6から入射された光は、第 1のシングルモード光導波路 4を介してマルチモード光導波路 2に入射され、多モード光に分解されると共に、分 解された光が相互に干渉し、それにより、光の強度分布に対応した干渉縞をマルチ モード光導波路 2内に生じさせる。第 1の軸線 4eと第 2の軸線 8eとが平行であるほど 、雑音の少ない干渉縞を形成することができる。光がマルチモード光導波路 2内を軸 線 14方向に伝搬するにつれて、光の強度分布の山の位置は、軸線 14方向に対して 横方向に移動する。接合位置 16から反射部材 12までの距離 Lは、光の波長の干渉 周期の 1Z4であれば、光の強度分布の山の位置は、その光が反射部材 12で反射し て接合位置 16まで戻ってきたときに、第 2のシングルモード光導波路 8とマルチモー ド光導波路 2との接合箇所にくる。次いで、光は、第 2のシングルモード光導波路 8を 介して第 2の光ファイバ一 10に入射される。 For example, light incident from the first optical fiber 6 enters the multimode optical waveguide 2 via the first single mode optical waveguide 4 and is decomposed into multimode light and decomposed light. Interfere with each other, thereby generating interference fringes in the multi-mode optical waveguide 2 corresponding to the light intensity distribution. The more the first axis 4e and the second axis 8e are parallel, Interference fringes with less noise can be formed. As light propagates through the multimode optical waveguide 2 in the direction of the axis 14, the position of the peak of the light intensity distribution moves laterally with respect to the direction of the axis 14. If the distance L from the joining position 16 to the reflecting member 12 is 1Z4, which is the interference period of the light wavelength, the peak position of the light intensity distribution is reflected by the reflecting member 12 and returned to the joining position 16. The second single-mode optical waveguide 8 and the multimode optical waveguide 2 are joined. Next, the light is incident on the second optical fiber 10 through the second single-mode optical waveguide 8.
また、反射部材 12の位置又は角度等がずれたとしても、光の強度分布の山の位置 が第 2の光入出力手段の位置力 すこしずれるが、ほとんどの光が第 2の光入出力 手段に入射するので、従来技術の交差型光反射器と異なり、挿入損失が著しく増大 することを防止することができる。  Further, even if the position or angle of the reflecting member 12 is deviated, the position of the peak of the light intensity distribution is slightly misaligned with the second light input / output means, but most of the light is in the second light input / output means. Therefore, unlike the conventional cross-type optical reflector, the insertion loss can be prevented from increasing significantly.
[0024] 図 2は、光入出力ポートのピッチを変更したときの本発明による光反射器の概略図 であり、例示として、光ファイバ一 6、 10を省略した図 1の MMI型光反射器 1を示して いる。光入出力ポート 4c、 8cのピッチ Pを大きくした場合 (A)及び小さくした場合 (B) から分かるように、入出力ポート間のピッチを自由に設計することができるため、接続 に利用する光ファイバアレイなどのピッチに合せた設計をすることが容易である。  FIG. 2 is a schematic diagram of the optical reflector according to the present invention when the pitch of the optical input / output port is changed. As an example, the MMI optical reflector of FIG. 1 is shown. As can be seen from the cases where the pitch P of the optical input / output ports 4c and 8c is increased (A) and when the pitch P is decreased (B), the pitch between the input and output ports can be designed freely. It is easy to design according to the pitch of a fiber array or the like.
[0025] 次に、図 3を参照して、本発明による光反射器の適用例である CWDM用合分波器 の一例を説明する。図 3は、本発明による光システムを含む CWDM用合分波器の概 略平面図である。  Next, an example of a CWDM multiplexer / demultiplexer that is an application example of the optical reflector according to the present invention will be described with reference to FIG. FIG. 3 is a schematic plan view of a CWDM multiplexer / demultiplexer including an optical system according to the present invention.
図 3に示すように、 CWDM用合分波器 50は、エッジフィルタを交差型光導波路に 挿入したタイプの直列に配列された 3つの光合分波器 52、 54, 56と、その後段に配 置された本発明による光反射器 58とを有している。光反射器 58の例として、第 1の実 施形態の光反射器 1を採用している。また、 CDWM用合分波器 50は、第 1の光合分 波器 52の光入出力ポート 50a、 50b、第 2の光合分波器 54の光入出力ポート 50c、 第 3の光合分波器 56の光入出力ポート 50d、光反射器 58の光入出力ポート 50eを 有しており、これらの光入出力ポート 50a〜50eは、 CWDM用合分波器 50の一方の 端面 51に設けられている。第 1の光合分波器 52は、第 1の波長の光 λ 1を反射し、 第 2〜第 4の波長 λ 2〜え 4の光を透過し、第 2の光合分波器 54は、第 2の波長の光 λ 2を反射し、第 3及び第 4の波長の光 λ 3、 λ 4を透過し、第 3の光合分波器 56は、 第 3の波長の光 λ 3を反射し、第 4の波長の光 λ 4を透過し、光反射器 58は、第 4の 波長の光え 4を反射する。図 3では、矢印によって光信号の各波長の伝搬経路を示 している。 As shown in Fig. 3, the CWDM multiplexer / demultiplexer 50 includes three optical multiplexers / demultiplexers 52, 54, 56 arranged in series with an edge filter inserted in the crossed optical waveguide, and arranged in the subsequent stage. And a light reflector 58 according to the present invention. As an example of the light reflector 58, the light reflector 1 of the first embodiment is adopted. The CDWM multiplexer / demultiplexer 50 includes optical input / output ports 50a and 50b of the first optical multiplexer / demultiplexer 52, optical input / output port 50c of the second optical multiplexer / demultiplexer 54, and third optical multiplexer / demultiplexer. The optical input / output port 50d of 56 and the optical input / output port 50e of the optical reflector 58 are provided. These optical input / output ports 50a to 50e are provided on one end face 51 of the CWDM multiplexer / demultiplexer 50. ing. The first optical multiplexer / demultiplexer 52 reflects the light λ 1 of the first wavelength, transmits the light of the second to fourth wavelengths λ 2 to 4, and the second optical multiplexer / demultiplexer 54 Second wavelength light λ 2 is reflected, the third and fourth wavelengths of light λ 3 and λ 4 are transmitted, and the third optical multiplexer / demultiplexer 56 reflects the third wavelength of light λ 3 and the fourth wavelength. The light reflector 58 reflects the light 4 having the fourth wavelength. In Fig. 3, the propagation path of each wavelength of the optical signal is indicated by arrows.
なお、各矢印の方向は、 CWDM用合分波器 50を分波器として動作させる場合の信 号の伝搬経路を示している力 全ての矢印の向きを逆に動作させることも可能であり 、その場合には、 CWDM用合分波器 50を合波器として動作させることができる。 以下、図 3にしたがって、 4波長 CWDM用合分波器 50を分波器として動作させる 場合について説明する。光入出力ポート 50aから入射され第 1の光合分波器 52に伝 搬する第 1の波長の光 λ 1、第 2の波長の光 λ 2、第 3の波長の光 λ 3、第 4の波長の 光え 4の 4波長の光信号は、第 1の光合分波器 52によって、第 1の波長の光 λ 1の光 が反射され光入出力ポート 50bへ出射される一方、残りの第 2の波長の光え 2、第 3 の波長の光 λ 3、第 4の波長の光 λ 4の 3波長の光信号は透過され第 2の光合分波 器 54へ伝搬される。次に、これらの 3波長の光信号は、第 2の光合分波器 54によつ て、第 2の波長の光え 2の光が反射され光入出力ポート 50cへ出射される一方、残り の第 3の波長の光 λ 3、第 4の波長の光 λ 4の 2波長の光信号は透過され第 3の光合 分波器 56へ伝搬される。 The direction of each arrow indicates that the direction of all arrows indicating the signal propagation path when operating the CWDM multiplexer / demultiplexer 50 as a demultiplexer can be reversed. In this case, the CWDM multiplexer / demultiplexer 50 can be operated as a multiplexer. Hereinafter, a case where the 4-wavelength CWDM multiplexer / demultiplexer 50 is operated as a demultiplexer will be described with reference to FIG. First wavelength light λ 1, second wavelength light λ 2, third wavelength light λ 3, fourth wavelength incident from optical input / output port 50a and transmitted to first optical multiplexer / demultiplexer 52 The four-wavelength optical signal of wavelength 4 is reflected by the first optical multiplexer / demultiplexer 52, and the light of wavelength λ1 of the first wavelength is reflected and emitted to the optical input / output port 50b, while the remaining first optical multiplexer / demultiplexer 52 The optical signal of the three wavelengths of the light 2 of the second wavelength 2, the light λ 3 of the third wavelength, and the light λ 4 of the fourth wavelength is transmitted and propagated to the second optical multiplexer / demultiplexer 54. Next, the optical signals of these three wavelengths are reflected by the second optical multiplexer / demultiplexer 54, and the light of the second wavelength is reflected and emitted to the optical input / output port 50c, while the rest The second wavelength light signal λ 3 and the fourth wavelength light λ 4 are transmitted and propagated to the third optical multiplexer / demultiplexer 56.
次に、これらの 2波長の光信号は、第 3の光合分波器 56によって、第 3の波長の光え 3の光が反射され光入出力ポート 50dへ出射される一方、残りの第 4の波長の光 λ 4 の光信号は透過され光反射器 58へ伝搬される。第 4の波長の光 λ 4の光信号は、光 反射器 58によって反射され、光入出力ポート 50eから出射される。 Next, the optical signals of these two wavelengths are reflected by the third optical multiplexer / demultiplexer 56, and the light of the third wavelength of light 3 is reflected and emitted to the optical input / output port 50d, while the remaining fourth optical signals are output. The optical signal having the wavelength λ 4 is transmitted and propagated to the optical reflector 58. The optical signal of the light λ 4 having the fourth wavelength is reflected by the light reflector 58 and emitted from the light input / output port 50e.
上記説明は、 CWDM用合分波器 50を光分波器として動作させた場合であるが、 図 3の矢印を逆転させ、光入出力ポー卜 50e、 50d、 50c、 50bのそれぞれに、第 4の 波長の光 λ 4、第 3の波長の光 λ 3、第 2の波長の光 λ 2、第 1の波長の光 λ 1の 4波 長の光信号を入射させると、上記説明の光の伝搬経路と逆経路を通って、光入出力 ポート 50aから、第 1の波長の光 λ 1、第 2の波長の光 λ 2、第 3の波長の光 λ 3、第 4 の波長の光え 4の 4波長の光信号が合波されて出射される。このように、 CWDM用 合分波器 50を光合波器として動作させることもできる。 [0027] 光入出力ポート 50a〜50eにレンズなど(図には記載されていない)を利用して入出 力光信号を結合させれば、入出力ポートを並べた形態のコンパクトな光合分波器とし て動作させることができる。光入出力ポート 50a〜50eに光ファイバなど(図には記載 されていない)を結合させれば、片側に入出力ポートを並べた形態のコンパクトな光 ファイバビグテール型の光合分波器として動作させることができる。この場合には、光 入出力ポート 50a〜50eを等間隔に配置しておくことで、既存の光ファイバアレイを用 V、て、一度に全ての光入出力ポート 50a〜50eの光ファイバ結合を実現することがで きる。それにより、光ファイバビグテール型の光合分波器の製造工程が短縮され、低 コストに製造できる。また、光ファイバアレイを用いる替わりに光入出力ポート 50a〜5 Oeにファイバ一実装用のガイド溝 (例えば、 V字型の断面を有する一般に V溝と称さ れる溝)を形成しておくことにより、既存の光ファイノリボンを用いて、一回の光フアイ バ実装工程によって、光ファイバビグテール型の光合分波器を製造することができる The above description is for the case where the CWDM multiplexer / demultiplexer 50 is operated as an optical demultiplexer. However, the arrows in FIG. 3 are reversed, and the optical input / output ports 50e, 50d, 50c, 50b are When a light signal having a wavelength of 4 of λ 4, light of the third wavelength λ 3, light of the second wavelength λ 2, light of the first wavelength λ 1 is incident, the light described above The first wavelength light λ 1, the second wavelength light λ 2, the third wavelength light λ 3, and the fourth wavelength light from the optical input / output port 50a through the reverse path of The four-wavelength optical signals of 4 are combined and emitted. Thus, the CWDM multiplexer / demultiplexer 50 can be operated as an optical multiplexer. [0027] Compact optical multiplexer / demultiplexer with input / output ports arranged by combining input / output optical signals with optical input / output ports 50a to 50e using a lens or the like (not shown) It can be operated as If an optical fiber (not shown) is connected to the optical input / output ports 50a to 50e, it operates as a compact optical fiber bigtail optical multiplexer / demultiplexer with input / output ports arranged on one side. Can be made. In this case, by arranging the optical input / output ports 50a to 50e at equal intervals, the existing optical fiber array can be used to connect all the optical input / output ports 50a to 50e at once. It can be realized. As a result, the manufacturing process of the optical fiber bigtail optical multiplexer / demultiplexer can be shortened and manufactured at low cost. In addition, instead of using an optical fiber array, a guide groove for mounting a fiber (for example, a groove generally called a V-groove having a V-shaped cross section) is formed in the optical input / output ports 50a to 5 Oe. An optical fiber big tail type optical multiplexer / demultiplexer can be manufactured by using a single optical fiber mounting process using an existing optical fiber ribbon.
[0028] 図 4は、図 3と同様の CWDM用合分波器の変形例を示す図である。図 4に示すよう に、 3つの光合分波器 52、 54, 56として、特許文献 1の合分波回路を適用してもよい 。図 4に示した CWDM用合分波器の動作は、図 3と同様である。 FIG. 4 is a diagram showing a modification of the CWDM multiplexer / demultiplexer similar to FIG. As shown in FIG. 4, the multiplexing / demultiplexing circuit of Patent Document 1 may be applied as the three optical multiplexer / demultiplexers 52, 54, and 56. The operation of the CWDM multiplexer / demultiplexer shown in Fig. 4 is the same as Fig. 3.
なお、図 3及び図 4に示した CWDM用合分波器 50は、 4波長の合分波器を例示し ているが、 3つの光合分波器 52, 54, 56を、例えば、 7つの光合分波器に増やせば 、 8波長の合分波器として用いることができる。  The CWDM multiplexer / demultiplexer 50 shown in FIGS. 3 and 4 is an example of a 4-wavelength multiplexer / demultiplexer. However, the three optical multiplexer / demultiplexers 52, 54, 56 are, for example, seven If added to an optical multiplexer / demultiplexer, it can be used as an 8-wavelength multiplexer / demultiplexer.
[0029] 次に、図 5を参照して、本発明による光反射器の適用例である CWDM用受信器の 一例を説明する。図 5は、本発明による光システムを含む CWDM用受信器の概略平 面図である。  Next, an example of a CWDM receiver, which is an application example of the optical reflector according to the present invention, will be described with reference to FIG. FIG. 5 is a schematic plan view of a CWDM receiver including an optical system according to the present invention.
CWDM用受信器 60は、直列に配列された 3つの本発明による光反射器 62、 64, 66と、第 1の光反射器 62の光入力ポート 60a及び第 3の光反射器 66の光出力ポート 60bを有している。光入力ポート 60a、光出力ポート 60b及び第 2の光反射器 64は、 CWDM用受信器 60の一方の端面 61に配置され、第 1の光反射器 62及び第 3の光 反射器 66は、他方の端面 63に配置されている。また、第 1〜第 3の光反射器 62、 64 、 66及び光出力ポート 60bに隣接してそれぞれ、受光器 68a〜68dが配置されてい る。例示として、第 1の実施形態の光反射器 1を光反射器 62、 64, 66として採用して いる。ここでは、使用する反射部材として波長フィルタを用いている。すなわち、第 1 の光反射器 62は、第 1の波長の光 λ 1を透過し、第 2〜第 4の波長 λ 2〜え 4の光を 反射し、第 2の光反射器 64は、第 2の波長の光え 2を透過し、第 3及び第 4の波長の 光え 3、 λ 4を反射し、第 3の光反射器 66は、第 3の波長の光 λ 3を透過し、第 4の波 長の光え 4を反射する。図 5では、矢印によって光信号の各波長の伝搬経路を示し ている。 The CWDM receiver 60 includes three optical reflectors 62, 64, 66 according to the present invention arranged in series, the optical input port 60a of the first optical reflector 62, and the optical output of the third optical reflector 66. Has port 60b. The optical input port 60a, the optical output port 60b, and the second optical reflector 64 are arranged on one end face 61 of the CWDM receiver 60, and the first optical reflector 62 and the third optical reflector 66 are The other end face 63 is disposed. In addition, light receivers 68a to 68d are disposed adjacent to the first to third light reflectors 62, 64 and 66 and the light output port 60b, respectively. The As an example, the light reflector 1 of the first embodiment is used as the light reflectors 62, 64, 66. Here, a wavelength filter is used as the reflecting member to be used. That is, the first light reflector 62 transmits the light λ 1 of the first wavelength, reflects the light of the second to fourth wavelengths λ 2 to 4, and the second light reflector 64 Transmits light 2 of the second wavelength, reflects light 3 and λ4 of the third and fourth wavelengths, and the third light reflector 66 transmits light λ3 of the third wavelength. Reflects the light 4 of the fourth wavelength. In Fig. 5, the propagation path of each wavelength of the optical signal is indicated by an arrow.
[0030] CWDM用受信器 60の動作について説明する。光入力ポート 60aから入射され第 1の光反射器 62へ伝搬する第 1の波長の光え 1、第 2の波長の光え 2、第 3の波長の 光え 3、第 4の波長の光え 4の 4波長の光信号は、第 1の光反射器 62によって、第 1 の波長の光 λ 1の光が透過され受光器 68aに伝搬されて電気信号に変換される一 方、残りの第 2の波長の光 λ 2、第 3の波長の光 λ 3、第 4の波長の光 λ 4の 3波長の 光信号は反射され第 2の光反射器 64へ伝搬される。次に、これらの 3波長の光信号 は、第 2の光反射器 64によって、第 2の波長の光え 2の光が透過され受光器 68bに 伝搬されて電気信号に変換される一方、残りの第 3の波長の光え 3、第 4の波長の光 λ 4の 2波長の光信号は反射され第 3の光反射器 66へ伝搬される。次に、これらの 2 波長の光信号は、第 3の光反射器 66によって、第 3の波長の光え 3の光が透過され 受光器 68cに伝搬されて電気信号に変換される一方、残りの第 4の波長の光 λ 4の 光信号は反射され受光器 68dに伝搬されて電気信号に変換される。  [0030] The operation of the CWDM receiver 60 will be described. First wavelength light 1, second wavelength light 2, third wavelength light 3, and fourth wavelength light incident from the optical input port 60a and propagating to the first light reflector 62 On the other hand, the four-wavelength optical signal 4 is transmitted by the first optical reflector 62 and transmitted to the optical receiver 68a through which the first wavelength light λ1 is transmitted, while being converted into an electrical signal. The optical signal of the three wavelengths of the light λ 2 of the second wavelength, the light λ 3 of the third wavelength, and the light λ 4 of the fourth wavelength is reflected and propagated to the second optical reflector 64. Next, these three-wavelength optical signals are transmitted by the second light reflector 64 through the second wavelength light 2 and propagated to the light receiver 68b to be converted into electrical signals, while the remaining light signals are transmitted to the receiver 68b. The second wavelength light 3 and the fourth wavelength light λ 4 are reflected and propagated to the third light reflector 66. Next, these two-wavelength optical signals are transmitted by the third light reflector 66 through the third wavelength of light 3 and propagated to the light receiver 68c, where they are converted into electrical signals, while the remaining light signals are transmitted. The optical signal of the fourth wavelength of light λ 4 is reflected, propagated to the light receiver 68d, and converted into an electrical signal.
[0031] 光入力ポート 60aにレンズなど(図には記載されていない)を利用して入力光信号 を結合させれば、 CWDM用光受信器として動作させることができる。光入力ポート 6 Oaに光ファイバなど(図には記載されていない)を結合させれば、光ファイバピグテ一 ル型の CWDM用光受信器として動作させることができる。また、図 5において、受光 器 68a〜68dの替わりに光ファイバを結合させることで、 CWDM用光合分波器とする ことちでさる。  [0031] If an optical input signal is coupled to the optical input port 60a using a lens or the like (not shown), the optical input port 60a can be operated as an optical receiver for CWDM. If an optical fiber (not shown in the figure) is coupled to the optical input port 6 Oa, it can be operated as an optical fiber pigtail type CWDM optical receiver. In addition, in FIG. 5, an optical fiber can be coupled instead of the light receivers 68a to 68d to form an optical multiplexer / demultiplexer for CWDM.
CWDM用受信器 60は、 4波長の分波受信器を例示しているが、 3つの光反射器 6 2, 64, 66を、例えば、 7つの光反射器に増やせば、 8波長の分波受信器として用い ることがでさる。 [0032] 次に、図 6を参照して、本発明による光反射器の適用例である CWDM用送信器の 一例を説明する。図 6は、本発明による光システムを含む CWDM用送信器の概略平 面図である。 The CWDM receiver 60 exemplifies a 4-wavelength demultiplexing receiver, but if the three optical reflectors 6 2, 64, 66 are increased to, for example, seven optical reflectors, an 8-wavelength demultiplexing receiver is provided. It can be used as a receiver. Next, an example of a CWDM transmitter, which is an application example of the optical reflector according to the present invention, will be described with reference to FIG. FIG. 6 is a schematic plan view of a CWDM transmitter including an optical system according to the present invention.
CWDM用送信器 70は、直列に配列された 3つの本発明による光反射器 72、 74, 76と、第 1の光反射器 72の光出力ポート 70a及び第 3の光反射器 76の光入力ポート 70bを有している。光出力ポート 70a、光入力ポート 70b及び第 2の光反射器 74は、 CWDM用受信器 70の一方の端面 71に配置され、第 1の光反射器 72及び第 3の光 反射器 76は、他方の端面 73に配置されている。また、第 1〜第 3の光反射器 72、 74 、 76及び光入力ポート 70bに隣接してそれぞれ、レンズ 77等を介して発光器 78a〜 78dが配置されている。例示として、第 1の実施形態の光反射器 1を光反射器 72、 7 4, 76として採用している。ここでは、使用する反射部材として波長フィルタを用いて いる。すなわち、第 1の光反射器 72は、第 1の波長の光 λ 1を透過し、第 2〜第 4の波 長え 2〜え 4の光を反射し、第 2の光反射器 74は、第 2の波長の光 λ 2を透過し、第 3及び第 4の波長の光 λ 3、 λ 4を反射し、第 3の光反射器 76は、第 3の波長の光 λ 3 を透過し、第 4の波長の光え 4を反射する。また、発光器 78a〜78dは、それぞれ、第 1の波長の光 λ 1、第 2の波長の光 λ 2、第 3の波長の光 λ 3、第 4の波長の光 λ 4を 発光する素子であり、半導体レーザ、 LEDなどを用いることができる。図 6では、矢印 によって光信号の各波長の伝搬経路を示して 、る。  The CWDM transmitter 70 includes three optical reflectors 72, 74, 76 according to the present invention arranged in series, the optical output port 70a of the first optical reflector 72, and the optical input of the third optical reflector 76. Has port 70b. The optical output port 70a, the optical input port 70b, and the second optical reflector 74 are arranged on one end surface 71 of the CWDM receiver 70, and the first optical reflector 72 and the third optical reflector 76 are The other end face 73 is disposed. Further, light emitters 78a to 78d are arranged through lenses 77 and the like adjacent to the first to third light reflectors 72, 74 and 76 and the light input port 70b, respectively. As an example, the light reflector 1 of the first embodiment is used as the light reflectors 72, 74, and 76. Here, a wavelength filter is used as the reflecting member to be used. That is, the first light reflector 72 transmits the light λ 1 of the first wavelength, reflects the light of the second to fourth wavelengths 2 to 4, and the second light reflector 74 The second wavelength light λ 2 is transmitted, the third and fourth wavelength light λ 3 and λ 4 are reflected, and the third light reflector 76 transmits the third wavelength light λ 3. And reflects the light 4 of the fourth wavelength. The light emitters 78a to 78d are elements that emit light of the first wavelength λ1, light of the second wavelength λ2, light of the third wavelength λ3, and light of the fourth wavelength λ4, respectively. Semiconductor lasers, LEDs, etc. can be used. In Fig. 6, the propagation path of each wavelength of the optical signal is indicated by arrows.
[0033] CWDM用送信器 70の動作について説明する。各発光器 78a〜78dから発信され た光信号はそれぞれ、光反射器 72, 74, 76及び光入力ポート 70bへ入射される。 光信号は、レンズ 77などで集光され入射されるが、必要に応じて、レンズ 77を介さず に直接入射されてもょ ヽ。発光器 78dから光入力ポート 70bへ入射した第 4の波長の 光え 4の光信号は、第 3の光反射器 76に伝搬されて反射され、第 2の光反射器 74〖こ 伝搬されて反射され、第 1の光反射器 72に伝搬されて反射され、光出力ポート 70a へ出射される。発光器 78cから第 3の光反射器 76へ入射された第 3の波長の光え 3 の光信号は、第 3の光反射器 76を透過し、第 2の光反射器 74に伝搬されて反射され 、第 1の光反射器 72に伝搬されて反射され、光出力ポート 70aへ出射される。発光器 78bから第 2の光反射器 74へ入射された第 2の波長の光え 2の光信号は、第 2の光 反射器 74を透過し、第 1の光反射器 72に伝搬されて反射され、光出力ポート 70aへ 出射される。発光器 78aから第 1の光反射器 72へ入射された第 1の波長の光 λ 1の 光信号は、第 1の光反射器 72を透過して、光出力ポート 70aへ出射される。 [0033] The operation of the CWDM transmitter 70 will be described. The optical signals transmitted from the light emitters 78a to 78d are respectively incident on the light reflectors 72, 74, 76 and the light input port 70b. The optical signal is collected and entered by the lens 77, etc., but if necessary, it can be entered directly without going through the lens 77. The light signal of light 4 of the fourth wavelength incident on the light input port 70b from the light emitter 78d is propagated to the third light reflector 76 and reflected, and then propagated to the second light reflector 74. The light is reflected, propagated to the first light reflector 72, reflected, and emitted to the light output port 70a. The light signal of light 3 of the third wavelength incident on the third light reflector 76 from the light emitter 78c is transmitted through the third light reflector 76 and propagated to the second light reflector 74. The light is reflected, propagated to the first light reflector 72, reflected, and emitted to the light output port 70a. The light signal of light 2 of the second wavelength incident from the light emitter 78b to the second light reflector 74 is the second light. The light passes through the reflector 74, propagates to the first light reflector 72, is reflected, and is emitted to the light output port 70a. The optical signal of the first wavelength light λ 1 incident on the first light reflector 72 from the light emitter 78a is transmitted through the first light reflector 72 and emitted to the light output port 70a.
[0034] 光出力ポート 70aにレンズなど(図には記載されていない)を利用して出力光信号 を結合させれば、 CWDM用光送信器として動作させることができる。光出力ポート 7 Oaに光ファイバなど(図には記載されていない)を結合させれば、光ファイバピグテ一 ル型の CWDM用光送信器として動作させることができる。また、図 6において、発光 器 78a〜78dの替わりに光ファイバを結合させることで、 CWDM用光合分波器とする ことちでさる。 [0034] If the output optical signal is coupled to the optical output port 70a using a lens or the like (not shown), it can be operated as an optical transmitter for CWDM. If an optical fiber or the like (not shown in the figure) is coupled to the optical output port 7 Oa, it can be operated as an optical fiber pigtail type CWDM optical transmitter. In addition, in FIG. 6, it is possible to obtain an optical multiplexer / demultiplexer for CWDM by coupling optical fibers instead of the light emitters 78a to 78d.
CWDM用送信器 70は、 4波長の合波送信器を例示している力 3つの光反射器 7 2, 74, 76を、例えば、 7つの光反射器に増やせば、 8波長の合波送信器として用い ることがでさる。  Transmitter for CWDM 70 is an example of a four-wavelength combined transmitter. If three optical reflectors 7 2, 74, 76 are increased to seven optical reflectors, for example, an eight-wavelength combined transmitter is transmitted. It can be used as a container.
[0035] 以上、本発明の実施形態を説明したが、本発明は、以上の実施の形態に限定され ることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、 それらも本発明の範囲内に包含されるものであることは 、うまでもな 、。  While the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention described in the claims. Needless to say, they are also included in the scope of the present invention.
上記実施形態では、光が第 1の光入出力手段から第 2の光入出力手段に伝搬され る場合について説明したが、光が第 2の光入出力手段力も第 1の光に入手力手段に 伝搬されても良い。  In the above embodiment, the case where light is propagated from the first light input / output means to the second light input / output means has been described. However, the second light input / output means power is also available to the first light. May be propagated to.
[0036] また、上述した実施形態では、本願発明の光反射器を反射部材 12が取付けられた 状態で説明したが、それに限らず、実際に商品として流通している、光反射器から反 射部材 12を取外した光システムであっても、反射部材 12を取付ければ本願発明の 光反射器となるものも本発明の範囲内にある。  In the above-described embodiment, the light reflector of the present invention has been described with the reflecting member 12 attached. However, the present invention is not limited to this, and the light reflector is actually reflected as a product and reflected from the light reflector. Even an optical system from which the member 12 has been removed is within the scope of the present invention if it becomes a light reflector of the present invention if the reflecting member 12 is attached.
[0037] また、上述した実施形態では、入出射端面 16と反射端面 18とがほぼ平行である場 合について説明したけれども、光フィルタの配置の厳密さを緩和できれば、それらが ほぼ平行でなくてもよい。  In the above-described embodiment, the case where the incident / exit end face 16 and the reflection end face 18 are substantially parallel has been described. However, if the strictness of the arrangement of the optical filter can be relaxed, they are not substantially parallel. Also good.
[0038] また、第 1の実施形態において、上述した光ファイバ一の一部又は全部を光導波路 に置き換えてもよいし、光導波路の一部又は全部を光ファイバ一に置き換えてもよい 。また、光導波路と光ファイバ一が接続されている場合、そのいずれかを省略してもよ い。 [0038] In the first embodiment, part or all of the optical fiber described above may be replaced with an optical waveguide, or part or all of the optical waveguide may be replaced with one optical fiber. Also, if the optical waveguide and one optical fiber are connected, either of them may be omitted. Yes.
また、第 1及び第 2の実施形態において、入射側の光ファイバ一を該当する波長の 発光素子に置き換えてもよいし、出射側の光ファイバ一を該当する波長の受光素子 等に置き換えてもよい。  In the first and second embodiments, the incident-side optical fiber 1 may be replaced with a light-emitting element with a corresponding wavelength, or the output-side optical fiber 1 may be replaced with a light-receiving element with a corresponding wavelength. Good.
[0039] また、マルチモード光導波路 2に対して第 1及び第 2の光入出力手段 4、 8が配置さ れる位置は、波長、マルチモード光導波路 2の寸法等に応じて定められることが好ま しい。  In addition, the positions where the first and second light input / output means 4 and 8 are arranged with respect to the multimode optical waveguide 2 can be determined according to the wavelength, the dimensions of the multimode optical waveguide 2, and the like. I like it.
また、マルチモード光導波路 2及び各光入出力手段の形状、寸法、相対位置等は、 挿入損失、クロストーク及び反射減衰量の設計に応じて定められることが好ましい。ま た、例えば、シングルモード光導波路 4、 8の幅は、同じであってもよいし、互いに異 なっていてもよい。  Further, it is preferable that the shapes, dimensions, relative positions, etc. of the multimode optical waveguide 2 and each optical input / output means are determined according to the design of insertion loss, crosstalk, and return loss. Further, for example, the widths of the single mode optical waveguides 4 and 8 may be the same or different from each other.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]本発明による光反射器の第 1の実施形態である MMI型光反射器の概略平面 図である。  FIG. 1 is a schematic plan view of an MMI-type light reflector that is a first embodiment of a light reflector according to the present invention.
[図 2]入出力ポートのピッチを変更したときの本発明による光反射器の概略図である。  FIG. 2 is a schematic view of a light reflector according to the present invention when the pitch of input / output ports is changed.
[図 3]本発明による光反射器を利用した CWDM用合分波器の概略平面図である。  FIG. 3 is a schematic plan view of a CWDM multiplexer / demultiplexer using an optical reflector according to the present invention.
[図 4]本発明による光反射器を利用した CWDM用合分波器の概略平面図である。  FIG. 4 is a schematic plan view of a CWDM multiplexer / demultiplexer using an optical reflector according to the present invention.
[図 5]本発明による光反射器を利用した CWDM用受信器の概略平面図である。  FIG. 5 is a schematic plan view of a CWDM receiver using an optical reflector according to the present invention.
[図 6]本発明による光反射器を利用した CWDM用送信器の概略平面図である。  FIG. 6 is a schematic plan view of a CWDM transmitter using an optical reflector according to the present invention.
[図 7]従来技術の交差型光反射器の概略平面図である。  FIG. 7 is a schematic plan view of a conventional cross-type light reflector.
[図 8]従来技術の光反射器の概略平面図である。  FIG. 8 is a schematic plan view of a conventional light reflector.
[図 9]入出力ポートを備えた交差型光反射器の概略図である。  FIG. 9 is a schematic view of a crossed light reflector having an input / output port.
[図 10]入出力ポートを備えた交差型光反射器の概略図である。  FIG. 10 is a schematic view of a crossed light reflector having an input / output port.
符号の説明  Explanation of symbols
[0041] 1、58 光反射器 [0041] 1, 58 light reflector
2 マルチモード光導波路  2 Multimode optical waveguide
4 第 1のシングルモード光導波路  4 First single-mode optical waveguide
6 第 1の光ファイバ一 第 2のシングルモード光導波路 第 2の光ファイバ一 6 First optical fiber Second single-mode optical waveguide Second optical fiber
反射部材  Reflective member
溝、段部、端面  Groove, step, end face
、 54、 56 光合分波器 、 64, 66、 72、 74、 76 光反射器 , 54, 56 Optical multiplexer / demultiplexer, 64, 66, 72, 74, 76 Light reflector

Claims

請求の範囲 The scope of the claims
[1] 基板の上に形成され、光が入射及び出射する入出射端面と、所定の波長の光を反 射する反射部材が設置される反射端面と、を有する単一のマルチモード光導波路と 前記入出射端面内において前記マルチモード光導波路に接続された第 1の光入 出力手段及び第 2の光入出力手段と、を有し、  [1] A single multimode optical waveguide formed on a substrate and having an incident / exit end surface on which light is incident and exited and a reflecting end surface on which a reflecting member that reflects light of a predetermined wavelength is installed A first light input / output means and a second light input / output means connected to the multimode optical waveguide in the input / output end face;
前記第 1の光入出力手段及び前記第 2の光入出力手段はそれぞれ、第 1の軸線及 び第 2の軸線を有し、  Each of the first light input / output means and the second light input / output means has a first axis and a second axis;
前記入出射端面における前記第 1の軸線の第 1の接線及び前記第 2の軸線の第 2 の接線は、互いに平行力、又は、前記マルチモード光導波路内を通って前記反射端 面を越えてから交差することを特徴とする光システム。  The first tangent line of the first axis and the second tangent line of the second axis at the incident / exit end face are parallel to each other or pass through the multimode optical waveguide and beyond the reflective end face. Light system characterized by crossing from
[2] 前記反射端面が、前記入出射端面とほぼ平行であることを特徴とする請求項 1に記 載の光システム。 2. The optical system according to claim 1, wherein the reflection end face is substantially parallel to the incident / exit end face.
[3] 前記反射部材を前記反射端面に設置するための溝、段部又は設置面が前記基板 に設けられることを特徴とする請求項 1又は 2に記載の光システム。  [3] The optical system according to [1] or [2], wherein a groove, a step, or an installation surface for installing the reflecting member on the reflecting end surface is provided on the substrate.
[4] 前記第 1及び第 2の光入出力手段が、シングルモード光導波路であることを特徴と する請求項 1〜3のいずれ力 1項に記載の光システム。 4. The optical system according to any one of claims 1 to 3, wherein the first and second optical input / output means are single mode optical waveguides.
[5] 請求項 1〜4のいずれかに記載の光システムの前記反射端面に前記反射部材が 設置されたことを特徴とする光反射器。 [5] An optical reflector, wherein the reflective member is installed on the reflective end face of the optical system according to any one of claims 1 to 4.
[6] 前記反射部材は、所定の波長の光を反射し、他の波長の光を透過することを特徴 とする請求項 5に記載の光反射器。 6. The light reflector according to claim 5, wherein the reflecting member reflects light of a predetermined wavelength and transmits light of another wavelength.
PCT/JP2006/314756 2005-08-19 2006-07-26 Optical reflector and optical system WO2007020778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-238665 2005-08-19
JP2005238665A JP2008275653A (en) 2005-08-19 2005-08-19 Optical reflector and optical system

Publications (1)

Publication Number Publication Date
WO2007020778A1 true WO2007020778A1 (en) 2007-02-22

Family

ID=37757443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314756 WO2007020778A1 (en) 2005-08-19 2006-07-26 Optical reflector and optical system

Country Status (2)

Country Link
JP (1) JP2008275653A (en)
WO (1) WO2007020778A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041454A1 (en) * 2008-10-10 2010-04-15 日本電気株式会社 Optical joint
JP2013250403A (en) * 2012-05-31 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer and wavelength conversion device
JP2016143866A (en) * 2015-02-05 2016-08-08 富士通株式会社 Optical semiconductor element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098472A (en) * 2010-11-01 2012-05-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2014095780A (en) * 2012-11-08 2014-05-22 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP6204064B2 (en) * 2013-05-21 2017-09-27 日本電信電話株式会社 Optical amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514766A (en) * 1997-03-07 2001-09-11 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Wavelength-selective optical device including at least one Bragg grating structure
JP2002006155A (en) * 2000-06-19 2002-01-09 Hitachi Ltd Optical multiplexing-branching filter and optical system having optical waveguide
JP2004170764A (en) * 2002-11-21 2004-06-17 Mitsubishi Electric Corp Semiconductor optical waveguide device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514766A (en) * 1997-03-07 2001-09-11 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Wavelength-selective optical device including at least one Bragg grating structure
JP2002006155A (en) * 2000-06-19 2002-01-09 Hitachi Ltd Optical multiplexing-branching filter and optical system having optical waveguide
JP2004170764A (en) * 2002-11-21 2004-06-17 Mitsubishi Electric Corp Semiconductor optical waveguide device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUGUSTSSON T.: "Bragg Grating-Assisted MMI-Computer for Add-Drop Multiplexing", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 16, no. 8, August 1998 (1998-08-01), pages 1517 - 1522, XP000786587 *
MIYADERA N. ET AL.: "Fussoka Polyimide o Mochiita Vko Shuseikigata Hikari Doharao (2)-Polymer Hikari Doharo no MMI Bu ni 2 Mai no TFF o Sonyu shita 3 Ha WDM Filter-", 2005 NEN DENSHI JOHO TSUSHIN GAKKAI SOGO ZENKOKU TAIKAI KOEN RONBUNSHU, ELECTRONICS 1, 7 March 2005 (2005-03-07), pages 232, (LECTURE NO. C-3-62), XP002976210 *
YAMAMOTO R. ET AL.: "Fussoka Polyimide o Mochiita Vko Shusekigata Hikari Doharo (1)-TFF Ichi Tolerance o Kojo Saseta 3ha WDM Filter-", 2005 NEN DENSHI JOHO TSUSHIN GAKKAI SOGO ZENKOKU TAIKAI KOEN RONBUNSHU, ELECTRONICS 1, 7 March 2005 (2005-03-07), pages 231, (LECTURE NO. C-3-61), XP002998306 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041454A1 (en) * 2008-10-10 2010-04-15 日本電気株式会社 Optical joint
US8433164B2 (en) 2008-10-10 2013-04-30 Nec Corporation Optical joint
JP5440506B2 (en) * 2008-10-10 2014-03-12 日本電気株式会社 Light joint
JP2013250403A (en) * 2012-05-31 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer and wavelength conversion device
JP2016143866A (en) * 2015-02-05 2016-08-08 富士通株式会社 Optical semiconductor element

Also Published As

Publication number Publication date
JP2008275653A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US6744945B2 (en) Wavelength multiplexer and optical unit
US20160116680A1 (en) Light coupling structure and optical device including a grating coupler
JPH09159851A (en) Waveguide type optical multiplexing/demultiplexing module
JP3784701B2 (en) Optical circuit member and optical transceiver
CN109891284B (en) Optical fiber apparatus and optical fiber alignment method
JPH07168038A (en) Light sending and receiving module for bi-directional transmission
WO2007020778A1 (en) Optical reflector and optical system
JPH08304664A (en) Wavelength demultiplexing element
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP2006337550A (en) Optical coupler
JP2000147309A (en) Hybrid optical wave guide device
JP4123049B2 (en) Optical multiplexer / demultiplexer
EP1496377A2 (en) Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same
JPH05203830A (en) Optical multiplexer demultiplexer
JP3357979B2 (en) Optical wavelength multiplexer / demultiplexer
JP2005300954A (en) Bidirectional optical communication apparatus
KR20180046340A (en) Wavelength division multiplexer
JP2010060653A (en) Optical device and optical signal selection method
JP2005249966A (en) Optical member, its manufacturing method, and optical module
JP2007178602A (en) Optical component and its manufacturing method
KR100485888B1 (en) Planer Lightwave Circuit Module with Single Port
JPH03291603A (en) Optical multiplexer/demultiplexer
JP2004177882A (en) Optical waveguide device
WO2004068206A1 (en) Optical waveguide and optical transmitting/receiving module
JP2000111750A (en) Optical waveguide element and optical waveguide module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP