JPS61226713A - Optical module for optical wavelength multiplex transmission - Google Patents

Optical module for optical wavelength multiplex transmission

Info

Publication number
JPS61226713A
JPS61226713A JP6649085A JP6649085A JPS61226713A JP S61226713 A JPS61226713 A JP S61226713A JP 6649085 A JP6649085 A JP 6649085A JP 6649085 A JP6649085 A JP 6649085A JP S61226713 A JPS61226713 A JP S61226713A
Authority
JP
Japan
Prior art keywords
optical
interference film
wavelength
light
film filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6649085A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Minoru Maeda
稔 前田
Koichi Sano
浩一 佐野
Kenji Okada
賢治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP6649085A priority Critical patent/JPS61226713A/en
Publication of JPS61226713A publication Critical patent/JPS61226713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To simplify and economize an optical module by providing plural interference film filters at desired tilt angles between a photosemiconductor element and an optical fiber on the photosemiconductor element side with spacer glass between and arranging another photosemiconductor element on the optical axis of reflection of the interference film filters. CONSTITUTION:A light signal with wavelength lambda3 propagated in an optical fiber 12-2 for transmission as shown by an arrow 14 passes through a rod lens 35 to enter spacer glass 16, wherein the light becomes nearly parallel light; and the light is converged on the photodetection surface of a semiconductor photodetecting element 24 through a lens 23-1 after passing through an interference filter 19, spacer glass 17, an interference film filter 21, and spacer glass 18, so that the light signal is converted photoelectrically. A light signal with wavelength lambda1 which is emitted by a semiconductor light emitting element 25 is converted by a lens 23-3 into parallel light, which is incident on an interference film filter 20 at an angle theta1. The light signal with wavelength lambda1 which passes through the interference film filter 20 is incident on the interference film filter 19 and reflected in an angle direction of about 2theta1 to enter the rod lens 35; and the light is converged into the optical fiber 12-2 for transmission and propagated as shown by an arrow 13. Consequently, a small-sized, simple, and low-cost optical multiplexer/demultiplexer is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は1本の光フアイバ伝送路を用い、その伝送路の
上りと下りで別々の複数の波長の光信号を伝送させる光
波長多重伝送用光モジュールに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is for optical wavelength multiplexing transmission in which a single optical fiber transmission line is used to transmit optical signals of different wavelengths on the upstream and downstream sides of the transmission line. Regarding optical modules.

〔発明の背景〕[Background of the invention]

光フアイバ通信における波長多重伝送技術は経済化をは
かる上で重要である。上記波長多重伝送において、光合
分波器は必須のデバイスである。
Wavelength multiplexing transmission technology in optical fiber communications is important for economicalization. In the wavelength division multiplexing transmission described above, an optical multiplexer/demultiplexer is an essential device.

従来、光合分波器の部品の低減化、小形化を図ったもの
として、第1図に示すような2波多重用合分波器がある
(藤井氏、他による“波長多重F−6M方式用合分波器
″、研究実用化報告、第32巻第11号(1983)、
P2375〜P2385)、1.1’は集束形ロッドレ
ンズ。
Conventionally, there is a two-wave multiplexer/demultiplexer for two-wave multiplexing as shown in Figure 1, which has been designed to reduce the number of optical multiplexer/demultiplexer components and make them more compact. ``Multiplexer/Demultiplexer'', Research and Practical Application Report, Vol. 32, No. 11 (1983),
P2375-P2385), 1.1' is a focusing rod lens.

2は波長λ を透過し、波長λ を反射するパンドパス
フィルタ、3,4.5は光ファイバである。
2 is a bandpass filter that transmits the wavelength λ and reflects the wavelength λ, and 3, 4.5 are optical fibers.

まず、光ファイバ3から伝送されてきた波長λ 。First, the wavelength λ transmitted from the optical fiber 3.

λ の光は、それぞれ集束形ロッドレンズ1に入射され
る。このとき、波長λ の光はバンドパスフィルタ2を
透過は、集束形ロッドレンズ1′によって集束され、光
ファイバ5に伝搬される。一方、波長λ の光はバンド
パスフィルタ2によって反射され、集束形ロッドレンズ
lによって集束され、光ファイバ4に伝搬される。この
ような合分波器においては、集束形ロッドレンズが複数
個必要であり、また、集束形ロッドレンズの入出力端に
光ファイバを使用している関係上1部品点数が増大する
という欠点を有していた。さらに、集束形ロッドレンズ
の直径が21程度であることから、光ファイバ及びバン
ドパスフィルタを各々配置し、所望の光学的特性を得る
ために、高精度の製作技術が必要であるという間層もあ
る。
The light beams of λ are each incident on a focusing rod lens 1. At this time, the light having the wavelength λ passes through the bandpass filter 2, is focused by the focusing rod lens 1', and is propagated to the optical fiber 5. On the other hand, the light having the wavelength λ is reflected by the bandpass filter 2, focused by the focusing rod lens l, and propagated to the optical fiber 4. Such a multiplexer/demultiplexer requires a plurality of focusing rod lenses, and since optical fibers are used at the input and output ends of the focusing rod lenses, the number of parts increases. had. Furthermore, since the diameter of the converging rod lens is approximately 21 mm, high-precision manufacturing technology is required to arrange the optical fibers and bandpass filters and obtain the desired optical characteristics. be.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記問題点に鑑み、より簡単化、経済
化をはかれる光波長多重伝送用光モジュールを提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical module for optical wavelength division multiplexing transmission that is simpler and more economical.

(発明の概要〕 本発明は光半導体素子と光ファイバとの間の光結合用屈
折率分布型ロッドレンズの光半導体素子側にスペーサガ
ラスを介して所望の傾斜角度で複数枚の干渉膜フィルタ
を設け、かつ上記干渉膜フィルタによる反射光軸上に別
の光半導体素子を設けて光波長多重伝送用光モジュール
を構成したものである。
(Summary of the Invention) The present invention provides a gradient index rod lens for optical coupling between an optical semiconductor element and an optical fiber. In addition, another optical semiconductor element is provided on the optical axis reflected by the interference film filter to constitute an optical module for optical wavelength multiplex transmission.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の光波長多重伝送用光モジュールの実施
例を示す、これは3波多重双方向伝送の一例である。す
なわち、伝送用光ファイバー2−2内を矢印13方向に
波長λ 、λ の光信号を。
FIG. 2 shows an embodiment of the optical module for optical wavelength multiplexing transmission of the present invention, which is an example of three-wavelength multiplexing bidirectional transmission. That is, optical signals with wavelengths λ and λ are transmitted in the direction of arrow 13 within the transmission optical fiber 2-2.

矢印14方向に波長λ の光信号をそれぞれ伝搬させる
、その構成は、長さが約174ピツチの屈折率分布型ロ
ッドレンズ35の一方の端面に伝送用光ファイバー2−
2を配置させる。その反射端面には干渉用フィルター9
,20,21,22付きのスペーサガラス16.17.
18を設けである。そして上記ロッドレンズのほぼ中心
軸の延長線上にレンズ23−1付き半導体受光素子(波
長λ の光信号受光用)24を、また上記ロッドレンズ
の径方向側にレンズ23−2付き半導体発光素子(波長
λ の光信号発光用)26.レンズ23−3付き半導体
発光素子(波長λ の光信号発光用)25を設けた構成
である。上記干渉膜フィルタ19,20,21,22の
波長特性は第3図に示すように、短波長通過型フィルタ
、長波長通過型フィルタで構成されている0次に第2図
の動作概要を述べる。伝送用光ファイバー2−2内を矢
印14方向に伝搬してきた波長λ の光信号はロッドレ
ンズ35内に入射する。ロッドレンズ35を通過してス
ペーサガラス16内に入った波長λ の光信号はほぼ平
行光に変換され、干渉膜フィルター9.スペーサガラス
17.干渉膜フィルタ21.スペーサガラス18を通っ
てレンズ(球レンズ、あるいは屈折率分布型ロッドレン
ズ)23−1で半導体受光素子24の受光面上に集光さ
れ、光電気変換される。波長λ の半導体発光素子25
の光信号はレンズ(球レンズ、半球レンズ、屈折率分布
型ロッドレンズ)23−3で平行光に変換され、干渉膜
フィルタ20に角度θ で入射する。干渉膜フィルタ2
0は波長λ の光信号を通過させる。干渉膜フィルタ2
0を通過した波長λ の光信号は干渉膜フィルター9に
入射すす る。干渉膜フィルター9は波長λ の光信号を反射させ
、かつロッドレンズ35の中心軸に対してθ の角度で
傾斜させであるので、上記干渉膜フィルタ19に入射し
た波長λ の光信号は約2θ の角度方向、すなわち、
ロッドレンズ35の中心軸方向に反射され、スペーサガ
ラス16を通ってロッドレンズ35内に入射する。そし
てロッドレンズ35内を左方向に伝搬するにつれて波長
λ の光信号のビーム径はしぼられ、伝搬用光ファイバ
ー2−2内に集光され、矢印13方向に伝搬される。波
長λ の半導体発光素子26の光信号はレンズ(球レン
ズ、半球レンズ、屈折率分布型ロッドレンズなど)23
−2で平行光に変換され、干渉膜フィルタ22に角度θ
 で入射する。
The optical signal having the wavelength λ is propagated in the direction of the arrow 14, and the transmission optical fiber 2-
Place 2. An interference filter 9 is provided on the reflective end surface.
, 20, 21, 22 with spacer glass 16.17.
18 is provided. A semiconductor light-receiving element (for receiving an optical signal of wavelength λ) 24 with a lens 23-1 is mounted on an extension of the central axis of the rod lens, and a semiconductor light-emitting element (with a lens 23-2) is mounted on the radial side of the rod lens. For emitting optical signals with wavelength λ)26. This configuration includes a semiconductor light emitting element 25 (for emitting an optical signal of wavelength λ) with a lens 23-3. The wavelength characteristics of the interference film filters 19, 20, 21, and 22 are as shown in FIG. 3, and are composed of a short wavelength pass filter and a long wavelength pass filter.The operation summary of FIG. 2 will be described below. . The optical signal of wavelength λ that has propagated in the direction of arrow 14 within the transmission optical fiber 2-2 enters into the rod lens 35. The optical signal of wavelength λ that has passed through the rod lens 35 and entered the spacer glass 16 is converted into substantially parallel light, and is passed through the interference film filter 9. Spacer glass 17. Interference film filter 21. The light passes through the spacer glass 18 and is focused onto the light receiving surface of the semiconductor light receiving element 24 by a lens (ball lens or gradient index rod lens) 23-1, where it is photoelectrically converted. Semiconductor light emitting device 25 with wavelength λ
The optical signal is converted into parallel light by a lens (spherical lens, hemispherical lens, gradient index rod lens) 23-3, and is incident on the interference film filter 20 at an angle θ. Interference film filter 2
0 allows optical signals of wavelength λ to pass. Interference film filter 2
The optical signal of wavelength λ that has passed through 0 is incident on the interference film filter 9. The interference film filter 9 reflects the optical signal with the wavelength λ and is tilted at an angle of θ with respect to the central axis of the rod lens 35, so the optical signal with the wavelength λ that is incident on the interference film filter 19 is approximately 2θ. The angular direction of, i.e.
The light is reflected in the direction of the central axis of the rod lens 35, passes through the spacer glass 16, and enters the rod lens 35. As the optical signal propagates leftward within the rod lens 35, the beam diameter of the optical signal having the wavelength λ is narrowed, the beam is focused within the propagation optical fiber 2-2, and the beam is propagated in the direction of the arrow 13. The optical signal of the semiconductor light emitting device 26 with a wavelength λ is transmitted through a lens (ball lens, hemispherical lens, gradient index rod lens, etc.) 23
−2, it is converted into parallel light and sent to the interference film filter 22 at an angle θ
incident at

干渉膜フィルタ22は波長λ の光信号を通過させる。The interference film filter 22 passes an optical signal of wavelength λ.

干渉膜フィルタ22を通過した波長λ の光信号はスペ
ーサガラス17を通して干渉膜フィルタ21に入射する
。干渉膜フィルタ21は波長λ の光信号を反射させ、
かつロッドレンズ35の中心軸に対してθ の角度で傾
斜させであるので、上記干渉膜フィルタ21に入射した
波長λ2の光信号は約20 の角度方向、すなわち、ロ
ッドレンズ35の中心軸方向に反射され、スペーサガラ
ス17を通って干渉膜フィルター9に入射する。干渉膜
フィルター9は波長λ の光信号を通過させるので、波
長λ の光信号はスペーサガラス16を通ってロッドレ
ンズ35内に入射する。
The optical signal of wavelength λ that has passed through the interference film filter 22 enters the interference film filter 21 through the spacer glass 17. The interference film filter 21 reflects the optical signal of wavelength λ,
In addition, since the rod lens 35 is tilted at an angle of θ with respect to the central axis, the optical signal of wavelength λ2 incident on the interference film filter 21 is directed at an angle of about 20°, that is, in the direction of the central axis of the rod lens 35. The reflected light passes through the spacer glass 17 and enters the interference film filter 9 . Since the interference film filter 9 passes the optical signal with the wavelength λ 2 , the optical signal with the wavelength λ 2 passes through the spacer glass 16 and enters the rod lens 35 .

そしてロッドレンズ35内を左方向に伝搬するにつれて
波長λ の光信号のビーム径はしぼら九。
As it propagates to the left inside the rod lens 35, the beam diameter of the optical signal with wavelength λ decreases to 9.

伝送用光ファイバー2−2内に集光され、矢印13方向
に伝搬される。
The light is focused into the transmission optical fiber 2-2 and propagated in the direction of arrow 13.

以上のように、部品点数が少なく、小形で非常に簡易な
構成で実現することができる。また干渉膜フィルタとし
て、短波長通過型と長波長通過型で構成できるため、半
導体発光素子の波長変動に対する損失増加を帯域通過型
フィルタを用いた場合に比して抑制することが可能であ
る。さらに、半導体受光素子24.半導体発光素子25
.26をそれぞれ離しであるので、光および電気的漏話
を防ぐことができる。また発熱部が一個所に集中しない
ので、小形ケース内に収容した場合の温度上昇による各
フィルタ19〜22の特性変動や、スペーサガラスとフ
ィルタとの接着に用いている接着剤の特性劣化を防ぐこ
とができる。また半導体発光素子25,26をロッドレ
ンズの軸に対して傾斜角をもたせであるので25.26
の出射光の上記モジュール内での反射光を受光素子24
へ入射させるのを抑制できる。
As described above, it can be realized with a small number of parts, a small size, and a very simple configuration. Furthermore, since the interference film filter can be configured with a short wavelength pass type and a long wavelength pass type, it is possible to suppress an increase in loss due to wavelength fluctuations of a semiconductor light emitting element compared to a case where a band pass type filter is used. Further, the semiconductor light receiving element 24. Semiconductor light emitting device 25
.. 26 are spaced apart from each other, optical and electrical crosstalk can be prevented. In addition, since the heat generating part is not concentrated in one place, it prevents changes in the characteristics of each filter 19 to 22 due to temperature rise when housed in a small case, and prevents deterioration of the characteristics of the adhesive used to bond the spacer glass and the filter. be able to. In addition, since the semiconductor light emitting elements 25 and 26 are inclined at an angle with respect to the axis of the rod lens, 25.26
The reflected light within the module of the emitted light is transmitted to the light receiving element 24.
can be suppressed from entering the

第4図はロッドレンズの反射端面に配置させる干渉膜フ
ィルタ付きのスペーサガラスのブロックの一実施例を示
したものである。(a)は正面図。
FIG. 4 shows an embodiment of a spacer glass block with an interference film filter disposed on the reflective end face of a rod lens. (a) is a front view.

(b)は上面図、(C)は底面図、(d)は側面図であ
る。この場合のブロックは長さ02幅Q 、高さa の
直方体構成である。直方体であると配置が安定である。
(b) is a top view, (C) is a bottom view, and (d) is a side view. The block in this case has a rectangular parallelepiped configuration with length 02 width Q and height a. The arrangement is stable if it is a rectangular parallelepiped.

ガラスブロックの切断、研磨が容易である。干渉膜フィ
ルタの形成が容易であるといった特徴がある。i  、
n  、n  は任意の値に選ぶことができる。ただし
、Q  、Q  はロッドレンズの直径とほぼ等しい値
かそれよりも太きい値が好ましい、上記ブロックの断面
は四角形以外に多角形1円形でもよい。
Glass blocks are easy to cut and polish. A feature of this method is that it is easy to form an interference film filter. i,
n and n can be selected to be arbitrary values. However, Q 1 and Q 2 are preferably approximately equal to or thicker than the diameter of the rod lens.The cross section of the block may be a circular polygon instead of a quadrangle.

第5図は本発明の光波長多重伝送用光モジュールの別の
実施例である。これは3波双方向多重伝送用光モジュー
ルであり、半導体発光素子25゜26、レンズ23−2
.23−3、干渉膜フィルタ20,22を一方の側に設
けたものである。
FIG. 5 shows another embodiment of the optical module for optical wavelength division multiplexing transmission of the present invention. This is an optical module for three-wave bidirectional multiplex transmission, with a semiconductor light emitting element 25°26 and a lens 23-2.
.. 23-3, interference film filters 20 and 22 are provided on one side.

θ とθ を等しくすれば、レンズ23−2付き半導体
発光素子26とレンズ23−3付き半導体発光素子25
を平行配置できるので組立と調整時間の短縮をはかれる
。すなわち、ブロック31を一体化部品で構成でき、こ
れをx、y、z方向に微調することにより光軸調整を終
えることができる。また、θ =θ とすれば、スペー
サガラス17が平行四辺形となり、製作が容易となる。
If θ and θ are made equal, the semiconductor light emitting device 26 with lens 23-2 and the semiconductor light emitting device 25 with lens 23-3
can be arranged in parallel, reducing assembly and adjustment time. That is, the block 31 can be constructed as an integrated component, and optical axis adjustment can be completed by finely adjusting this in the x, y, and z directions. Further, if θ = θ, the spacer glass 17 becomes a parallelogram, which facilitates manufacturing.

さらに、半導体発光素子25.26の出射光が受光素子
24へ入射することがない構成であるため、近端漏話減
衰量を大きくとることができる。またこの構成では第2
図のものよりもさらに小形に作ることができる。ブロッ
ク31は一つの容器内に収納し、不要な光の漏洩を抑制
するようにしてもよい、スペーサガラス18はなくても
よい。
Furthermore, since the configuration is such that the light emitted from the semiconductor light emitting elements 25 and 26 does not enter the light receiving element 24, the amount of near-end crosstalk attenuation can be increased. Also, in this configuration, the second
It can be made even smaller than the one shown. The block 31 may be housed in one container to suppress unnecessary light leakage, and the spacer glass 18 may be omitted.

第6図は本発明の光波長多重伝送用光モジュールの別の
実施例である。これは4波双方向多重伝送用光モジュー
ルの場合である。矢印13方向へ波長λ 、λ を、矢
印14方向へ波長λ 、λを伝搬させる構成である。2
8は波長λ の光信号のみを反射させ、波長λ 、λ 
、λ の光信号を透過させる干渉膜フィルタである。2
9は波長λ の光信号のみを透過させ、波長λ 、λλ
 の光信号を反射させる干渉膜フィルタである。
FIG. 6 shows another embodiment of the optical module for optical wavelength division multiplexing transmission of the present invention. This is the case with an optical module for four-wave bidirectional multiplex transmission. The structure is such that wavelengths λ 1 and λ 2 are propagated in the direction of arrow 13 and wavelengths λ 1 and λ are propagated in the direction of arrow 14. 2
8 reflects only the optical signal of wavelength λ, and wavelengths λ, λ
, λ is an interference film filter that transmits optical signals of λ. 2
9 transmits only the optical signal of wavelength λ, and wavelengths λ, λλ
It is an interference film filter that reflects the optical signal of

30は波長λ の光信号を受光する半導体受光素子であ
る。
30 is a semiconductor light receiving element that receives an optical signal of wavelength λ.

第2図において、干渉膜フィルター9.20゜21.2
2の特性を第7図のように選び、24を第1図の構成と
することができる。
In Figure 2, the interference membrane filter 9.20°21.2
The characteristics of 2 can be selected as shown in FIG. 7, and 24 can have the configuration shown in FIG.

以上のように、24,25,26.30は半導体発光素
子、受光素子のどちらでもよい。また波長多重数は2波
以上を容易に実現することができる。半導体発光素子は
半導体レーザ、発光ダイオードのいずれでもよい。また
双方向通信用光モジユール以外に、24,25,26,
30をすべて半導体発光素子とするか、受光素子にする
ことにより、片方向通信用光モジュールであってもよい
As described above, 24, 25, 26, and 30 may be either semiconductor light emitting devices or light receiving devices. Further, the number of wavelength multiplexing can easily be two or more. The semiconductor light emitting device may be either a semiconductor laser or a light emitting diode. In addition to optical modules for bidirectional communication, 24, 25, 26,
By making all of 30 semiconductor light emitting elements or light receiving elements, an optical module for one-way communication may be formed.

θ 〜0 は数置から数十度の範囲から選ぶ、さらに、
近端漏話減衰量を極めて大きくとれるといは受光素子2
4へ入射しない、また発光素子26の出射光のフィルタ
22,21.19での反射光も受光素子24へ入射しな
い。
θ ~ 0 is selected from a range of several orders of magnitude to several tens of degrees, and furthermore,
The light-receiving element 2 can achieve extremely large near-end crosstalk attenuation.
In addition, reflected light from the filters 22, 21, 19 of the light emitted from the light emitting element 26 does not enter the light receiving element 24.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、少ない部品点数で光結合機能と光合分
波機能を合せもたせることができるので、小形で簡易、
かつ低コストの光合分波器を提供することができるとい
う効果がある。
According to the present invention, it is possible to combine an optical coupling function and an optical multiplexing and demultiplexing function with a small number of parts, so it is small and simple.
Moreover, there is an effect that a low-cost optical multiplexer/demultiplexer can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、第2図、第5図、および第
6図は本発明の光波長多重伝送用光モジュールの実施例
を示す図、第3図および第7図は本発明の光波長多重伝
送用光モジュールの実施例に用いた干渉膜フィルタの波
長特性を示す図、第4図は本発明の光波長多重伝送用光
モジュールに用いた干渉膜フィルタ付きスペーサガラス
ブロックの実施例を示す図である。 符号の説明 12−2・・・光ファイバ、24,25,26゜30・
・・光半導体素子、35・・・レンズ、16,17゜1
8.27・・・ブロック体、19,20,21゜22.
28.29・・・干渉膜フィルタ躬/図 第2図 第 4 図 (b) 葱I %tgA 2Σ     76 (4)   第7 (C) 図    (b) rグシ
FIG. 1 is an explanatory diagram of the prior art, FIGS. 2, 5, and 6 are diagrams showing embodiments of the optical module for optical wavelength multiplexing transmission of the present invention, and FIGS. 3 and 7 are diagrams of the present invention. Fig. 4 is a diagram showing the wavelength characteristics of the interference film filter used in the embodiment of the optical module for optical wavelength multiplexing transmission of the present invention. It is a figure which shows an example. Explanation of symbols 12-2...Optical fiber, 24, 25, 26°30.
...Optical semiconductor element, 35...Lens, 16,17゜1
8.27...Block, 19, 20, 21° 22.
28.29...Interference film filter / Figure 2 Figure 4 (b) Onion I %tgA 2Σ 76 (4) Figure 7 (C) Figure (b) r

Claims (1)

【特許請求の範囲】 1、第1光半導体素子と光ファイバとの間に設けられた
レンズの該第1光半導体素子側に所定の傾斜角度を有し
た第1光干渉膜フィルタを少なくとも1つ設けたブロッ
ク体を有し、該第1干渉膜フィルタによる反射光軸上に
第2干渉膜フィルタを介して第2光半導体素子を設けた
ことを特徴とする光波長多重伝送用光モジュール。 2、特許請求の範囲第1項において、上記第2光半導体
素子及び光ファイバの入出射光が相互に集光可能となる
ように上記第1干渉膜フィルタの傾斜角が設定されるこ
とを特徴とする光波長多重伝送用光モジュール。 3、特許請求の範囲第1項において、第1干渉膜フィル
タが2以上設けられた場合の傾斜角度が等しいことを特
徴とする光波長多重伝送用光モジュール。
[Claims] 1. At least one first optical interference film filter having a predetermined inclination angle on the first optical semiconductor element side of the lens provided between the first optical semiconductor element and the optical fiber. 1. An optical module for optical wavelength multiplexing transmission, characterized in that the block body is provided with a block body, and a second optical semiconductor element is provided on the optical axis reflected by the first interference film filter via a second interference film filter. 2. Claim 1 is characterized in that the inclination angle of the first interference film filter is set so that the input and output lights of the second optical semiconductor element and the optical fiber can be focused on each other. Optical module for optical wavelength division multiplexing transmission. 3. An optical module for optical wavelength division multiplex transmission according to claim 1, characterized in that when two or more first interference film filters are provided, the angles of inclination are the same.
JP6649085A 1985-04-01 1985-04-01 Optical module for optical wavelength multiplex transmission Pending JPS61226713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6649085A JPS61226713A (en) 1985-04-01 1985-04-01 Optical module for optical wavelength multiplex transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6649085A JPS61226713A (en) 1985-04-01 1985-04-01 Optical module for optical wavelength multiplex transmission

Publications (1)

Publication Number Publication Date
JPS61226713A true JPS61226713A (en) 1986-10-08

Family

ID=13317290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6649085A Pending JPS61226713A (en) 1985-04-01 1985-04-01 Optical module for optical wavelength multiplex transmission

Country Status (1)

Country Link
JP (1) JPS61226713A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347120A2 (en) * 1988-06-15 1989-12-20 AT&T Corp. Optical data link dual wavelength coupler
JPH0422914A (en) * 1990-05-18 1992-01-27 Victor Co Of Japan Ltd Three-color separating optical system
EP0568851A2 (en) * 1992-05-04 1993-11-10 ANT Nachrichtentechnik GmbH Optical transmitter and receiver
JP2004020973A (en) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd Optical communication device
US6792181B2 (en) 2002-01-09 2004-09-14 Fujitsu Limited Wavelength-multiplexing bidirectional optical transmission module
WO2006080249A1 (en) * 2005-01-27 2006-08-03 Omron Corporation Optical multiplexer/demultiplexer, method for fabricating the same, and optical multiplexer/demultiplexer module
JP2010009048A (en) * 2008-06-27 2010-01-14 Honeywell Internatl Inc Micro-optics photonic band gap fiber coupler
WO2010095499A1 (en) * 2009-02-20 2010-08-26 アルプス電気株式会社 Light transmitting and receiving module, method for manufacturing spectroscopic element, and method for manufacturing light emitting and receiving module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0347120A2 (en) * 1988-06-15 1989-12-20 AT&T Corp. Optical data link dual wavelength coupler
JPH0422914A (en) * 1990-05-18 1992-01-27 Victor Co Of Japan Ltd Three-color separating optical system
EP0568851A2 (en) * 1992-05-04 1993-11-10 ANT Nachrichtentechnik GmbH Optical transmitter and receiver
EP0568851A3 (en) * 1992-05-04 1994-04-06 Ant Nachrichtentech
US6792181B2 (en) 2002-01-09 2004-09-14 Fujitsu Limited Wavelength-multiplexing bidirectional optical transmission module
JP2004020973A (en) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd Optical communication device
WO2006080249A1 (en) * 2005-01-27 2006-08-03 Omron Corporation Optical multiplexer/demultiplexer, method for fabricating the same, and optical multiplexer/demultiplexer module
JP2010009048A (en) * 2008-06-27 2010-01-14 Honeywell Internatl Inc Micro-optics photonic band gap fiber coupler
WO2010095499A1 (en) * 2009-02-20 2010-08-26 アルプス電気株式会社 Light transmitting and receiving module, method for manufacturing spectroscopic element, and method for manufacturing light emitting and receiving module

Similar Documents

Publication Publication Date Title
US7184621B1 (en) Multi-wavelength transmitter optical sub assembly with integrated multiplexer
US5064263A (en) Multiplexing apparatus for the direct optical reception of a plurality of optical wavelengths
US6558046B2 (en) Optical wavelength division multiplexer and/or demultiplexer with mechanical strain relief
WO2001086329A3 (en) Cost-effective wavelength division multiplexer and demultiplexer
JPH01502619A (en) Optical wavelength division multiplexer
CN109613654B (en) Multichannel parallel wavelength division multiplexing/demultiplexing light splitting component and optical device thereof
JP2002261300A (en) Light receiver
US6775439B2 (en) Optical circuit device and optical transceiver
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
US8000569B2 (en) Optical device comprising a compact dispersing system
US7076129B2 (en) Apparatus and method for a filterless parallel WDM multiplexer
US6925256B1 (en) Optical discriminator for transmitting and receiving in both optical fiber and free space applications
TW201831939A (en) Coarse Wavelength Division Multiplexing
JPH0961678A (en) Semiconductor light receiving element
CN216285821U (en) Multichannel polarization-maintaining compact type wavelength division multiplexer module
JPS60214316A (en) Optical module for two-way transmission
CN113495323A (en) Multi-wavelength division multiplexing demultiplexing optical assembly
JPS61103110A (en) Optical multiplexer and demultiplexer
JPH05181035A (en) Optical demultiplexing and branching device
JPS61174504A (en) Optical module for two-way transmission
US20230081747A1 (en) High density fiber interfaces for silicon photonics based integrated-optics products
JP2819861B2 (en) Optical device
JPS61215505A (en) Optical module for optical wavelength multiplex transmission
JPS6218888B2 (en)
JP2005249966A (en) Optical member, its manufacturing method, and optical module