JPS61215505A - Optical module for optical wavelength multiplex transmission - Google Patents

Optical module for optical wavelength multiplex transmission

Info

Publication number
JPS61215505A
JPS61215505A JP5463785A JP5463785A JPS61215505A JP S61215505 A JPS61215505 A JP S61215505A JP 5463785 A JP5463785 A JP 5463785A JP 5463785 A JP5463785 A JP 5463785A JP S61215505 A JPS61215505 A JP S61215505A
Authority
JP
Japan
Prior art keywords
optical
film filter
wavelength
interference film
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5463785A
Other languages
Japanese (ja)
Other versions
JPH0721572B2 (en
Inventor
Katsuyuki Imoto
克之 井本
Kenichi Sato
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP60054637A priority Critical patent/JPH0721572B2/en
Publication of JPS61215505A publication Critical patent/JPS61215505A/en
Publication of JPH0721572B2 publication Critical patent/JPH0721572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Abstract

PURPOSE:To perform optical wavelength multiplex transmission using >=2 photoconductor elements by providing a block body which has one end surface slanting at a specific angle between a lens and a photoconductor element, providing an interference film filter on the slanting surface, and utilizing reflection caused by the block body. CONSTITUTION:An optical signal of wavelength lambda3 propagated in an optical fiber 12 for transmission as shown by an arrow 14 enters a rod lens 35. The optical signal of wavelength lambda3 entering the glass block 16 in the shape of a rectangular prism is converted into nearly parallel light, which is passed through the 1st interference filter 21, converged by a lens 23-1 on the photodetection surface of a semiconductor photodetecting element 25, and converted photoelectrically. An optical signal of wavelength lambda2 from a semiconductor light emitting element 25 is converted by a lens 23-2 into parallel light, which is incident on the 2nd interference film filter 22, passed through the 2nd interference film filter 22, and reflected by the 1st interference film filter 21. Then, the light is propagated in the glass block 16 almost along the center axis of the rod lens to enter the rod lens 35, and the light enters the rod lens 35 and is converged into an optical fiber 12 for transmission and propagated as shown by an arrow 13. An optical signal of wavelength lambda1 from a semiconductor emitting element 26 travels in a similar course.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は1本の光フアイバ伝送路を用い、その伝送路の
上りと下りで別々の複数の波長の光信号を伝送させる光
波長多重伝送用光モジュールに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is for optical wavelength multiplexing transmission in which a single optical fiber transmission line is used to transmit optical signals of different wavelengths on the upstream and downstream sides of the transmission line. Regarding optical modules.

〔発明の背景〕[Background of the invention]

光フアイバ通信における波長多重伝送技術は経済化をは
かる上で重要である。上記波長多重伝送において、光合
分波器は必須のデバイスである。
Wavelength multiplexing transmission technology in optical fiber communications is important for economicalization. In the wavelength division multiplexing transmission described above, an optical multiplexer/demultiplexer is an essential device.

従来、光合分波器の部品の低減化、小形化を図ったもの
として、第1図に示すような2波多重用合分波器がある
(藤井氏、他による″′波長多重F−6M方式用合分波
器″、研究実用化報告、第32巻第11号(1983)
、P2375〜P2385)。1,1′は集束形ロッド
レンズ、2は波長λ を透過し、波長λ を反射するバ
ンドパスフィルタ、3,4.5は光ファイバである。
Conventionally, there is a two-wavelength multiplexer/demultiplexer as shown in Figure 1, which aims to reduce the number of parts and make the optical multiplexer/demultiplexer smaller. ``Multiplexer/Demultiplexer for System'', Research and Practical Application Report, Vol. 32, No. 11 (1983)
, P2375-P2385). 1 and 1' are focusing rod lenses, 2 is a bandpass filter that transmits wavelength λ and reflects wavelength λ, and 3 and 4.5 are optical fibers.

まず、光ファイバ3から伝送されてきた波長λ 。First, the wavelength λ transmitted from the optical fiber 3.

λ の光は、それぞれ集束形ロッドレンズ1に入射され
る。このとき、波長λ の光はバンドパスフィルタ2を
透過は、集束形ロッドレンズ1′によって集束され、光
ファイバ5に伝搬される。一方、波長λ の光はバンド
パスフィルタ2によって反射され、集束形ロッドレンズ
1によって集束され、光ファイバ4に伝搬される。この
ような合分波器においては、集、束形ロッドレンズが複
数個必要であり、また、集束形ロッドレンズの入出力端
に光ファイバを使用している関係上1部品点数が増大す
るという欠点を有していた。さらに、集束形ロッドレン
ズの直径が2■程度であることから、光ファイバ及びバ
ンドパスフィルタを各々配置し、所望の光学的特性を得
るために、高精度の製作技術が必要であるという問題も
ある。
The light beams of λ are each incident on a focusing rod lens 1. At this time, the light having the wavelength λ passes through the bandpass filter 2, is focused by the focusing rod lens 1', and is propagated to the optical fiber 5. On the other hand, the light having the wavelength λ is reflected by the bandpass filter 2, focused by the focusing rod lens 1, and propagated to the optical fiber 4. In such a multiplexer/demultiplexer, multiple converging and converging rod lenses are required, and since optical fibers are used at the input and output ends of the converging rod lenses, the number of parts increases. It had drawbacks. Furthermore, since the diameter of the focusing rod lens is approximately 2 mm, there is the problem that high-precision manufacturing technology is required to arrange the optical fibers and band-pass filters respectively and obtain the desired optical characteristics. be.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記問題点に鑑み、より簡単化、経済
化をはかれる光波長多重伝送用光モジュールを提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical module for optical wavelength division multiplexing transmission that is simpler and more economical.

〔発明の概要〕[Summary of the invention]

本発明は、光ファイバの後にレンズを設け、このレンズ
と光半導体素子との間に片端面が所定角度の傾斜面を有
するブロック体を設け、このブロック体表面の少なくと
も傾斜面に干渉膜フィルタを設け、ブロック体で生じる
反射を利用して、二以上の光半導体素子を使用した光波
長多重伝送を行なえるようにしたものである。
In the present invention, a lens is provided after the optical fiber, a block body having one end face inclined at a predetermined angle is provided between the lens and the optical semiconductor element, and an interference film filter is provided on at least the inclined surface of the surface of the block body. By using the reflection generated by the block body, optical wavelength multiplexing transmission using two or more optical semiconductor elements can be performed.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の光波長多重伝送用光モジュールの実施
例を示す。これは3波多重双方向伝送光モジュールの一
実施例である。すなわち、伝、送用光ファイバー2−2
内を矢印13方向に波長λ 。
FIG. 2 shows an embodiment of the optical module for optical wavelength division multiplexing transmission of the present invention. This is an example of a three-wave multiplex bidirectional transmission optical module. That is, transmission optical fiber 2-2
Wavelength λ inside in the direction of arrow 13.

λ の光信号を、矢印14方向に波長λ の光信号をそ
れぞれ伝搬させる。その構成は、長さが約1/4ピツチ
の屈折率分布型ロッドレンズ35の一方の端面に伝送用
光ファイバー2−2を配置させる。その反射端面には直
方体のガラスブロックI6を接続し、そのガラスブロッ
ク16の先端面を所望の傾斜角度θ をもたせ、その傾
斜面に第1干渉膜フィルタ21を形成させ、また上記直
方体のガラスブロック16の底面に第2干渉膜フィルタ
ー9.22を、上面に第3干渉膜フィルタ20 (ある
いは全反射膜)を形成させたもの゛である。そして上記
ロッドレンズのほぼ中心軸の延長線上にレンズ23−1
付きの半導体受光素子(波長先 の光信号受光用)24
を、また上記ロッドレンズの中心軸に対して約20 の
角度の線上の第2干渉膜フィルタ22の後にレンズ23
−2付きの半導体発光素子(波長λ の光信号発光用)
25、さらに第2干渉膜フィルター9の後にレンズ23
−3付きの半導体発光素子(波長λ の光信号発光用)
26を配置した構成である。上記干渉膜フィルター9,
20,21,22の波長特性の一例を第3図(a)〜(
c)に示す。たとえば、第2干渉膜フィルター9は波長
λ の光信号を透過させ、波長λ 、λ の光信号を反
射させるフィルりである。第2干渉膜フィルタ22.第
3干渉膜フィルタ20は波長λ 、λ の光信号を透過
させ、波長λ の光信号を反射させるフィルタである。
An optical signal with wavelength λ is propagated in the direction of arrow 14, and an optical signal with wavelength λ is propagated in the direction of arrow 14, respectively. In its configuration, the transmission optical fiber 2-2 is disposed on one end face of a gradient index rod lens 35 having a length of approximately 1/4 pitch. A rectangular parallelepiped glass block I6 is connected to the reflective end surface, the tip end surface of the glass block 16 is made to have a desired inclination angle θ, the first interference film filter 21 is formed on the inclined surface, and the rectangular parallelepiped glass block 16, a second interference film filter 9.22 is formed on the bottom surface, and a third interference film filter 20 (or a total reflection film) is formed on the top surface. A lens 23-1 is placed on the extension line of the central axis of the rod lens.
Semiconductor photodetector (for receiving optical signals at wavelength destination) 24
and a lens 23 after the second interference film filter 22 on a line at an angle of about 20 degrees with respect to the central axis of the rod lens.
-2 semiconductor light emitting device (for emitting optical signal with wavelength λ)
25, and further a lens 23 after the second interference film filter 9
-3 semiconductor light emitting device (for emitting optical signal with wavelength λ)
This is a configuration in which 26 are arranged. The interference membrane filter 9,
Examples of wavelength characteristics of 20, 21, and 22 are shown in Fig. 3 (a) to (
Shown in c). For example, the second interference film filter 9 is a filter that transmits an optical signal of wavelength λ 2 and reflects optical signals of wavelengths λ 2 and λ 2 . Second interference film filter 22. The third interference film filter 20 is a filter that transmits optical signals with wavelengths λ 1 and λ 2 and reflects optical signals with wavelength λ 2 .

第1干渉膜フィルタ21は波長λ の光信号を透過させ
、波長λ 、λ の光信号を反射させるフィルタである
。次に第2図の動作概要を述べる。伝送用光フアイバー
2内を矢印14方向に伝搬してきた波長λ の光信号は
ロッドレンズ35内に入射する。ロッドレンズ35の長
さは約1/4ピツチであるので、ロッドレンズ35を通
過して直方体のガラスブロック16内に入った波長λ 
の光信号はほぼ平行光に変換され、第1干渉膜フィルタ
21を通過し、レンズ(球レンズ、半球レンズ、あるい
は屈折率分布型ロッドレンズ等)23−1で半導体受光
素子24の受光面上に集光され、光電気変換される。波
長λ の半導体装置素子25の光信号はレンズ(球レン
ズ、半球レンズ、平板マイクロレンズ、屈折率分布型ロ
ッドレンズ等)23−2で平行光に変換され、第2干渉
膜フィルタ22に角度的θ (θ =−一20 )で入
射する。そして波長λ の光信号は第2干渉膜フィルタ
22を通過し、第1干渉膜フィルタ21で反射される。
The first interference film filter 21 is a filter that transmits an optical signal of wavelength λ 2 and reflects optical signals of wavelengths λ 2 and λ 2 . Next, an outline of the operation shown in FIG. 2 will be described. An optical signal having a wavelength λ that has propagated within the transmission optical fiber 2 in the direction of the arrow 14 enters the rod lens 35 . Since the length of the rod lens 35 is approximately 1/4 pitch, the wavelength λ that passes through the rod lens 35 and enters the rectangular parallelepiped glass block 16
The optical signal of The light is focused and converted into electricity. The optical signal of the semiconductor device element 25 having a wavelength λ is converted into parallel light by a lens (ball lens, hemispherical lens, flat plate microlens, graded index rod lens, etc.) 23-2, and is angularly transmitted to the second interference film filter 22. It is incident at θ (θ = -20). The optical signal of wavelength λ passes through the second interference film filter 22 and is reflected by the first interference film filter 21.

反射光は第1干渉膜フィルタ21への入射光角度がθ 
であるので、ロッドレンズのほぼ中心軸上に沿ってガラ
スブロック16内を伝搬し、ロッドレンズ35内に入射
する。モしてロッドレンズ35内を左方向に伝搬するに
つれて波長λ の光信号のビーム径はしぼられ、伝送用
光フアイバー2内に集光され、矢印13方向に伝搬され
る6波長λ の半導体発光素子26の光信号は23−2
と同様のレンズ23−3で平行光に変換され、第2干渉
膜フィルター9に角度的θ で入射する。第2干渉膜フ
ィルター9は波長λ の光信号を通過させる。波長λ 
の光信号は第2干渉膜フィルター9を通過後、第3干渉
膜フィルタ20に到達し、この第3干渉膜フィルタ20
で反射され、第2干渉膜フィルタ22に達する。しかし
、この第2干渉膜フィルタ22でも反射され、第1干渉
膜フィルタ21に達するがさらにこの第1干渉膜フィル
タ21でも反射され、ロッドレンズ35の中心軸方向に
ガラスブロック16内を左方向に進む。そしてロッドレ
ンズ35内に入射し、波長λ の光信号と同様に、伝送
用光フアイバー2内に集光され、矢印13方向に上記光
フアイバー2内を伝搬する。
The incident angle of the reflected light to the first interference film filter 21 is θ.
Therefore, the light propagates within the glass block 16 along approximately the central axis of the rod lens and enters the rod lens 35. The beam diameter of the optical signal with wavelength λ is narrowed as it propagates leftward inside the rod lens 35, and the beam diameter of the optical signal with wavelength λ is condensed into transmission optical fiber 2, and semiconductor light emission with 6 wavelengths λ is propagated in the direction of arrow 13. The optical signal of element 26 is 23-2
It is converted into parallel light by a lens 23-3 similar to the above, and enters the second interference film filter 9 at an angle of θ. The second interference film filter 9 passes the optical signal of wavelength λ. wavelength λ
After passing through the second interference film filter 9, the optical signal reaches the third interference film filter 20.
and reaches the second interference film filter 22. However, it is also reflected by this second interference film filter 22 and reaches the first interference film filter 21, but it is further reflected by this first interference film filter 21 and leftward inside the glass block 16 in the direction of the central axis of the rod lens 35. move on. The light then enters the rod lens 35, is condensed into the transmission optical fiber 2 in the same manner as the optical signal of wavelength λ, and propagates within the optical fiber 2 in the direction of the arrow 13.

以上のようにして3波長多重双方向伝送を行なうことが
できる。この構成では、前記したように。
As described above, three-wavelength multiplexed bidirectional transmission can be performed. In this configuration, as described above.

簡単な構造の直方体ガラスブロックを用い、このブロッ
クの片端面、底面、上面に干渉膜フィルタを形成させる
だけでよいので、非常に作り易く。
It is very easy to manufacture because it is only necessary to use a rectangular parallelepiped glass block with a simple structure and form an interference film filter on one end, bottom, and top surface of the block.

また小形で部品点数も少ない、さらに半導体発光素子2
5.26の配置方法が同じであるので組立。
In addition, it is small and has a small number of parts, and the semiconductor light emitting device 2
5. Assemble the 26 as the arrangement method is the same.

実装、光軸調整も簡単になる。たとえば1点線で囲んだ
部分29を一つのブロックとして作っておけば、このブ
ロックのX、Y方向調整で光軸調整を終らせることがで
きる。
Mounting and optical axis adjustment are also easier. For example, if the portion 29 surrounded by a dotted line is made as one block, the optical axis adjustment can be completed by adjusting this block in the X and Y directions.

第4図は本発明に用いる直方体のガラスブロック16の
一実施例を示したものである。同図(a)は正面図、(
b)は上面図、(C)は底面図、(d)は側面図である
。長さρ 2幅Ω 、高さQ は任意の値に選ぶことが
できる。ただし、α 、12はロッドレンズ35の直径
とほぼ等しいかそれよりも大きい値が好ましい。ガラス
ブロックが直方体であると、ガラスブロックの切断、研
磨が容易で、かつ量産し易く、さらに干渉膜フィルタの
取付けが容易、配置が安定、といった特徴がある。
FIG. 4 shows an embodiment of a rectangular parallelepiped glass block 16 used in the present invention. Figure (a) is a front view, (
b) is a top view, (C) is a bottom view, and (d) is a side view. The length ρ, the width Ω, and the height Q can be selected to be arbitrary values. However, α and 12 are preferably approximately equal to or larger than the diameter of the rod lens 35. When the glass block is a rectangular parallelepiped, it is easy to cut and polish the glass block, and mass-produced. Furthermore, the interference film filter can be easily attached and the arrangement is stable.

特に光モジュールの低コスト化には極めて有効である。In particular, it is extremely effective in reducing the cost of optical modules.

干渉膜フィルター9,20,21.22のガラスブロッ
ク16への取付けは、直接蒸着により形成してもよく、
あるいは第5図のととくガラス板28に形成された干渉
膜フィルタ27をガラスプロッタに光学接着剤で接着し
てもよい。
The interference membrane filters 9, 20, 21, 22 may be attached to the glass block 16 by direct vapor deposition.
Alternatively, the interference film filter 27 formed on the glass plate 28 shown in FIG. 5 may be bonded to the glass plotter with an optical adhesive.

次に第2図の光モジュールの具体的実施例について述べ
る。24には波長1.3μmの光信号を受光する受光素
子とし、26には波長0.78μmの半導体発光素子と
し、25には波長0.88μmの半導体発光素子とした
。そして、θ =35’。
Next, a specific example of the optical module shown in FIG. 2 will be described. 24 is a light receiving element that receives an optical signal with a wavelength of 1.3 μm, 26 is a semiconductor light emitting device with a wavelength of 0.78 μm, and 25 is a semiconductor light emitting device with a wavelength of 0.88 μm. And θ = 35'.

θ =20” 、 Q  =6ma、 Q  =4m、
 Q  ==10■に設定した。
θ = 20”, Q = 6ma, Q = 4m,
Q was set to 10■.

本発明は上記実施例に限定されない。たとえば第3干渉
膜フィルタ20のところに第2干渉膜フィルタ19をも
ってきて、かつレンズ23−3付きの半導体発光素子2
6を上記第2干渉膜フィルタ19の後にもってくるよう
にすれば、半導体発光素子(あるいは受光素子)26の
光路長を短かくすることができる。より低損失化をはか
れる。
The invention is not limited to the above embodiments. For example, the second interference film filter 19 is brought to the third interference film filter 20, and the semiconductor light emitting element 2 with the lens 23-3 is
6 after the second interference film filter 19, the optical path length of the semiconductor light emitting device (or light receiving device) 26 can be shortened. The loss can be further reduced.

ロッドレンズ35は球レンズでもよい。The rod lens 35 may be a spherical lens.

上記実施例で構成された光波長多重伝送用光モジュール
によれば、 (1)干渉膜フィルタへ入射する光信号は所望の一波長
以外はすべて反射させる構成であるので、低損失化が可
能である。
According to the optical module for optical wavelength division multiplexing transmission configured in the above embodiment, (1) Since the optical signal incident on the interference film filter is configured to reflect all but one desired wavelength, it is possible to reduce loss. be.

(2)直方体のガラスブロックの上面、底面。(2) Top and bottom surfaces of a rectangular parallelepiped glass block.

片端面に干渉膜フィルタを形成して光のじぐざぐ反射さ
せるので、小形にできる。
An interference film filter is formed on one end surface to reflect light in a zigzag manner, so it can be made smaller.

(3)半導体発光素子と受光素子を分離させているので
光および電気的漏話を抑えることができる。
(3) Since the semiconductor light emitting element and the light receiving element are separated, optical and electrical crosstalk can be suppressed.

(4) 干渉膜フィルタを直方体ガラスブロックの外周
に形成させる構成であるので、作りやすい。
(4) Since the interference film filter is formed on the outer periphery of a rectangular parallelepiped glass block, it is easy to manufacture.

またガラスブロックも直方体形状で傾斜面も一個所だけ
であるので製造し易い。
The glass block is also easy to manufacture because it has a rectangular parallelepiped shape and only one inclined surface.

(5) 2つの半導体発光素子(あるいは受光素子)の
干渉膜フィルタ入射角度θ が等しくなる、ので、これ
らをアレイ状一体的に構成できるので。
(5) Since the interference film filter incidence angles θ of the two semiconductor light emitting devices (or light receiving devices) are equal, they can be integrally configured in an array.

設計および組立、実装が容易となる。Easy to design, assemble, and implement.

(6) ロッドレンズを用いた場合には、ロッドレンズ
をガラスブロックの断面形状と同じ直方体形状の容器に
入れれば、ガラスブロックと高寸法精度で接続でき、接
続部での不要反射を抑制できる。
(6) When using a rod lens, if the rod lens is placed in a rectangular parallelepiped-shaped container having the same cross-sectional shape as the glass block, it can be connected to the glass block with high dimensional accuracy, and unnecessary reflections at the connection part can be suppressed.

(7)非常に簡易構成であるめで、組立9実装も容易で
あり、低コスト化をはかれる。
(7) It has a very simple configuration and is easy to assemble and mount, resulting in low cost.

(8)半導体発光素子の出射光の光モジユール内での反
射光は受光素子に入射しない構成であるので、近端漏話
減衰量を大きくとれる。
(8) Since the configuration is such that the reflected light of the light emitted from the semiconductor light emitting element within the optical module does not enter the light receiving element, the amount of near-end crosstalk attenuation can be increased.

という効果がある。There is an effect.

以上、第2図の3波多重双方向伝送光モジュールについ
て説明したが、第6図、第7図に示すような2波多重双
方向伝送光モジュールも同様の原理で動作する。なお、
第6図のように半導体発光素子25の前方に干渉膜フィ
ルタを設けなくてもよい。第7図のものは、第6図のも
のに第2干渉膜フィルタ22を設けて、アイソレーショ
ンを高めたものである。第8図のものは、第2図の第3
干渉膜フィルタ20の代りに第2干渉膜フィルタ19を
設け、その後方にレンズ23−2付きの半導体発光素子
26を設けたものであり、第2図のものに比べて、部品
点数が減少するという効果がある。
The three-wave multiplex bidirectional transmission optical module shown in FIG. 2 has been described above, but the two-wave multiplex bidirectional transmission optical module shown in FIGS. 6 and 7 also operates on the same principle. In addition,
It is not necessary to provide an interference film filter in front of the semiconductor light emitting device 25 as shown in FIG. The one shown in FIG. 7 is the same as the one shown in FIG. 6 except that a second interference film filter 22 is provided to improve isolation. The one in Figure 8 is the one in Figure 2.
A second interference film filter 19 is provided in place of the interference film filter 20, and a semiconductor light emitting element 26 with a lens 23-2 is provided behind it, and the number of parts is reduced compared to the one shown in FIG. There is an effect.

上述の実施例では、半導体受光素子24が1個の場合に
ついて説明したが、受光素子2発光素子の組み合せは自
由に行なえる。
In the above-mentioned embodiment, the case where there is one semiconductor light-receiving element 24 has been described, but the light-receiving element 2 and the light-emitting element can be freely combined.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低損失で、小形化、経済化をはかれる
光波長多重伝送用光モジュールを提供することかできる
According to the present invention, it is possible to provide an optical module for optical wavelength division multiplexing transmission that has low loss, is small in size, and is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、第2図は本発明の光波長多
重伝送用光モジュールの3波長の場合の実施例、第3図
は本発明の光波長多重伝送用光モジュールに用いる干渉
膜フィルタの波長特性の一例、第4図は本発明の光波長
多重伝送用光モジュールに用いるブロック体の実施例、
第5図は干渉膜フィルタ付きガラス板の概略図、第6図
、第7図及び第8図は本発明の他の実施例である。 符号の説明
Fig. 1 is an explanatory diagram of the prior art, Fig. 2 is an example of the optical module for optical wavelength division multiplexing transmission of the present invention in the case of three wavelengths, and Fig. 3 is an interference diagram used in the optical module for optical wavelength division multiplexing transmission of the present invention. An example of the wavelength characteristics of a membrane filter, FIG. 4 shows an example of a block body used in the optical module for optical wavelength multiplexing transmission of the present invention,
FIG. 5 is a schematic diagram of a glass plate with an interference film filter, and FIGS. 6, 7, and 8 are other embodiments of the present invention. Explanation of symbols

Claims (1)

【特許請求の範囲】 1、光ファイバと、第1光半導体素子と、該光ファイバ
と該第1光半導体素子との間に設けられたレンズと、所
定角度の傾斜面を有した端面が該第1光半導体素子側に
、他方の端面が該レンズ側になるように設けられたブロ
ック体と、該傾斜面に設けられた第1干渉膜フィルタと
、該傾斜面の所定角度に応じて該ブロック体の側面に設
けられた1以上の第2光半導体素子と、該第2光半導体
素子と該ブロック体側面との間に設けられた第2干渉膜
フィルタとからなることを特徴とする光波長多重伝送用
光モジュール。 2、特許請求の範囲第1項において、上記第2光半導体
素子を上記ブロック体の片側に設けるための第3干渉膜
フィルタを有することを特徴とする光波長多重伝送用光
モジュール。 3、光ファイバと、第1光半導体素子と、該光ファイバ
と該第1光半導体素子との間に設けられたレンズと、所
定角度の傾斜面を有した端面が該第1光半導体素子側に
、他方の端面が該レンズ側になるように設けられたブロ
ック体と、該傾斜面に設けられた第1干渉膜フィルタと
、該傾斜面の所定角度に応じて該ブロック体の側面に設
けられた1以上の第2光半導体素子N個と、N−1個の
該第2光半導体素子と該ブロック体側面との間に設けら
れた第2干渉膜フィルタとからなることを特徴とする光
波長多重伝送用光モジュール。
[Claims] 1. An optical fiber, a first optical semiconductor element, a lens provided between the optical fiber and the first optical semiconductor element, and an end face having an inclined surface at a predetermined angle. a block body provided on the first optical semiconductor element side so that the other end face is on the lens side; a first interference film filter provided on the inclined surface; An optical device comprising one or more second optical semiconductor elements provided on a side surface of a block body, and a second interference film filter provided between the second optical semiconductor element and the side surface of the block body. Optical module for wavelength multiplexing transmission. 2. The optical module for optical wavelength multiplexing transmission according to claim 1, further comprising a third interference film filter for providing the second optical semiconductor element on one side of the block body. 3. An optical fiber, a first optical semiconductor element, a lens provided between the optical fiber and the first optical semiconductor element, and an end surface having an inclined surface at a predetermined angle on the side of the first optical semiconductor element. a block body provided with the other end face facing the lens; a first interference film filter provided on the inclined surface; and a first interference film filter provided on the side surface of the block body in accordance with a predetermined angle of the inclined surface. and a second interference film filter provided between the N-1 second optical semiconductor elements and the side surface of the block body. Optical module for optical wavelength multiplexing transmission.
JP60054637A 1985-03-20 1985-03-20 Optical module for optical WDM transmission Expired - Lifetime JPH0721572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054637A JPH0721572B2 (en) 1985-03-20 1985-03-20 Optical module for optical WDM transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054637A JPH0721572B2 (en) 1985-03-20 1985-03-20 Optical module for optical WDM transmission

Publications (2)

Publication Number Publication Date
JPS61215505A true JPS61215505A (en) 1986-09-25
JPH0721572B2 JPH0721572B2 (en) 1995-03-08

Family

ID=12976282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054637A Expired - Lifetime JPH0721572B2 (en) 1985-03-20 1985-03-20 Optical module for optical WDM transmission

Country Status (1)

Country Link
JP (1) JPH0721572B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525045A (en) * 1978-08-11 1980-02-22 Nippon Telegr & Teleph Corp <Ntt> Light wavelength multiple branching system
JPS57160117U (en) * 1981-04-01 1982-10-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525045A (en) * 1978-08-11 1980-02-22 Nippon Telegr & Teleph Corp <Ntt> Light wavelength multiple branching system
JPS57160117U (en) * 1981-04-01 1982-10-07

Also Published As

Publication number Publication date
JPH0721572B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
CN208953742U (en) Suitable for small-sized encapsulated multichannel light high-speed transfer reception device
US6198864B1 (en) Optical wavelength demultiplexer
US6563976B1 (en) Cost-effective wavelength division multiplexer and demultiplexer
JP2002261300A (en) Light receiver
CN109613654B (en) Multichannel parallel wavelength division multiplexing/demultiplexing light splitting component and optical device thereof
JPH07104146A (en) Production of optical parts
US8664584B2 (en) Compact tap monitor with a reflection mask
JPH07104148A (en) Optical parts
TWM241892U (en) A silicon optical bench based bi-directional transceiver module
US20040202417A1 (en) Optical monitor device
JP2000028847A (en) Multiplexer
JPS589119A (en) Wavelength split multiple circuit
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
JP2001501378A (en) Optoelectronic module for bidirectional optical data transmission
US6925256B1 (en) Optical discriminator for transmitting and receiving in both optical fiber and free space applications
CN211905786U (en) Novel multichannel parallel receiving optical device
JPS61215505A (en) Optical module for optical wavelength multiplex transmission
CN210605101U (en) Multipath wavelength demultiplexing light receiving component based on optical waveguide
JP7293672B2 (en) optical module
US6704478B2 (en) Wavelength separation optical device and multiple wavelength light transmission module
JP2002040283A (en) Optical device and its manufacturing method
JPH05181035A (en) Optical demultiplexing and branching device
JPS61174504A (en) Optical module for two-way transmission
JPS61103110A (en) Optical multiplexer and demultiplexer
JPS5814112A (en) Optical demultiplexer