JPS589119A - Wavelength split multiple circuit - Google Patents

Wavelength split multiple circuit

Info

Publication number
JPS589119A
JPS589119A JP10734081A JP10734081A JPS589119A JP S589119 A JPS589119 A JP S589119A JP 10734081 A JP10734081 A JP 10734081A JP 10734081 A JP10734081 A JP 10734081A JP S589119 A JPS589119 A JP S589119A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical
temperature
wavelength
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10734081A
Other languages
Japanese (ja)
Inventor
Keiichi Takahashi
啓一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10734081A priority Critical patent/JPS589119A/en
Publication of JPS589119A publication Critical patent/JPS589119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To correct the spectral characteristics even in case when wavelength of a light source has been varied by a temperature, by constituting so that one of a diffraction grating, an optical fiber or an optical detector train has a function for converting a variation of a temperature to a variation of a position or an angle. CONSTITUTION:An incident side fiber 1 is fixed to a body 5 in a state that it has been optically arranged in advance, together with an optical system consisting of a lens 3, and a diffraction grating 4. As for an output side fiber 2, its two sides are constituted of a bimetal 6 in a state that it has been arranged with the optical system, and it is fixed onto the remaining one side of a parallelogram whose other one side is the body 5. In this state, when a temperature variation occurs, two sides of the parallelogram constituted of the bimetal 6 are bent, a position of the output side fiber 2 is moved in parallel, and the spectral characteristics of a branching filter are compensated. Instead of the bimetal, it is also possible to give a turning moment to the diffraction grating by a temperature variation.

Description

【発明の詳細な説明】 本発明は、波長特性を周囲温度の変化に対応して補正す
る機能を持った波長分割多重回路に光フアイバ通信に於
て、一本の伝送路を使って一度署:複数の各々異った波
長の光信号を伝単する所謂る波長分割多重方式は、伝送
路の有効利用(回線当りのコスト低減、)が可能に、な
るばかりでなく、システム構成上の自由度が増し、光フ
アイバ通信方式の適用範囲が拡がると同時電:通信の質
の向上が期待出来る等、極めて魅力・的な方式である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a wavelength division multiplexing circuit that has a function of correcting wavelength characteristics in response to changes in ambient temperature, which can be signed once using a single transmission line in optical fiber communication. :The so-called wavelength division multiplexing method, which transmits multiple optical signals with different wavelengths, not only enables effective use of transmission lines (reducing cost per line), but also increases flexibility in system configuration. This is an extremely attractive method, as it can be expected to improve the quality of communication as the number of optical fiber communications increases and the scope of application of the optical fiber communication method expands.

この方式を実現化する為の波長分割多重回路として、プ
リズムを利用したもの、干渉膜フィルタを組合わせたも
め、そして回折格子を用いたものと概ね三つの方式のも
のが開発されている。中でも回折格子を用いた波長分割
多重回路は、多重数を容易に増せる事、又、原理的(ユ
どの波長域でも使用可能であるという利点が有り。
Generally, three types of wavelength division multiplexing circuits have been developed to realize this method: one using a prism, one using a combination of interference film filters, and one using a diffraction grating. Among them, a wavelength division multiplexing circuit using a diffraction grating has the advantage that the number of multiplexed circuits can be easily increased and that it can be used in any wavelength range in principle.

今後波長分割多重回路の中心的な役割を果すと見られて
いる。
It is expected that it will play a central role in wavelength division multiplexing circuits in the future.

一方、波長分割多重方式の問題点としては、光源として
一般的書二用いられる半導体レーザ又は発光ダイオード
の波長が温度によって変化するという事がある。例えば
0.7〜’0.9xg帯で使用されるAIGaAa (
アルミニウム・ガリウム・ヒ素)ル−ザでは約3^/℃
、又1.0〜1.7μ講帯で映されるInGaAaP 
(インジウム・ガリウム・ヒ素・リン)レーザでは約5
ム/℃の温度係数を持つ。
On the other hand, a problem with the wavelength division multiplexing method is that the wavelength of the semiconductor laser or light emitting diode commonly used as a light source changes depending on the temperature. For example, AIGaAa (
(aluminum, gallium, arsenic) approx. 3^/℃ in Ruther
, and InGaAaP projected in the 1.0-1.7μ range.
(indium, gallium, arsenic, phosphorous) laser: approx. 5
It has a temperature coefficient of μm/°C.

これらは例えばθ℃〜50℃までの温度変化で約150
 X (AJGaム8レーザの場合)及び約250X(
InGaAsPレーザの場合)もの波長変化が生ずる。
These are, for example, about 150°C when the temperature changes from θ°C to 50°C.
X (for AJGa 8 laser) and approximately 250X (
In the case of InGaAsP lasers) wavelength changes occur.

耐折格子を用いた波長分割多重回路は波長の違いを回折
角の変化(、光学系の焦点面上での位置の変化)として
分離或いは合成する。そこで前述した様(二光源に温度
変化が生じて波長がシフトした場合には、光学系の焦点
に置かれた光ファイバ(入力側、出力側)部分では各波
長ごとの光軸がずれてしまい、合波側では挿入損失の増
加として、また分tIIL@では挿入損失の増加に加え
てチャンネル間(隣合った波長の信号の間)の漏話(ク
ロストーク)が増加し二信号の質が低下するという、欠
点が有った。
A wavelength division multiplexing circuit using a refraction grating separates or combines differences in wavelength as a change in diffraction angle (or a change in position on the focal plane of an optical system). Therefore, as mentioned above (if a temperature change occurs in the two light sources and the wavelength shifts, the optical axis of each wavelength will shift in the optical fiber (input side, output side) section placed at the focal point of the optical system. , on the multiplexing side, as an increase in insertion loss, and in tIIL@, in addition to the increase in insertion loss, crosstalk between channels (between signals of adjacent wavelengths) increases and the quality of the two signals deteriorates. There was a drawback.

本発明の目的は、上述した従来の欠点を除去所定のシス
テム動作を実現することのでき誌波長分割多重回路を提
供するこ、とじある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength division multiplexing circuit capable of eliminating the above-mentioned conventional drawbacks and realizing a predetermined system operation.

この目的のために、 本発明は、異る波長の光信号を合波或いは分波する回折
格子屋波長分割多重回路において、回折格子或いはこの
回折格子と光学的に結合している光ファイバ若しくは光
検出器列の何れか一万或いは両方に、温度の変化を位置
又は角度の変化に変換する機能を備え、光源の波長が温
度ζ二よって変化した場合、その波長変化ζ二追従する
べく分光特性を補正出来る様にしたもので回折格子は波
長の違いを角度の変化に変換して波長ごとに分離する機
能を有することは周知の通りである。−万、曲折格子と
レンズ系(これは回折格子を凹面鏡上に設ける事により
機能を一体化する事が出来る)を組合せ、光ファイバ或
いは光検出器列をそのレンズ系(凹面回折格子の場合に
は、凹面鏡)の焦点位置C;、配列した場合波長変化は
位置の変化となって現われる。
For this purpose, the present invention provides a wavelength division multiplexing circuit for multiplexing or demultiplexing optical signals of different wavelengths using a diffraction grating or an optical fiber or optical fiber optically coupled to the diffraction grating. Either or both of the detector rows is equipped with a function to convert changes in temperature into changes in position or angle, and when the wavelength of the light source changes due to temperature ζ2, the spectral characteristics are adjusted to follow that wavelength change ζ2. It is well known that the diffraction grating has the function of converting the difference in wavelength into a change in angle and separating each wavelength. - 10,000, combine a diffraction grating and a lens system (functions can be integrated by installing a diffraction grating on a concave mirror), and connect an optical fiber or photodetector array to the lens system (in the case of a concave diffraction grating). is the focal position C of the concave mirror), and when arranged, a change in wavelength appears as a change in position.

第1図はこの原理を応用した従来の波長分割多重回路の
斜視図であり、第2図はその平面図である。図中1は入
力側光ファイバ、2は出力側光ファイバであって、光フ
ァイバ1から発せられた光波はレンズ3を通って回折格
子4に当たり、回折角の変化として分離され出力側光フ
ァイバ2から出射される。ここで前述した如く、光源に
温度変化が生じて波長がシフトした場合には光フアイバ
部分で各波長ごとの光軸がずれてしまう。したがって、
本発明では、光源の波長が温′度変化によりシフトした
場合、その為に生じる回折格子部分での角度変化、或い
はレンズ系の焦点位置で生じる光軸に垂直な断面内での
位置の変化を、温度変化を位置或いは角度の変化に変換
する機能を有する部材(バイメタル効果、或いは金属そ
れ自体の熱膨張を利用したもの)を用いて補正する機能
をもった波長分割゛   −5− 多重回路を構成する。ものである。
FIG. 1 is a perspective view of a conventional wavelength division multiplexing circuit to which this principle is applied, and FIG. 2 is a plan view thereof. In the figure, 1 is an input side optical fiber, 2 is an output side optical fiber, and the light wave emitted from the optical fiber 1 passes through a lens 3 and hits a diffraction grating 4, and is separated as a change in the diffraction angle and then sent to the output side optical fiber 2. It is emitted from. As described above, if the wavelength shifts due to a temperature change in the light source, the optical axis of each wavelength will shift in the optical fiber portion. therefore,
In the present invention, when the wavelength of the light source is shifted due to temperature change, the resulting angular change in the diffraction grating portion or the positional change in the cross section perpendicular to the optical axis that occurs at the focal position of the lens system is suppressed. , a wavelength division multiplex circuit with a correction function using a member (using the bimetal effect or the thermal expansion of the metal itself) that has the function of converting temperature changes into changes in position or angle. Configure. It is something.

以下、未発明を、図面を参照しながら、実施例について
説明する。
Hereinafter, embodiments of the invention will be described with reference to the drawings.

第3図は、本発明(;よる分波器の一実施例である。入
射側ファイバlは、レンズ3から成る光学系、回折格子
4とともに本採5に予じめ光学的に整列した状態で固定
されている。出力側ファイバ2は、上記光学、系と整列
した状態で二辺をバイメタル6で構成し、本体5な他の
一辺と下る平行四辺形の残りの一辺上に固定されている
FIG. 3 shows an embodiment of the demultiplexer according to the present invention. The input fiber l is optically aligned in advance with the optical system consisting of the lens 3 and the diffraction grating 4 in the main sample 5. The output fiber 2 is aligned with the optical system and has two sides made of bimetal 6, and is fixed on the remaining side of the parallelogram that goes down from the other side of the main body 5. There is.

”ここで温度変化が生じるとバイメタル6で構成が変化
量る。この変化量が、光源の波長変化量と対応する様に
バイメタルの材質或いはバイメタルで構成した二辺の長
さぎ適宜選択することによ、す、光源の温度による波長
変化を、本分波器により補償する事が可能(:なる。
``When a temperature change occurs here, the configuration changes in the bimetal 6. The material of the bimetal or the length of the two sides made of the bimetal should be appropriately selected so that this amount of change corresponds to the amount of wavelength change of the light source. Therefore, it is possible to compensate for wavelength changes due to the temperature of the light source using this demultiplexer.

第4図は、本発明による分波=の他の実施例を示T平面
図である。この場合、入力側7アイ6− パ1、出力側ファイバ2及びレンズ3は予じめ回折格子
4との間で光学的に菫列した状態で本体′5に固定され
ている。一方回折格子4は、レンズ3、入力側ファイバ
l及び出力側ファイバ2と光学的Cユ整列し九体態で入
射光の回折格子に対テる入射角が変化テる様に回転出来
る構造になっている。又この回折格子4は、一方が本体
5に固定され、温度変化により、回折格子4&二回転モ
ーメントを与えるゼンマイ7と連結されている。この為
、ゼンマイの材質及び長さを適宜選択テること(二より
、光源側の波長変化に対応した分波器の分光特性を回折
格子4の微妙な回転(二より実現することが出来る。
FIG. 4 is a T plan view showing another embodiment of the demultiplexer according to the present invention. In this case, the input-side seven eye 6-pair 1, the output-side fiber 2, and the lens 3 are fixed to the main body '5 in advance in a state in which they are optically aligned with the diffraction grating 4. On the other hand, the diffraction grating 4 is optically aligned with the lens 3, the input fiber 1, and the output fiber 2, and has a structure in which it can be rotated so that the angle of incidence of the incident light with respect to the diffraction grating changes. It has become. The diffraction grating 4 has one end fixed to the main body 5, and is connected to a mainspring 7 which provides two rotation moments to the diffraction grating 4 due to temperature changes. For this reason, by appropriately selecting the material and length of the mainspring (2), it is possible to realize the spectral characteristics of the demultiplexer corresponding to the wavelength change on the light source side by subtle rotation of the diffraction grating 4 (2).

以上述べた二つの実施例に於て、出力側ファイバの代り
に光検出器列を配置しても同様の効果が期待出来る。第
5図は、本発明による分波器の分光特性の温度特性を示
したもので温度変化により集線から破線へ分光特性が変
化する様子が示されている。
In the two embodiments described above, similar effects can be expected even if a photodetector array is placed in place of the output fiber. FIG. 5 shows the temperature characteristics of the spectral characteristics of the duplexer according to the present invention, and shows how the spectral characteristics change from condensed lines to broken lines due to temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による波長分割多重回路の斜視図、j
g2図はその平面図、第3図はバイメタルを利用して出
力側ファイバの位置を温度変化ζ二対応して変位させる
ようにした本発明の一実施例を示テ側面断面図、第4図
は温度の変化を回折格子の回転題:変換する1うにした
本発明の他の実施例による平面図、第5図は本発明によ
る分波器の分光特性を示した図である。 l・−入力端ファイバ、2・・・出力側ファイバ3・−
レンズ、4・−・回折格子、5・−・本体、6・・・バ
イメタル、7−・ゼンマイ。 代理人 弁理士  染 川 利 吉 第1図 第2図 第3図 へ
Figure 1 is a perspective view of a wavelength division multiplexing circuit according to the prior art.
Fig. g2 is a plan view thereof, Fig. 3 is a side sectional view showing an embodiment of the present invention in which the position of the output side fiber is displaced in response to temperature change ζ2 using a bimetal, and Fig. 4 is a side sectional view. 5 is a plan view of another embodiment of the present invention in which a change in temperature is converted into a rotation term of a diffraction grating, and FIG. 5 is a diagram showing the spectral characteristics of a duplexer according to the present invention. l・-input end fiber, 2...output side fiber 3・-
Lens, 4--diffraction grating, 5--main body, 6--bimetal, 7--mainspring. Agent Patent Attorney Toshiyoshi Somekawa Go to Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 系及び誌回折格子と光 学的に結合する光ファイバ若しくは光ファイバを含む光
検出器列並び6=該光ファイバ或いは光検出器備えたこ
とを4黴とする波長分割多重回路。 (2)回折格子と光i結合系及び籠回折格子と光学的に
結合する光ファイバ若しくは光ファイバを含む光検出器
列並びに該光ファイバ或いは光検出器列を保持する保持
器とからなり、温度変化に対し回折格子に回転を与える
ゼンマイ若しく紘片持梁を備えた事を特徴とT6波長分
割多菖回路。
[Claims] An array of optical fibers or optical detectors including optical fibers optically coupled to the system and the optical diffraction grating; 6 = a wavelength division multiplex circuit comprising the optical fibers or optical detectors; . (2) Consists of a diffraction grating, an optical i-coupling system, an optical fiber optically coupled to the cage diffraction grating, or a photodetector array including an optical fiber, and a holder for holding the optical fiber or photodetector array, and the temperature The T6 wavelength division polygon circuit is characterized by having a mainspring or cantilever beam that rotates the diffraction grating in response to changes.
JP10734081A 1981-07-09 1981-07-09 Wavelength split multiple circuit Pending JPS589119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10734081A JPS589119A (en) 1981-07-09 1981-07-09 Wavelength split multiple circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10734081A JPS589119A (en) 1981-07-09 1981-07-09 Wavelength split multiple circuit

Publications (1)

Publication Number Publication Date
JPS589119A true JPS589119A (en) 1983-01-19

Family

ID=14456564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10734081A Pending JPS589119A (en) 1981-07-09 1981-07-09 Wavelength split multiple circuit

Country Status (1)

Country Link
JP (1) JPS589119A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073615A (en) * 1983-09-30 1985-04-25 Kureha Chem Ind Co Ltd Optical path opening and closing device
JPS62115403A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Optical tuner
US6384978B1 (en) * 1999-03-19 2002-05-07 Qtera Corporation Temperature-compensated optical filter assemblies and related methods
WO2001094996A3 (en) * 2000-06-02 2003-02-20 Lightchip Inc Athermalization and pressure desensitization of diffraction grating based wdm devices
WO2001095537A3 (en) * 2000-06-02 2003-03-13 Lightchip Inc Athermalization and pressure desensitization of diffraction grating based wdm devices
US6556297B1 (en) 2000-06-02 2003-04-29 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6570652B1 (en) 2000-06-02 2003-05-27 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
WO2003027721A3 (en) * 2001-09-19 2003-10-02 Cube Optics Ag Temperature compensation method of an optical wdm component and temperature-compensated optical wdm component
US6741408B2 (en) 2000-06-15 2004-05-25 Confluent Photonics Corporation Thermally stable mounting for a diffraction grating device
US6842286B2 (en) * 2002-09-03 2005-01-11 Agilent Technologies, Inc. Optical system and methods that compensate for changes in atmospheric conditions
EP1561140A1 (en) * 2002-11-11 2005-08-10 Cube Optics AG Support element for mounting optical elements and method for production of such a support element
JP2009083012A (en) * 2007-09-28 2009-04-23 Nec Corp Holding device and equipment having the same
KR101214388B1 (en) 2011-05-12 2012-12-21 한국과학기술원 A fiber optic sensor using transmissive grating panel and mirror

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145845A (en) * 1974-08-09 1976-04-19 Ichikoh Industries Ltd Jushibodeishono batsukumiraa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145845A (en) * 1974-08-09 1976-04-19 Ichikoh Industries Ltd Jushibodeishono batsukumiraa

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073615A (en) * 1983-09-30 1985-04-25 Kureha Chem Ind Co Ltd Optical path opening and closing device
JPS62115403A (en) * 1985-11-15 1987-05-27 Matsushita Electric Ind Co Ltd Optical tuner
US6384978B1 (en) * 1999-03-19 2002-05-07 Qtera Corporation Temperature-compensated optical filter assemblies and related methods
WO2001094996A3 (en) * 2000-06-02 2003-02-20 Lightchip Inc Athermalization and pressure desensitization of diffraction grating based wdm devices
WO2001095537A3 (en) * 2000-06-02 2003-03-13 Lightchip Inc Athermalization and pressure desensitization of diffraction grating based wdm devices
US6556297B1 (en) 2000-06-02 2003-04-29 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6570652B1 (en) 2000-06-02 2003-05-27 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6621958B1 (en) 2000-06-02 2003-09-16 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6731838B1 (en) 2000-06-02 2004-05-04 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6741408B2 (en) 2000-06-15 2004-05-25 Confluent Photonics Corporation Thermally stable mounting for a diffraction grating device
WO2003027721A3 (en) * 2001-09-19 2003-10-02 Cube Optics Ag Temperature compensation method of an optical wdm component and temperature-compensated optical wdm component
US6842286B2 (en) * 2002-09-03 2005-01-11 Agilent Technologies, Inc. Optical system and methods that compensate for changes in atmospheric conditions
EP1561140A1 (en) * 2002-11-11 2005-08-10 Cube Optics AG Support element for mounting optical elements and method for production of such a support element
JP2009083012A (en) * 2007-09-28 2009-04-23 Nec Corp Holding device and equipment having the same
JP4697209B2 (en) * 2007-09-28 2011-06-08 日本電気株式会社 Clamping device and equipment having the clamping device
KR101214388B1 (en) 2011-05-12 2012-12-21 한국과학기술원 A fiber optic sensor using transmissive grating panel and mirror

Similar Documents

Publication Publication Date Title
US6169604B1 (en) Nonlinear interferometer for fiber optic dense wavelength division multiplexer utilizing a phase bias element to separate wavelengths in an optical signal
US7184621B1 (en) Multi-wavelength transmitter optical sub assembly with integrated multiplexer
JPS589119A (en) Wavelength split multiple circuit
WO1999046628A1 (en) Optical demultiplexer and method of assembling the same
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
JP4711474B2 (en) Multiplexer
JP2004355024A (en) Apparatus including virtually imaged phase array (vipa) in combination with wavelength splitter to demultiplex wavelength division multiplexed (wdm) light
JPH0685374A (en) Wavelength multiplexing transmitter/receiver for optical communication
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
GB2105489A (en) Device for separating radiation beam components which issue from an optical fibre
JPS5814112A (en) Optical demultiplexer
JP2002169054A (en) Device for multiplexing and branching wavelengths
JP6822319B2 (en) Wavelength Division Optical Transmission Module
JPS6218888B2 (en)
JP2000075165A (en) Virtually imaged phased array having lens disposed in order to obtain broad beam width
JPS61174504A (en) Optical module for two-way transmission
JPS61232405A (en) Optical demultiplexer and multiplexer
JPS6088907A (en) Optical multiplexer and demultiplexer
JPS61145510A (en) Optical demultiplexer
JPS61255308A (en) Optical multiplexer and demultiplexer
JPH0432808A (en) Demultiplexer and multiplexer
JPS6010209A (en) Optical multiplexer and demultiplexer
JPS5958412A (en) Photocoupler device
JPS60200211A (en) Multiplexer and demultiplexer
JPS59185309A (en) Optical multiplexer/demultiplexer