JPS60214316A - Optical module for two-way transmission - Google Patents

Optical module for two-way transmission

Info

Publication number
JPS60214316A
JPS60214316A JP59070857A JP7085784A JPS60214316A JP S60214316 A JPS60214316 A JP S60214316A JP 59070857 A JP59070857 A JP 59070857A JP 7085784 A JP7085784 A JP 7085784A JP S60214316 A JPS60214316 A JP S60214316A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
polished
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59070857A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59070857A priority Critical patent/JPS60214316A/en
Publication of JPS60214316A publication Critical patent/JPS60214316A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To shorten assembly and optical adjustment time, to facilitate mass- production, to attain large cost reduction and to obtain high performance by forming an integrated structure by using a convergent flat plate lens instead of a rod lens. CONSTITUTION:An optical module for three-wave two-way transmission of two sent waves (wavelengths lambda1 and lambda3) and one received wave (wavelength lambda2) includes the convergent flat plate lens 15, which has a refractive index distribution which decreases at right angles to the center surface in proportion to the square of the distance from the center surface. A surface 16 of the convergent flat plate lens 15 is polished slantingly at an angle theta1 and interference film filters 5A and 5C are formed on the polished surface; and the surface opposite the surface 16 is also polished slantingly at an angle theta3 and an AR coating film 14A for reflection prevention is formed on the polished surface. In this case, theta1 and theta2 are selected between 0 and tens of degrees. Further, a reflector or interference filter 18 which functions to transmit only light of wavelength lambda1 and reflect light of wavelength lambda3 and light (wavelength lambda2) propagating in an optical fiber 7 as shown by an arrow B is provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は1本の光フアイバ伝送路を用い、その伝送路の
上りと下りで別々の波長の光信号を伝送させ、かつ受信
できる構成の双方向伝送用光モジュールに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses a single optical fiber transmission line to transmit and receive optical signals of different wavelengths on the upstream and downstream sides of the transmission line. The present invention relates to an optical module for optical transmission.

〔発明の背景〕[Background of the invention]

光フアイバ通信システムは研究開発が進展するにつれて
より高性能化と共に、より簡易化、経済化がクローズア
ップされるようになってきた。双方向伝送方式として、
たとえば電子通信学会技術研究会資料C377−19(
1977)の光波長分割多重伝送および光双方向伝送の
検討(三木。
As research and development of optical fiber communication systems progresses, attention has been paid to improvements in performance, simplicity, and economy. As a bidirectional transmission method,
For example, IEICE technical study group material C377-19 (
1977) Study of Optical Wavelength Division Multiplexing Transmission and Optical Bidirectional Transmission (Miki).

石尾)の文献があるが、装置構成は個別部品の組合せで
あり、本発明の目的としている複合一体化機能をもたせ
た双方向伝送用光モジュールについては論じられていな
い。
Ishio), but the device configuration is a combination of individual parts, and there is no discussion of an optical module for bidirectional transmission having a complex integrated function, which is the object of the present invention.

本発明者は簡易化、経済化を”目的として、先に第1図
に示す双方向伝送方式を提案した(特願昭58−236
159)。これは半導体発光素子3A (3B)の出射
光を伝送用光フアイバ7内へ結合するための屈折率分布
型ロッドレンズ6A(6B)の入射端側に所望の光学特
性を有する干渉膜フィルタ5A(5B)を設けたもので
ある。そして上記ロッドレンズの出射端側に上記伝送用
光ファイバ7、分波光伝送用光ファイバ9A(9B)を
設けたものである。すなわち、光結合機能と光分波機能
を合せもたせて双方向伝送を行なわせるようにしている
ので、部品点数の少ない極めて簡易な構成となり、光伝
送損失が少なく低コストで実現できるという特徴を有し
ている。まず第1図の動作について説明する。干渉膜フ
ィルタ5Aは波長λ、の光を透過させ、波長λ2の光を
反射させる特性をもたせた誘電体多層膜である。逆に干
渉膜フィルタ5Bは波長λ、の光を反射させ、波長λ2
の光を透過させる誘電体多層膜である。情報入力端子L
A(IB)から入力した信号は駆動回路2A(2B)に
入る。この回路2A (2B)の出力信号で半導体発光
素子3A (3B)を駆動する。半導体発光素子3A(
3B)からの波長λ、(波長λ2)の出射光は球レンズ
4A (4B) 、干渉膜フィルタ5A (5B)、屈
折率分布型ロッドレンズ6A (6B)を通して光フア
イバ7内へ入り、矢印8A (8B)のごとく進む。そ
して反対側にある屈折率分布型ロッドレンズ6B(6A
)内に入り、干渉膜フィルタ5B(5A)で反射され、
光ファイバ9A(9B)内を矢印10A(IOB)のご
とく進む。そして受光器11A (11B)、増幅器1
2A (12B)を経て復調器13A(13B)で情報
信号が復調される。この構成は矢印8A方向(上り回線
)1波、矢印8B方向(下り回線)1波の双方向伝送で
あるが、第2図のような構成にすると、上り回線2波、
下り回線1波の3波長双方向伝送を実現することができ
る。
The present inventor previously proposed the bidirectional transmission system shown in Figure 1 for the purpose of simplification and economy (Japanese Patent Application No. 58-236).
159). This is an interference film filter 5A (with desired optical characteristics) on the incident end side of a gradient index rod lens 6A (6B) for coupling the emitted light of the semiconductor light emitting device 3A (3B) into the transmission optical fiber 7. 5B). The transmission optical fiber 7 and the demultiplexed light transmission optical fiber 9A (9B) are provided on the output end side of the rod lens. In other words, since it combines an optical coupling function and an optical demultiplexing function to perform bidirectional transmission, it has an extremely simple configuration with a small number of parts, and is characterized by low optical transmission loss and can be realized at low cost. are doing. First, the operation shown in FIG. 1 will be explained. The interference film filter 5A is a dielectric multilayer film having a characteristic of transmitting light with a wavelength λ and reflecting light with a wavelength λ2. Conversely, the interference film filter 5B reflects the light of wavelength λ, and reflects the light of wavelength λ2.
It is a dielectric multilayer film that allows light to pass through. Information input terminal L
The signal input from A (IB) enters the drive circuit 2A (2B). The output signal of this circuit 2A (2B) drives the semiconductor light emitting device 3A (3B). Semiconductor light emitting device 3A (
The emitted light with wavelength λ, (wavelength λ2) from 3B) enters the optical fiber 7 through the ball lens 4A (4B), the interference film filter 5A (5B), and the gradient index rod lens 6A (6B), and enters the optical fiber 7 as indicated by the arrow 8A. Proceed as shown in (8B). And the gradient index rod lens 6B (6A) on the opposite side
) and is reflected by the interference film filter 5B (5A),
It moves along the inside of the optical fiber 9A (9B) as shown by the arrow 10A (IOB). And photoreceiver 11A (11B), amplifier 1
The information signal is demodulated by the demodulator 13A (13B) via the demodulator 13A (13B). This configuration is bidirectional transmission with one wave in the direction of arrow 8A (uplink) and one wave in the direction of arrow 8B (downlink), but if the configuration is as shown in Fig. 2, two waves in the uplink,
It is possible to realize three-wavelength bidirectional transmission of one downlink wave.

さらに4波長以上も容易に可能となる。ところが、3波
長以上を実現させようとすると、部品数が多くなり、そ
の分だけ組立て、光軸調整時間も増えるためにコストが
高くなるという問題点があった。
Furthermore, four or more wavelengths are easily possible. However, when attempting to realize three or more wavelengths, the number of parts increases, and the time required for assembly and optical axis adjustment increases accordingly, resulting in an increase in cost.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記問題点を解決することにある。す
なわち、一体化構成とすることにより組立、光軸調整時
間の短縮をはかると共に、量産化を容易にし、大幅な低
コスト化、さらには高性能化をはかれる双方向伝送用光
モジュールを提供することにある。
An object of the present invention is to solve the above problems. In other words, it is an object to provide an optical module for bi-directional transmission that has an integrated configuration that reduces assembly and optical axis adjustment time, facilitates mass production, significantly lowers costs, and further improves performance. It is in.

〔発明の概要〕[Summary of the invention]

本発明は、ロッドレンズの代わりに集束性平板レンズを
用いることにより上記効果を得るようにしたものである
。すなわち、中心面に垂直な方向にその中心面からの距
離の2乗にほぼ比例して減少する屈折率分布をもち、前
記垂直な方向に第1および第2の端面を有する集束性平
板レンズの第1の端面に所望角度で少なくとも1個以上
の干渉膜フィルタを設け、上記干渉膜フィルタを通して
半導体発光素子の出射光を前記集光性平板レンズ内に入
射させるようにし、反対面の第2の端面側には上記光を
集光させて伝搬させる光ファイバ、上記光を反射させる
反射体、上記光フアイバ内を逆方向から伝搬してきた光
を受光する受光器を設けた構成である。
The present invention achieves the above effects by using a converging flat lens instead of a rod lens. That is, a converging flat lens has a refractive index distribution that decreases in a direction perpendicular to the central plane in approximately proportion to the square of the distance from the central plane, and has first and second end faces in the perpendicular direction. At least one interference film filter is provided on the first end face at a desired angle, so that the light emitted from the semiconductor light emitting element is made to enter the light condensing flat lens through the interference film filter, and the second end face on the opposite face is provided with at least one interference film filter at a desired angle. The end face side is provided with an optical fiber for condensing and propagating the light, a reflector for reflecting the light, and a light receiver for receiving the light propagating from the opposite direction within the optical fiber.

本発明の構成によれば、一つの集束性平板レンズ、干渉
膜フィルタ、反射体により、波長がそれぞれ異なる2つ
以上の半導体発光素子の出射光を一本の光フアイバ内へ
合波させることができる。
According to the configuration of the present invention, it is possible to combine the emitted light of two or more semiconductor light emitting elements with different wavelengths into a single optical fiber using a single focusing flat lens, an interference film filter, and a reflector. can.

また上記光フアイバ内を逆方向から伝搬してきた波長の
異なるそれぞれの光を上記構成にそれぞれの波長を受光
する受光器を付加することにより、それぞれの波長の光
を分波して受光器で受信させることができる。
In addition, by adding a receiver for receiving each wavelength to the above configuration, the light of each wavelength is split and received by the receiver. can be done.

本発明は、第2図のように、複数個のロッドレンズ、ロ
ッドレンズ間を接続する光ファイバが不要となる。部品
数が減少し、かつ組立、光軸調整時間も短縮される。ま
たほぼ一体化構成ができるので、量産に適している。
The present invention eliminates the need for a plurality of rod lenses and optical fibers connecting the rod lenses, as shown in FIG. The number of parts is reduced, and the assembly and optical axis adjustment time are also shortened. Furthermore, it is suitable for mass production because it has an almost integrated configuration.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の双方向伝送用光モジュールの実施例を
示す。これは送り2波(波長λ3.λ3)、受け1波(
波長λ、)の3、波層方向伝送用光モジュールの実施例
である。同図において、15は集束性平板レンズであり
、第4図(、)にその構造、(b)にその屈折率分布を
示す。中心面に垂直な方向にその中心面からの距離の2
乗にほぼ比例して減少する屈折率分布をもっている。そ
して第3図ではこの集束性平板レンズの16の面を角度
θ、で斜め研磨し、その研磨面に干渉膜フィルタ5Aと
5Cを形成させ、16と反対の面を角度θ3で斜め研磨
し、その研磨面に反射防止用のARコーティング膜14
Aを形成しである。θ、。
FIG. 3 shows an embodiment of the optical module for bidirectional transmission of the present invention. This consists of two sending waves (wavelength λ3.λ3) and one receiving wave (wavelength λ3.λ3).
This is an example of an optical module for transmission in the wave layer direction. In the figure, numeral 15 is a converging flat lens, and FIG. 4(,) shows its structure, and FIG. 4(b) shows its refractive index distribution. 2 of the distance from the central plane in the direction perpendicular to the central plane
It has a refractive index distribution that decreases approximately in proportion to the power of the refractive index. In FIG. 3, the surface 16 of this converging flat lens is obliquely polished at an angle θ, interference film filters 5A and 5C are formed on the polished surface, and the surface opposite to 16 is obliquely polished at an angle θ3. AR coating film 14 for anti-reflection on the polished surface
A is formed. θ,.

θ2はO数度から10数度の範囲から選ぶ。18は反射
体あるいは波長λ、の光のみを透過させ、波長λ3およ
び矢印8B方向から光フアイバ7内を伝搬してくる光(
波長λ、)を反射させる機能を有する干渉膜フィルタで
ある。次にこの光モジュールの動作について説明する。
θ2 is selected from the range of several O degrees to several ten degrees. 18 is a reflector or transmits only the light of wavelength λ, and the light (
This is an interference film filter that has the function of reflecting wavelengths λ,). Next, the operation of this optical module will be explained.

半導体発光素子3Aの出射光(波長λ、)はレンズ4A
を通してほぼ平行ビームになり干渉膜フィルタ5Aに入
射する。干渉膜フィルタ5Aは波長λ、の光のみを通す
から、上記光は干渉膜フィルタ5Aを透過して集束性平
板レンズ15内に入り、矢印19のごとく伝搬して光フ
アイバ7内に集光され、矢印8A方向へ伝搬される。半
導体発光素子3cの出射光(波長λ、)もレンズ4cで
ほぼ平行光に近づき、干渉膜フィルタ5Cに入射する。
The light emitted from the semiconductor light emitting device 3A (wavelength λ) is transmitted through the lens 4A.
It becomes a substantially parallel beam through the beam and enters the interference film filter 5A. Since the interference film filter 5A passes only the light having the wavelength λ, the light passes through the interference film filter 5A, enters the focusing flat plate lens 15, propagates as shown by the arrow 19, and is focused into the optical fiber 7. , is propagated in the direction of arrow 8A. The light emitted from the semiconductor light emitting element 3c (wavelength λ) also becomes approximately parallel light through the lens 4c, and enters the interference film filter 5C.

干渉膜フィルタ5Cは波長λ3の光のみを透過させる特
性をもたせであるので、上記光は集束性平板レンズ内に
入射する。そして矢印20方向に伝搬し、反射体18で
反射され、矢印21方向へ進む。上記光は干渉膜フィル
タ5Aで反射され、矢印19方向に伝搬し、光フアイバ
7内に集光され、矢印8A方向へ伝搬される。すなわち
、半導体発光素子3Aと30の出射光が合波されて光フ
アイバ7内を矢印8A方向へ伝搬される1次に光フアイ
バ7内を矢印8B方向へ伝搬してきた光(波長λ2)は
集束性平板レンズ15内に入射し、矢印24方向へ伝搬
される。そして干渉膜フィルタ5Aで反射され、矢印2
2方向に進み、ふたたび反射体18で反射され、さらに
干渉膜フィルタ5Cで反射されて矢印23方向へ進み、
受光器11Bへ入射する。
Since the interference film filter 5C has a characteristic of transmitting only the light having the wavelength λ3, the light enters the converging flat lens. The light then propagates in the direction of arrow 20, is reflected by reflector 18, and proceeds in the direction of arrow 21. The above light is reflected by the interference film filter 5A, propagates in the direction of arrow 19, is condensed into optical fiber 7, and propagates in the direction of arrow 8A. That is, the light emitted from the semiconductor light emitting devices 3A and 30 is combined and propagated within the optical fiber 7 in the direction of the arrow 8A.The light (wavelength λ2) that has propagated within the optical fiber 7 in the direction of the arrow 8B is focused. The light enters the flat lens 15 and is propagated in the direction of the arrow 24. Then, it is reflected by the interference film filter 5A, and the arrow 2
It travels in two directions, is reflected again by the reflector 18, is further reflected by the interference film filter 5C, and travels in the direction of arrow 23,
The light enters the light receiver 11B.

以上のように、波長λ、とλ3の光信号を合波し、波長
λ2の光信号を分波する3波用双方向伝送用光モジユー
ルを構成している。ここで集束性平板レンズ15の長さ
は0.20ピツチから0.30ピツチから選ぶが、約1
/4ピツチが好ましい。半導体発光素子3A、3Gの光
軸方向、干渉膜フィルタ5A、5Cの形成角度θ1、反
射体18の配置および上記デバイスとの相対角度は光フ
ァイバ7へ上記光源の出射光が集光されるように設定さ
れる。
As described above, a three-wave bidirectional transmission optical module is constructed which multiplexes optical signals of wavelengths λ and λ3 and demultiplexes an optical signal of wavelength λ2. Here, the length of the converging flat lens 15 is selected from 0.20 to 0.30 pitch, but approximately 1
/4 pitch is preferred. The optical axis direction of the semiconductor light emitting elements 3A, 3G, the formation angle θ1 of the interference film filters 5A, 5C, the arrangement of the reflector 18, and the relative angle with the above device are set so that the emitted light from the light source is focused onto the optical fiber 7. is set to

また父光器11Bの配置位置も矢印8B方向から光フア
イバ7内を伝搬してきた光が集光されるように選ばれる
。角度θ3は半導体発光素子3Aの出射光が受光素子1
1Bへ漏洩するのを抑制するために、数度(2〜9°)
が好ましい。受光器11Bの前面に近端漏話抑制用の干
渉膜フィルタを設けてもよい。
The position of the father light device 11B is also selected so that the light propagating through the optical fiber 7 from the direction of the arrow 8B is focused. The angle θ3 is such that the light emitted from the semiconductor light emitting element 3A is directed to the light receiving element 1.
Several degrees (2 to 9 degrees) to prevent leakage to 1B.
is preferred. An interference film filter for suppressing near-end crosstalk may be provided on the front surface of the light receiver 11B.

第5図は本発明の双方向伝送用光モジュールの別の実施
例である。これは送り2波(波長λ、。
FIG. 5 shows another embodiment of the bidirectional transmission optical module of the present invention. This is a two-wave sending wave (wavelength λ,

λ3)、受け2波(波長λ3.λ4)の4波双方向伝送
用光モジユールの実施例である。スペーサガラス25を
設け、その端面に干渉膜フィルタ5Gを形成させである
。すなわち、光フアイバ7内を矢印8B方向からきた波
長λ2、およびλ4の光信号のうち、λ2の光信号は第
3図の場合と同様に受光器11Bに集光される。波長λ
4の光信号は干渉膜フィルタ5Aを透過し、干渉膜フィ
ルタ5Gで反射され、ふたたび干渉膜フィルタ5Aを透
過し、矢印26のごとく集束性平板レンズ15内を伝搬
し、干渉膜フィルタ5Eを透過して受光器で受光される
。そして増幅器12Dを通して復調器13Dで情報信号
が復調される。ここで干渉膜フィルタ5Eは波長λ4の
光信号のみを透過させ、それ以外の波長の光信号を反射
さぜる近端漏話抑制用のフィルタである。また5Fも波
長λ2の光信号のみを透過させる近端漏話抑制用のフィ
ルタである。
This is an embodiment of an optical module for two-way transmission of four waves (wavelengths λ3 and λ4). A spacer glass 25 is provided, and an interference film filter 5G is formed on the end face thereof. That is, among the optical signals of wavelengths λ2 and λ4 coming from the direction of arrow 8B in the optical fiber 7, the optical signal of λ2 is focused on the light receiver 11B as in the case of FIG. 3. wavelength λ
The optical signal No. 4 passes through the interference film filter 5A, is reflected by the interference film filter 5G, passes through the interference film filter 5A again, propagates through the convergent flat lens 15 as shown by arrow 26, and passes through the interference film filter 5E. The light is then received by the photoreceiver. The information signal is then demodulated by a demodulator 13D via an amplifier 12D. Here, the interference film filter 5E is a near-end crosstalk suppressing filter that transmits only the optical signal of wavelength λ4 and reflects optical signals of other wavelengths. Further, 5F is also a near-end crosstalk suppression filter that transmits only the optical signal of wavelength λ2.

以上のように、本発明は2波以上の双方向伝送用光モジ
ュールを簡易な構成で容易に実現することができる。
As described above, the present invention can easily realize an optical module for bidirectional transmission of two or more waves with a simple configuration.

半導体発光素子は半導体レーザ、発光ダイオードを用い
ることができる。
A semiconductor laser or a light emitting diode can be used as the semiconductor light emitting element.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、集束性平板レンズを用いることにより
、部品数が減少し、組立、光軸調整時間が大幅に短縮さ
れ、低コストで製作できる。またほぼ一体化構成ができ
、しかも平面化配置構成を実現できるので集積化、量産
化に適している。
According to the present invention, by using a converging flat lens, the number of parts is reduced, assembly and optical axis adjustment times are significantly shortened, and manufacturing can be performed at low cost. In addition, it is suitable for integration and mass production because it can have an almost integrated configuration and can also be arranged in a flat configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明者が先に提案した双方向伝
送方式、第3図および第5図は本発明の双方向伝送用光
モジュールの実施例、第4図は本発明に用いる集束性平
板レンズの構造とその屈折率分布特性である。 IA〜IC・・・情報入力端子、2A〜2C・・・駆動
回路、3A〜3C・・・半導体発光素子、4A〜4D・
・・レンズ、5A〜5G・・・干渉膜フィルタ、6A〜
6D・・・ロッドレンズ、7,9A〜9D・・・光ファ
イバ、8A〜8C,IOA〜IOD、19〜24゜26
・・・光の伝搬方向を示す矢印、IIA〜11D・・・
受光器、12A〜12D・・・増幅器、13A〜13D
・・・復調器、14A・・・反射防止用ARコーティン
グ膜、15・・・集束性平板レンズ、16.17・・・
集束性平板レンズの端面、18・・・反射体あるい第 
3 図 σ 4べ。 舅5 図 ぷ
1 and 2 are bidirectional transmission systems previously proposed by the inventor, FIGS. 3 and 5 are embodiments of the optical module for bidirectional transmission of the present invention, and FIG. 4 is used in the present invention. This is the structure of a converging flat lens and its refractive index distribution characteristics. IA to IC...information input terminal, 2A to 2C...drive circuit, 3A to 3C...semiconductor light emitting device, 4A to 4D.
...Lens, 5A~5G...Interference film filter, 6A~
6D...Rod lens, 7,9A-9D...Optical fiber, 8A-8C, IOA-IOD, 19-24°26
...Arrows indicating the propagation direction of light, IIA to 11D...
Photoreceiver, 12A to 12D...Amplifier, 13A to 13D
...Demodulator, 14A...AR coating film for antireflection, 15...Focusing flat lens, 16.17...
End face of converging flat lens, 18...reflector or
3 Figure σ 4be. Father-in-law 5 drawing

Claims (1)

【特許請求の範囲】 1、中心面に垂直な方向にその中心面からの距離の2乗
にほぼ比例して減少する屈折率分布をもち、該垂直は方
向に第1および第2の端面を有する集束性平板レンズの
第1の端面に所望角度で少なくとも1個の干渉膜フィル
タを設け、該干渉膜フィルタを通して少なくとも1個の
半導体発光素子の出射光を該集束性平板レンズ内に入射
させるようにし、反対面の該第2の端面側には眩光を集
光させて伝搬させる光ファイバを設けるとともに、該光
フアイバ内を逆方向から伝搬してきた光を受光する受光
器を少なくとも1個設けてなることを特徴とする双方向
伝送用光モジュール。 2、特許請求の範囲第1項記載の双方向伝送用光モジュ
ールにおいて、受光器の前面に所望波長の光のみを透過
させる干渉膜フィルタを設けたことを特徴とする双方向
伝送用光モジュール。 3、特許請求の範囲第1項記載の双方向伝送用光モジュ
ールにおいて、第2の端面側を光軸に対して斜めの角度
に研磨し、あるいはその研磨面に反射防止用のコーテイ
ング膜を形成したことを特徴とする双方向伝送用光モジ
ュール。
[Claims] 1. Having a refractive index distribution that decreases in a direction perpendicular to the central plane in approximately proportion to the square of the distance from the central plane, and the perpendicular direction extends along the first and second end surfaces. At least one interference film filter is provided at a desired angle on the first end face of the converging flat lens, and the output light of the at least one semiconductor light emitting element is made to enter the converging flat lens through the interference film filter. and an optical fiber for condensing and propagating dazzling light is provided on the second end surface side of the opposite surface, and at least one light receiver is provided for receiving light propagating from the opposite direction within the optical fiber. An optical module for bidirectional transmission characterized by: 2. The optical module for bidirectional transmission according to claim 1, characterized in that an interference film filter is provided in front of the light receiver to transmit only light of a desired wavelength. 3. In the optical module for bidirectional transmission according to claim 1, the second end surface side is polished at an angle oblique to the optical axis, or an antireflection coating film is formed on the polished surface. An optical module for bidirectional transmission characterized by:
JP59070857A 1984-04-11 1984-04-11 Optical module for two-way transmission Pending JPS60214316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070857A JPS60214316A (en) 1984-04-11 1984-04-11 Optical module for two-way transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070857A JPS60214316A (en) 1984-04-11 1984-04-11 Optical module for two-way transmission

Publications (1)

Publication Number Publication Date
JPS60214316A true JPS60214316A (en) 1985-10-26

Family

ID=13443650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070857A Pending JPS60214316A (en) 1984-04-11 1984-04-11 Optical module for two-way transmission

Country Status (1)

Country Link
JP (1) JPS60214316A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373207A (en) * 1986-09-17 1988-04-02 Mitsubishi Electric Corp Optical multiplexing/demultiplexing module
EP0452938A2 (en) * 1990-04-20 1991-10-23 Japan Aviation Electronics Industry, Limited Optical integrated circuit
FR2669482A1 (en) * 1990-11-19 1992-05-22 Peugeot MULTI-CHANNEL BI-DIRECTIONAL OPTICAL TRANSMITTER-RECEIVER MODULE AND OPTICAL REPEATER USING THE SAME
EP0492850A2 (en) * 1990-12-20 1992-07-01 AT&T Corp. Isolated optical coupler
CN107367795A (en) * 2017-07-27 2017-11-21 中国科学院上海光学精密机械研究所 The fiber coupling device of perfect optical eddy orbital angular momentum multiplex/demultiplex

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373207A (en) * 1986-09-17 1988-04-02 Mitsubishi Electric Corp Optical multiplexing/demultiplexing module
EP0452938A2 (en) * 1990-04-20 1991-10-23 Japan Aviation Electronics Industry, Limited Optical integrated circuit
FR2669482A1 (en) * 1990-11-19 1992-05-22 Peugeot MULTI-CHANNEL BI-DIRECTIONAL OPTICAL TRANSMITTER-RECEIVER MODULE AND OPTICAL REPEATER USING THE SAME
EP0492850A2 (en) * 1990-12-20 1992-07-01 AT&T Corp. Isolated optical coupler
CN107367795A (en) * 2017-07-27 2017-11-21 中国科学院上海光学精密机械研究所 The fiber coupling device of perfect optical eddy orbital angular momentum multiplex/demultiplex
CN107367795B (en) * 2017-07-27 2019-10-18 中国科学院上海光学精密机械研究所 The fiber coupling device of perfect optical eddy orbital angular momentum multiplex/demultiplex

Similar Documents

Publication Publication Date Title
CA2225135A1 (en) Optoelectronic circuit
CN105717589A (en) Single-light-port multi-path parallel light emission assembly
CN104656286A (en) Miniature identical-wavelength single-core two-way optical transceiver module
US6122420A (en) Optical loopback apparatus
JP2001223642A (en) Optical communication unit
JPH06331837A (en) Optical device
CN204331200U (en) Miniature co-wavelength uni-core bidirectional optical transceiver module
JPS60214316A (en) Optical module for two-way transmission
TWI238269B (en) Fabry-Perot optical filter device
JPH05203830A (en) Optical multiplexer demultiplexer
JPS61226713A (en) Optical module for optical wavelength multiplex transmission
CN210605101U (en) Multipath wavelength demultiplexing light receiving component based on optical waveguide
CN112578503B (en) System for multi-wavelength signal common-fiber simultaneous transmission
JPH0926525A (en) Optical module
CN214097867U (en) Device for multi-wavelength signal common-fiber simultaneous transmission
KR100557407B1 (en) Bi-directional optical transceiver module
JP3219781B2 (en) Optical circuit
JP2004085915A (en) Wavelength dispersion generator, and polygon mirror used in the wavelength dispersion generator and its manufacturing method
JPS61103110A (en) Optical multiplexer and demultiplexer
US20020051603A1 (en) Free-space and integrated add-drop optical modules for optical wavelength-division multiplexed systems
CN218585041U (en) Miniature wavelength division multiplexer with LC socket
JP3120777B2 (en) Optical waveguide type signal light monitor device
US6952506B2 (en) Device for adding and dropping optical signals
US20230069724A1 (en) Receiver optical sub-assembly, multi-channel receiver optical sub-assembly, and operating method thereof
JP2576408B2 (en) Optical splitter