JP3219781B2 - Optical circuit - Google Patents

Optical circuit

Info

Publication number
JP3219781B2
JP3219781B2 JP2424191A JP2424191A JP3219781B2 JP 3219781 B2 JP3219781 B2 JP 3219781B2 JP 2424191 A JP2424191 A JP 2424191A JP 2424191 A JP2424191 A JP 2424191A JP 3219781 B2 JP3219781 B2 JP 3219781B2
Authority
JP
Japan
Prior art keywords
optical
light
optical waveguide
semiconductor
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2424191A
Other languages
Japanese (ja)
Other versions
JPH04263206A (en
Inventor
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2424191A priority Critical patent/JP3219781B2/en
Publication of JPH04263206A publication Critical patent/JPH04263206A/en
Application granted granted Critical
Publication of JP3219781B2 publication Critical patent/JP3219781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光通信ネットワークにお
ける光送受信器、特に光導波路を用いた光送受信器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transceiver in an optical communication network, and more particularly to an optical transceiver using an optical waveguide.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むと同時
に、多機能の高度なシステムが求められている一方で、
光ファイバネットワークの低コスト化の要求が強い。そ
の中で光送信器、光受信器等の光デイバイスの小型化、
高集積化、低コスト化は必須である。現在実用に供され
ている光送信器及び光受信器は半導体光源または半導体
光検出器と光ファイバの間にレンズを設置し空間的に光
学接続する構造が用いられている。このレンズを用いて
空間的に光学接続する構造をマイクロオプティックスと
呼ばれている。マイクロオプティックス構造ではレンズ
の形状、半導体光源及び半導体光検出器のパッケージの
形状等に制限されて小型化することは困難である。ま
た、空間を伝搬する光を効率よく光ファイバや光検出器
に結合させるためには、精度の良い光軸調整が要求さ
れ、その作業に多大な工数が必要とされるためコストが
下がらないのが現状である。同一機能または異種機能の
高集積化には全く不適であるのは言うまでもない。最
近、双方向の通信システムの必要が高まり、また家庭に
までこのシステムを導入することが望まれている。この
とき双方向通信を可能にさせる光デバイスとして光の送
信器と受信器が必要となるが、これを個別に構成してい
たのでは光送受信装置が大型化し、システム普及の妨げ
になる。従って,2つの機能を一体化した光デバイス
(光送受信器)が望まれるがマイクロオプティックス構
造では前述した理由から困難である。この様な背景から
小型化,高集積化、低コスト化を目指す構造として光導
波路を用いたものがヘンリーらの文献等によれば検討さ
れている。図3に従来の構造の光回路の平面図を示す。
図3の光回路では基板1上に合分岐機能を含む光導波路
2が形成され、この光導波路2と光ファイバ3、半導体
光源4及び信号検出用の半導体光検出器5aがそれぞれ
同一の基板1上で直接光学結合されている。図3では半
導体光源4の光出力モニター用に半導体光検出器5bも
同一の基板1上に集積され、光導波路2と光学的に接続
されているが、この半導体光源4の光出力モニター用の
半導体光検出5bは無くても、双方向光通信送受信器の
機能としては何等問題無い。また、半導体光検出器5
a,5bの受信回路電子デバイス6が同一の基板1上に
集積されているが、この電子デバイスは同一の基板1上
に有ってもなくても双方向光通信用送受信器の機能とし
ては何等問題無い。図3に示した光導波路2を用いて光
送受信器を構成すれば、小型化はもちろんのこと、光軸
がリソグラヒィプロセスで決められ一定である光導波路
を伝搬する導波光との結合を行えば良いため光軸調整も
簡易化されるとともに、光導波路自体リソグラヒィプロ
セスを用いて一括に多量が生産されるために低コスト化
が可能となる。
2. Description of the Related Art At the same time as the capacity of optical communication systems has been increasing, multifunctional advanced systems have been demanded.
There is a strong demand for cost reduction of optical fiber networks. Among them, miniaturization of optical devices such as optical transmitters and optical receivers,
High integration and low cost are essential. Optical transmitters and optical receivers currently in practical use employ a structure in which a lens is installed between a semiconductor light source or semiconductor photodetector and an optical fiber and spatially optically connected. A structure for spatially optically connecting these lenses is called microoptics. With the micro-optics structure, it is difficult to reduce the size because it is limited by the shape of the lens, the shape of the package of the semiconductor light source and the semiconductor light detector, and the like. In addition, in order to efficiently couple light propagating in space to an optical fiber or a photodetector, precise optical axis adjustment is required, and a large number of man-hours are required for the work, so that cost is not reduced. Is the current situation. Needless to say, it is not suitable for high integration of the same function or different functions. Recently, the need for a two-way communication system has increased, and it has been desired to introduce this system to homes. At this time, an optical transmitter and a receiver are required as optical devices that enable two-way communication. However, if these optical devices are individually configured, the size of the optical transmission / reception device becomes large, which hinders the spread of the system. Therefore, an optical device (optical transmitter / receiver) integrating two functions is desired, but it is difficult with a micro-optics structure for the reasons described above. From such a background, a structure using an optical waveguide has been studied according to Henry et al. As a structure aiming at miniaturization, high integration and low cost. FIG. 3 is a plan view of an optical circuit having a conventional structure.
In the optical circuit shown in FIG. 3, an optical waveguide 2 having a multiplexing / branching function is formed on a substrate 1, and the optical waveguide 2, the optical fiber 3, the semiconductor light source 4, and the semiconductor photodetector 5a for signal detection are respectively provided on the same substrate 1. Optically coupled directly above. In FIG. 3, a semiconductor light detector 5b for monitoring the light output of the semiconductor light source 4 is also integrated on the same substrate 1 and optically connected to the optical waveguide 2. Even without the semiconductor light detector 5b, there is no problem as a function of the bidirectional optical communication transceiver. In addition, the semiconductor photodetector 5
Although the receiving circuit electronic devices 6a and 5b are integrated on the same substrate 1, this electronic device may or may not be on the same substrate 1 as a function of the transceiver for bidirectional optical communication. No problem. If an optical transceiver is constructed using the optical waveguide 2 shown in FIG. 3, it is possible not only to reduce the size but also to couple with the guided light propagating through the optical waveguide whose optical axis is determined by the lithographic process and is constant. Therefore, the adjustment of the optical axis can be simplified, and the optical waveguide itself can be mass-produced using a lithographic process, so that the cost can be reduced.

【0003】[0003]

【発明が解決しようとする課題】この双方向光通信用光
送受信器では前述したように半導体光源と半導体検出器
が同一基板上に形成されているため、半導体光源の光出
力から及び光導波路の導波光からの漏れ光が半導体光検
出器へ入射し、光検出器の出力のSN比が劣化する欠点
がある。
In this optical transceiver for bidirectional optical communication, the semiconductor light source and the semiconductor detector are formed on the same substrate as described above. There is a disadvantage that the leaked light from the guided light enters the semiconductor photodetector and the S / N ratio of the output of the photodetector deteriorates.

【0004】本発明の目的は、高いSN比を得る回路
を与えることにある。
An object of the present invention is to provide an optical circuit that can obtain a high SN ratio.

【課題を解決するための手段】本発明による光回路は、
基板上に、光の合分岐または合分波機能を有する光導波
路と、前記光導波路のうち2本の隣接した光導波路のそ
れぞれの端面が近接して配置され、前記端面の各々に光
学的に接続された発光素子及び受光素子とを有する光回
路において、前記2本の隣接した光導波路の間および前
記発光素子と前記受光素子との間に遮光板を有し、前記
遮光板は、前記受光素子の受光面から見て前記発光素子
の発光面および前記発光素子と光学的に接続される光導
波路が隠れるように配置されていることを特徴とする。
An optical circuit according to the present invention comprises:
Optical waveguide with a function of combining or branching light on a substrate
And two adjacent optical waveguides of the optical waveguide.
Each end face is arranged in close proximity, and light is applied to each of the end faces.
Optical circuit having a light-emitting element and a light-receiving element that are chemically connected
In the path, between and before said two adjacent optical waveguides
A light-shielding plate between the light-emitting element and the light-receiving element,
The light-shielding plate is a light-emitting element viewed from a light-receiving surface of the light-receiving element.
Light-emitting surface and a light guide optically connected to the light-emitting element
The wave path is arranged so as to be hidden .

【0005】本発明による光回路は、光の合分岐または
合分波機能を有する光導波路が基板上に形成され、ま
た、発光素子と受光素が前記光導波路のうち2本の近接
した光導波路のそれぞれの端面付近の前記基板上に設置
され,かつ、該光導波路と光学的に接続された光回路に
おいて、前記発光素子及び前記受光素子とがそれぞれに
光学的に接続された前記2本の接近した光導波路の端面
の光軸が互いに平行できないことを特徴とする。
In an optical circuit according to the present invention, an optical waveguide having a light branching or multiplexing / demultiplexing function is formed on a substrate, and a light emitting element and a light receiving element are provided in two adjacent optical waveguides among the optical waveguides. In the optical circuit installed on the substrate near each end face of the optical waveguide and optically connected to the optical waveguide, the two light-emitting elements and the light-receiving elements are optically connected to each other. The optical axes of the end faces of the optical waveguides that are close to each other cannot be parallel to each other.

【0006】本発明による光回路は、光の合分岐または
合分波機能を有する光導波路が基板上に形成され、発光
素子と受光素子が前記光導波路のうち2本の近接した光
導波路のそれぞれの端面付近の前記基板上に設置され,
かつ、該光導波路と光学的に接続された光回路におい
て、前記発光素子と前記受光素子と光学的に接続された
それぞれ2本の光導波路の表面に光の吸収機能を有する
膜が装荷されていることを特徴とする。
In an optical circuit according to the present invention, an optical waveguide having a light branching or multiplexing / demultiplexing function is formed on a substrate, and a light-emitting element and a light-receiving element are respectively provided in two adjacent optical waveguides of the optical waveguide. Placed on the substrate near the end face of
In the optical circuit optically connected to the optical waveguide, a film having a light absorbing function is loaded on the surface of each of the two optical waveguides optically connected to the light emitting element and the light receiving element. It is characterized by being.

【0007】[0007]

【作用】本発明による光導波路、光源、検出器を同一基
板上に集積した光回路を用いれば、高いSN比を光検出
器の出力として得られる。即ち、本発明では従来の構造
と異なり、発光素子と受光素子がそれぞれ光学的に接続
された光導波路の間に遮閉板が設置されている。したが
って、光源の光出力から及び光導波路の導波光からの漏
れ光が光検出器へ入射する光を低減でき、光検出器の出
力のSN比を向上させることができる。
When an optical circuit in which an optical waveguide, a light source and a detector according to the present invention are integrated on the same substrate is used, a high SN ratio can be obtained as an output of the photodetector. That is, in the present invention, unlike the conventional structure, the shielding plate is provided between the optical waveguides in which the light emitting element and the light receiving element are optically connected. Therefore, it is possible to reduce the amount of light leaked from the light output of the light source and from the guided light of the optical waveguide, which is incident on the photodetector, and to improve the SN ratio of the output of the photodetector.

【0008】また、発光素子と受光素子とがそれぞれ光
学的に接続された光導波路の端面での光軸が平行でな
い。したがって、受光素子の受光面は、発光素子の発光
面および発光素子の接続された光導波路の各光軸と平行
にならない。光の伝搬の直進性から漏れ光が受光素子へ
入射するのを低減できる。さらに、本発明では従来れぞ
れ光学的に接続された光導波路路の表面に光の吸収、反
射機能を有する膜が装荷されている。したがって,半導
体光源の光出力から及び光導波路の導波光から漏れ光が
半導体光検出器へ入射する光を低減でき、光検出器の出
力のSN比を向上させることが出来る。
Further, the optical axes at the end faces of the optical waveguide in which the light emitting element and the light receiving element are optically connected are not parallel. Therefore, the light receiving surface of the light receiving element is not parallel to the light emitting surface of the light emitting element and each optical axis of the optical waveguide connected to the light emitting element. Leakage light can be reduced from entering the light receiving element due to the straightness of light propagation. Further, in the present invention, a film having a function of absorbing and reflecting light is loaded on the surface of the optical waveguide which is conventionally optically connected. Therefore, it is possible to reduce the amount of light that leaks from the optical output of the semiconductor light source and from the guided light of the optical waveguide and enters the semiconductor photodetector, thereby improving the S / N ratio of the output of the photodetector.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0010】図1は本発明の第1の実施例に係わる光回
路の構造を示す平面図である。図1において、基板1に
はSiを用い、光パワー分岐または光波長分岐機能7を
含む光導波路2は石英系の材料からなる。光パワー分岐
または光波長分波機能光回路7は、例えば光パワー分岐
機能光回路7の場合は、Y分岐光回路や方向性結合器な
どが用いられ、光波長分波機能光回路7の場合は、方向
性結合器、分岐干渉器などが用いられる。光ファイバ
3、半導体光源4及び半導体検出器5はそれぞれ光導波
路2に光学的に接続されており、また、光導波路2、光
ファイバ3、半導体光源4及び半導体検出器5基板1上
に集積されている。図1において、半導体光源4と光学
的に接続された光導波路2a(今後、光源側光導波路と
呼ぶ)と半導体光検出器5と光学的に接続された光導波
路2b(今後、検出器側光導波路と呼ぶ)の間に遮閉板
8が設置されている。この遮閉板8は半導体光源4及び
半導体検出器5の間にまで達している。この構造によ
り、半導体光源4と光源側光導波路2aの光学的の際の
結合損失として発生する漏れ光及び光導波路2を伝搬す
る導波光の伝搬損失として表される漏れ光が半導体検出
器5へ入射する光量は従来の構造に比べ大幅に低減さ
れ、半導体光検出器5の出力のSN比が大幅に向上す
る。遮閉板8には金属、セラミック等が用いられ、光源
側導波路2aと検出器側光導波路2bの間に挿入し設
置、固定する。なお、この場合遮閉板8は光を遮断する
ものなら何でもよく、材料は限定されない。
FIG. 1 is a plan view showing the structure of an optical circuit according to a first embodiment of the present invention. In FIG. 1, a substrate 1 is made of Si, and an optical waveguide 2 including an optical power branching or optical wavelength branching function 7 is made of a quartz-based material. As the optical power branching or optical wavelength demultiplexing function optical circuit 7, for example, in the case of the optical power branching function optical circuit 7, a Y branch optical circuit or a directional coupler is used, and in the case of the optical wavelength demultiplexing function optical circuit 7, For example, a directional coupler, a branching interferometer, or the like is used. The optical fiber 3, the semiconductor light source 4 and the semiconductor detector 5 are optically connected to the optical waveguide 2, respectively, and are integrated on the optical waveguide 2, the optical fiber 3, the semiconductor light source 4 and the semiconductor detector 5 substrate 1. ing. In FIG. 1, an optical waveguide 2a optically connected to a semiconductor light source 4 (hereinafter referred to as a light source side optical waveguide) and an optical waveguide 2b optically connected to a semiconductor photodetector 5 (hereinafter a detector side optical waveguide). A shielding plate 8 is installed between the two. The shielding plate 8 reaches between the semiconductor light source 4 and the semiconductor detector 5. With this structure, the leakage light generated as a coupling loss at the time of optical coupling between the semiconductor light source 4 and the light source side optical waveguide 2a and the leakage light represented as the propagation loss of the guided light propagating through the optical waveguide 2 are transmitted to the semiconductor detector 5. The amount of incident light is greatly reduced as compared with the conventional structure, and the SN ratio of the output of the semiconductor photodetector 5 is greatly improved. The shielding plate 8 is made of metal, ceramic, or the like, and is inserted between the light source-side waveguide 2a and the detector-side optical waveguide 2b to be installed and fixed. In this case, the shielding plate 8 may be anything as long as it blocks light, and the material is not limited.

【0011】図2は、本発明の第2の実施例に係わる光
回路の構造を示す断面図である。図2では、光源側光導
波路2aと検出器側光導波路2bの間に、光導波路2と
同じ材料を用いて遮閉板8は光導波路2の材料を用いて
形成された型の表面に金属等の光を透過させないコーテ
ィング膜9を装荷することにより得られる。この場合,
遮閉板8の型は光源側光導波路2a、検出器側光導波路
2b等の光導波路2と形成と同時にリソグラヒィプロセ
スを用いて形成できるため、位置合わせ及び固定等の工
程を必要としないため、低コスト化が図られる利点を有
する。
FIG. 2 is a sectional view showing the structure of an optical circuit according to a second embodiment of the present invention. In FIG. 2, between the light source-side optical waveguide 2a and the detector-side optical waveguide 2b, the same material as that of the optical waveguide 2 is used, and the shielding plate 8 is formed on the surface of a mold formed using the material of the optical waveguide 2. It can be obtained by loading a coating film 9 that does not transmit light. in this case,
Since the type of the shielding plate 8 can be formed using the lithography process at the same time as the formation of the optical waveguides 2 such as the light source side optical waveguide 2a and the detector side optical waveguide 2b, steps such as alignment and fixing are not required. Therefore, there is an advantage that cost can be reduced.

【0012】図4は本発明の第3の実施例に係わる光回
路の構造を示す平面図である。図4では,半導体光検出
器5と光学的に接続された光導波路2b(今後、光検出
器側光導波路と呼ぶ)の端面48(今後,光検出器側光
導波路端面と呼ぶ)が光検出器側光導波路2bの導波光
の光軸に対して角度θ分だけ斜めになっているため、光
検出器側光導波路2bの導波光は光検出器側光導波路端
面48で全反射され、結果として前記角度θの2倍の角
度の光軸変換が得られる。従って、光検出器側光導波路
2bの導波光の光軸及び半導体光検出器5の受光面は半
導体レーザ4の出射光、光導波路2の導波光の光軸とお
よそ垂直となる。光の伝搬の直進性から半導体光源4の
光出力から及び光導波路2の導波光からの漏れ光が半導
体光検出器5へ入射する光量は従来の構造に比べて大幅
に低減され、半導体光検出器5の出力のSN比が大幅に
向上する。なお、光検出器側光導波路端面48は光導波
路2をリソグラヒィプロセスで形成するのと同時に形成
すればよい。
FIG. 4 is a plan view showing the structure of an optical circuit according to a third embodiment of the present invention. In FIG. 4, an end face 48 (hereinafter, referred to as a photodetector-side optical waveguide end face) of an optical waveguide 2b (hereinafter, referred to as a photodetector-side optical waveguide) optically connected to the semiconductor photodetector 5 is used for photodetection. Since the optical waveguide 2b is inclined at an angle θ with respect to the optical axis of the optical waveguide of the detector-side optical waveguide 2b, the waveguide light of the optical detector-side optical waveguide 2b is totally reflected by the end face 48 of the optical detector-side optical waveguide. As a result, an optical axis conversion at an angle twice the angle θ is obtained. Therefore, the optical axis of the guided light of the photodetector-side optical waveguide 2b and the light receiving surface of the semiconductor photodetector 5 are approximately perpendicular to the outgoing light of the semiconductor laser 4 and the optical axis of the guided light of the optical waveguide 2. The amount of light that leaks from the optical output of the semiconductor light source 4 and from the guided light of the optical waveguide 2 to the semiconductor photodetector 5 due to the straightness of light propagation is significantly reduced as compared with the conventional structure. The S / N ratio of the output of the device 5 is greatly improved. The photodetector-side optical waveguide end face 48 may be formed at the same time when the optical waveguide 2 is formed by the lithographic process.

【0013】図5は、本発明に係わる第4の実施例の光
回路の平面図である。図5では光検出器側光導波路波面
48の斜めの向きが、図4と逆向きになっている。半導
体光検出器5の出力のSN比が向上する原理は図4と全
く同じである。
FIG. 5 is a plan view of an optical circuit according to a fourth embodiment of the present invention. In FIG. 5, the oblique direction of the photodetector-side optical waveguide wavefront 48 is opposite to that in FIG. The principle that the SN ratio of the output of the semiconductor photodetector 5 is improved is exactly the same as in FIG.

【0014】なお、光検出器側光導波路端面48での導
波光の光軸変換は何度でもよい。また、基板1及び光導
波路2の材料は限定されないのは明らかである。
The optical axis conversion of the guided light at the photodetector-side optical waveguide end face 48 may be performed any number of times. Also, it is clear that the materials of the substrate 1 and the optical waveguide 2 are not limited.

【0015】図6は本発明の第6の実施例に係わる別の
光回路の構造を示す平面図である。図6では光検出器側
光導波路2bからの出射光の光軸を曲がり光導波路2c
を用いて、半導体光源4及び光導波路2の光軸と平行で
無くしている。半導体光検出器5の出力のSN比が向上
する原理は図4の構造と全く同じである。
FIG. 6 is a plan view showing the structure of another optical circuit according to a sixth embodiment of the present invention. In FIG. 6, the optical axis of the light emitted from the photodetector-side optical waveguide 2b is bent and the optical waveguide 2c is bent.
Is used to eliminate the semiconductor light source 4 and the optical waveguide 2 from being parallel to the optical axis. The principle that the S / N ratio of the output of the semiconductor photodetector 5 is improved is exactly the same as the structure of FIG.

【0016】図7(a),(b)はそれぞれ本発明の第
6の実施例に係わる光回路の構造を示す平面図及び断面
図である。図7において、半導体光源4と光学的に接続
された光源波路2a(今後、光源側光導波路と呼ぶ)と
半導体光検出器5と光学的に接続された光導波路2b
(今後、検出器側光導波路と呼ぶ)のそれぞれの表面に
コーティング膜78が装荷されている。このコーティン
グ膜78は光を吸収する材料が用いられる。この構造に
より,半導体光源4と光源側光導波路2aの光学的接続
の際の結合損失として発生する漏れ光及び光導波路2を
伝搬する導波光の伝搬損失として表される漏れ光の大部
分はコーティング膜78で吸収され、半導体光検出器5
へ入射する光量は従来に構造に比べ大幅に低減され、半
導体光検出器5の出力のSN比が大幅に向上する。コー
ティング膜78にはCr,Mo,Ti,Al,Auなど
の金属が良好な効果が得られ、光源側光導波路2aと検
出器側光導波路2bのの形成後、スパッタリング法、蒸
着法等により堆積される。なお、この場合コーティング
膜78は金属に限定されず、酸化物等の光を吸収するも
のなら何でもよく、材料は限定されない。
FIGS. 7A and 7B are a plan view and a sectional view, respectively, showing the structure of an optical circuit according to a sixth embodiment of the present invention. In FIG. 7, a light source waveguide 2a optically connected to a semiconductor light source 4 (hereinafter referred to as a light source side optical waveguide) and an optical waveguide 2b optically connected to a semiconductor photodetector 5 are shown.
A coating film 78 is loaded on each surface (hereinafter, referred to as a detector-side optical waveguide). The coating film 78 is made of a material that absorbs light. Due to this structure, most of the leaked light generated as coupling loss at the time of optical connection between the semiconductor light source 4 and the light source side optical waveguide 2a and the leaked light expressed as the propagation loss of the guided light propagating through the optical waveguide 2 are coated. The semiconductor photodetector 5 absorbed by the film 78
The amount of light incident on the semiconductor photodetector 5 is greatly reduced as compared with the conventional structure, and the SN ratio of the output of the semiconductor photodetector 5 is greatly improved. Metals such as Cr, Mo, Ti, Al, and Au have good effects on the coating film 78. After the light source side optical waveguide 2a and the detector side optical waveguide 2b are formed, they are deposited by a sputtering method, a vapor deposition method, or the like. Is done. In this case, the coating film 78 is not limited to metal, but may be any material that absorbs light, such as an oxide, and the material is not limited.

【0017】[0017]

【発明の効果】本発明による光導波路、光源、検出器を
同一基板上に集積した光回路を用いれば、高いSN比を
光検出器の出力として得られる。即ち,本発明では、光
源の光出力から及び光導波路の導波光からの漏れ光が光
検出器へ入射するのを低減でき、光検出の出力のSN比
を向上させることができる。
By using an optical circuit in which the optical waveguide, light source and detector according to the present invention are integrated on the same substrate, a high SN ratio can be obtained as the output of the photodetector. That is, according to the present invention, it is possible to reduce the incidence of light leaking from the light output of the light source and from the guided light of the optical waveguide to the photodetector, and to improve the SN ratio of the light detection output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構造を示す平面図である。FIG. 1 is a plan view showing a structure of an embodiment of the present invention.

【図2】本発明の実施例の構造を示す断面図である。FIG. 2 is a cross-sectional view showing a structure of an embodiment of the present invention.

【図3】従来の光制御デバイスの構造を示す平面図であ
る。
FIG. 3 is a plan view showing a structure of a conventional light control device.

【図4】本発明の実施例の構造を示した平面図である。FIG. 4 is a plan view showing the structure of the embodiment of the present invention.

【図5】本発明の実施例の構造を示した平面図である。FIG. 5 is a plan view showing the structure of the embodiment of the present invention.

【図6】本発明の実施例の構造を示した平面図である。FIG. 6 is a plan view showing the structure of the embodiment of the present invention.

【図7】本発明の実施例の構造を示す平面図及び断面図
である。
FIGS. 7A and 7B are a plan view and a cross-sectional view illustrating a structure of an example of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2,2a,2b 光導波路 3 光ファイバ 4 半導体光源 5,5a,5b 半導体検出器 6 電子デバイス 7 光パワー分岐または光波長分波機能光回路 8 遮閉板 9 コーティング膜 48 光検出器側光導波路端面 78 コーティング膜 DESCRIPTION OF SYMBOLS 1 Substrate 2, 2a, 2b Optical waveguide 3 Optical fiber 4 Semiconductor light source 5, 5a, 5b Semiconductor detector 6 Electronic device 7 Optical power branching or optical wavelength demultiplexing function optical circuit 8 Blocking plate 9 Coating film 48 Photodetector side Optical waveguide end face 78 Coating film

フロントページの続き (56)参考文献 特開 昭61−46911(JP,A) 特開 昭62−97147(JP,A) 特開 昭62−51047(JP,A) 特開 平1−156692(JP,A) 特開 昭61−284706(JP,A) 特開 平2−90108(JP,A)Continuation of front page (56) References JP-A-61-46911 (JP, A) JP-A-62-97147 (JP, A) JP-A-62-51047 (JP, A) JP-A-1-156669 (JP) JP-A-61-284706 (JP, A) JP-A-2-90108 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、光の合分岐または合分波機能
を有する光導波路と、前記光導波路のうち2本の隣接し
た光導波路のそれぞれの端面が近接して配置され、前記
端面の各々に光学的に接続された発光素子及び受光素子
とを有する光回路において、 前記2本の隣接した光導波路の間および前記発光素子と
前記受光素子との間に遮光板を有し、前記遮光板は前記
受光素子の受光面から見て、前記発光素子の発光面およ
び前記発光素子と光学的に接続される光導波路が隠れる
ように配置されていることを特徴とする光回路。
1. An optical waveguide having a light branching or multiplexing / demultiplexing function, and respective end faces of two adjacent optical waveguides among the optical waveguides are arranged on a substrate in close proximity to each other. An optical circuit having a light emitting element and a light receiving element optically connected to each other, comprising: a light shielding plate between the two adjacent optical waveguides and between the light emitting element and the light receiving element; An optical circuit, wherein the plate is arranged so as to hide a light emitting surface of the light emitting element and an optical waveguide optically connected to the light emitting element when viewed from a light receiving surface of the light receiving element.
【請求項2】 前記遮光板が金属又はセラミックである
ことを特徴とする請求項1記載の光回路。
2. The optical circuit according to claim 1, wherein said light shielding plate is made of metal or ceramic.
【請求項3】 前記光導波路が石英系の材料からなるこ
とを特徴とする請求項1記載の光回路。
3. The optical circuit according to claim 1, wherein said optical waveguide is made of a quartz-based material.
JP2424191A 1991-02-19 1991-02-19 Optical circuit Expired - Fee Related JP3219781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2424191A JP3219781B2 (en) 1991-02-19 1991-02-19 Optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2424191A JP3219781B2 (en) 1991-02-19 1991-02-19 Optical circuit

Publications (2)

Publication Number Publication Date
JPH04263206A JPH04263206A (en) 1992-09-18
JP3219781B2 true JP3219781B2 (en) 2001-10-15

Family

ID=12132756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2424191A Expired - Fee Related JP3219781B2 (en) 1991-02-19 1991-02-19 Optical circuit

Country Status (1)

Country Link
JP (1) JP3219781B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356228A (en) * 2000-06-15 2001-12-26 Furukawa Electric Co Ltd:The Optical waveguide device
JP3782722B2 (en) * 2001-11-30 2006-06-07 シャープ株式会社 Optical transceiver module and electronic device
AU2002367342A1 (en) * 2001-12-28 2003-07-24 Hitachi Chemical Co., Ltd. Optical transmission/reception module of optical waveguide type, and substrate for making the same
JP5983479B2 (en) * 2013-03-18 2016-08-31 沖電気工業株式会社 Optical element
JP7172615B2 (en) * 2019-01-11 2022-11-16 日本電信電話株式会社 Planar optical waveguide circuit

Also Published As

Publication number Publication date
JPH04263206A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US6061481A (en) Optoelectronic circuit
US5408559A (en) Optoelectronic device
JPH11248978A (en) Bidirectional optical semiconductor device
US5490227A (en) Light receiving module for SCM transmission
JP2867859B2 (en) Optical transceiver module for bidirectional transmission
JPH1168164A (en) Module for two-way light communication
JP2000171671A (en) Optical communication module and its mounting method
JP2002124687A (en) Bidirectional optical communication device, apparatus therefor, and method for assembling it
US7171084B2 (en) Optical apparatus provided with demultiplexing function
JP3219781B2 (en) Optical circuit
JPS6142461B2 (en)
CN110462491B (en) Low-crosstalk single-core bidirectional optical assembly
US5574809A (en) Optical fiber type part for optical systems
US20030174922A1 (en) Polarizer-equipped optical fiber ferrule, connector and connector adaptor
JPH07174946A (en) Photodetecting module
JP3120777B2 (en) Optical waveguide type signal light monitor device
JPS60214316A (en) Optical module for two-way transmission
JP3834178B2 (en) Bidirectional optical communication device and bidirectional optical communication device
JPH0591049A (en) Optical circuit
WO2020000776A1 (en) Optical apparatus
JPH0574803B2 (en)
JP3662162B2 (en) Bi-directional optical communication module
JP3344149B2 (en) Optical semiconductor device module
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
JPS5933404A (en) Optical attenuator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees