JPH0591049A - Optical circuit - Google Patents

Optical circuit

Info

Publication number
JPH0591049A
JPH0591049A JP3273315A JP27331591A JPH0591049A JP H0591049 A JPH0591049 A JP H0591049A JP 3273315 A JP3273315 A JP 3273315A JP 27331591 A JP27331591 A JP 27331591A JP H0591049 A JPH0591049 A JP H0591049A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
waveguide
light source
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273315A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3273315A priority Critical patent/JPH0591049A/en
Publication of JPH0591049A publication Critical patent/JPH0591049A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drastically improve the S/N in an output of a semiconductor photodetector receiving a signal when the optical circuit is provided to a 2-way optical communication transmitter-receiver. CONSTITUTION:A waveguide type wavelength filter 8 is installed to an optical guide path 2c connecting optically to a semiconductor detector 5. Thus, a reflection return optical wave outputted from the semiconductor light source 4 in a specific oscillation wavelength is interrupted and the quantity of the return light reaching the semiconductor photodetector 5 is much reduced in comparison with a conventional structure and the S/N of the output of the semiconductor detector 5 is drastically improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信ネットワークにお
ける光送受信器、特に光導波路を用いた光送受信器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transceiver in an optical communication network, and more particularly to an optical transceiver using an optical waveguide.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むと同時
に、多機能の高度なシステムが求められている一方で、
光ファイバネットワークの低コスト化の要求が強い。そ
の中で光送信器、光受信器等の光デバイスの小型化、高
集積化、低コスト化は必須である。現在実用に供されて
いる光送信器及び光受信器は半導体光源または半導体光
検出器と光ファイバの間にレンズを設置し空間的に光学
接続する構造が用いられている。このレンズを用いて空
間的に光学接続する構造はマイクロオプティックスと呼
ばれている。マイクロオプティックス構造ではレンズの
形状、半導体光源及び半導体光検出器のパッケージの形
状等に制限されて小型化に限界がある。また、空間を伝
搬する光を効率よく光ファイバや光検出器に結合させる
ためには、精度の良い光軸調整が要求され、その作業に
多大な工数が必要とされるためコストが下がらないのが
現状である。同一機能または異種機能の高集積化には全
く不適であるのは言うまでもない。
2. Description of the Related Art At the same time as the capacity of optical communication systems is increasing, the demand for multifunctional advanced systems is increasing.
There is a strong demand for cost reduction of optical fiber networks. Among them, downsizing, high integration, and cost reduction of optical devices such as optical transmitters and optical receivers are essential. Optical transmitters and optical receivers currently in practical use have a structure in which a lens is installed between a semiconductor light source or a semiconductor photodetector and an optical fiber to perform optical connection spatially. The structure for spatially optical connection using this lens is called micro-optics. The micro-optics structure is limited in the shape of the lens, the shape of the package of the semiconductor light source and the package of the semiconductor photodetector, etc., and thus there is a limit to miniaturization. Further, in order to efficiently couple the light propagating in the space to the optical fiber or the photodetector, accurate optical axis adjustment is required, and a large number of man-hours are required for the work, which does not reduce the cost. Is the current situation. It goes without saying that it is completely unsuitable for high integration of the same function or different functions.

【0003】最近、双方向の通信システムの必要が高ま
り、また家庭にまでこのシステムを導入することが望ま
れている。このとき双方向通信を可能にさせる光デバイ
スとして光の送信器と受信器が必要となるが、これを個
別に構成していたのでは光送受信装置が大型化し、シス
テム普及の妨げになる。従って、2つの機能を一体化し
た光デバイス(光送受信器)が望まれるが、マイクロオ
プティックス構造では前述した理由から困難である。こ
の様な背景から小型化、高集積化、低コスト化を目指す
構造として光導波路を用いたものがヘンリーらの文献
アイトリプルイライトウエイブテクノロジィ 1530
〜1539頁(1989年)等によれば検討されてい
る。図3に従来の構造の光回路の平面図を示す。
Recently, the need for a two-way communication system has increased, and it is desired to introduce this system into homes. At this time, an optical transmitter and a receiver are required as an optical device that enables bidirectional communication. However, if they are individually configured, the optical transmitter / receiver becomes large, which hinders the spread of the system. Therefore, an optical device (optical transceiver) that integrates two functions is desired, but it is difficult to use the microoptics structure for the reasons described above. Against this background, the structure using an optical waveguide as a structure aiming at downsizing, high integration, and low cost is described by Henry et al.
Eye Triple Elite Wave Technology 1530
Pp. 1539 (1989) and the like. FIG. 3 shows a plan view of an optical circuit having a conventional structure.

【0004】図3の光回路では基板1上に合分岐機能を
含む光導波路2が形成され、この光導波路2と光ファイ
バ3、半導体光源4及び信号検出用の半導体光検出器5
aがそれぞれ同一の基板1上で直接光学結合されてい
る。図3では半導体光源4の光出力モニター用の半導体
光検出器5bも同一の基板1上に集積され、光導波路2
と光学的に接続されているが、この半導体光源4の光出
力モニター用の半導体光検出器5bは無くても、双方向
光通信用送受信器の機能としては何等問題無い。また、
半導体光検出器5a,5bの受信回路用電子デバイス6
が同一の基板1上に集積されているが、この電子デバイ
スは同一の基板1上に有ってもなくても双方向光通信用
送受信器の機能としては何等問題無い。図3に示した光
導波路2を用いて光送受信器を構成すれば、小型化はも
ちろんのこと、光軸がリソグラフィプロセスで決められ
一定である光導波路を伝搬する導波光との結合を行えば
良いため光軸調整も簡易化されるとともに、光導波路自
体はリソグラフィプロセスを用いて一括に多量に生産さ
れるために低コスト化が可能となる。
In the optical circuit shown in FIG. 3, an optical waveguide 2 having a coupling / branching function is formed on a substrate 1, and the optical waveguide 2, the optical fiber 3, the semiconductor light source 4 and the semiconductor photodetector 5 for signal detection are formed.
Each a is directly optically coupled on the same substrate 1. In FIG. 3, the semiconductor photodetector 5b for monitoring the optical output of the semiconductor light source 4 is also integrated on the same substrate 1, and the optical waveguide 2
However, even if the semiconductor photodetector 5b for monitoring the optical output of the semiconductor light source 4 is not provided, there is no problem in the function of the transceiver for bidirectional optical communication. Also,
Electronic device 6 for receiving circuit of semiconductor photodetectors 5a and 5b
Are integrated on the same substrate 1, but there is no problem in the function of the transceiver for bidirectional optical communication whether this electronic device is on the same substrate 1 or not. If an optical transmitter / receiver is configured using the optical waveguide 2 shown in FIG. 3, not only downsizing but also coupling with the guided light propagating in the optical waveguide whose optical axis is fixed by the lithography process and constant is performed. Since it is good, the optical axis adjustment is simplified, and the cost can be reduced because the optical waveguide itself is mass-produced in a lithographic process.

【0005】[0005]

【発明が解決しようとする課題】この双方向光通信用光
送受信器では送信信号と受信信号の波長を異ならせる波
長多重双方向通信方式が用いられるとき、前述したよう
に半導体光源と半導体光検出器が同一基板上に形成され
ているため、受信信号と波長が異なる送信信号である半
導体光源から出力された光波の反射戻り光が半導体光検
出器へ入射し、光検出器のSN比を劣化させる欠点があ
る。
In this optical transceiver for two-way optical communication, when the wavelength multiplexing two-way communication system in which the wavelengths of the transmission signal and the reception signal are made different is used, as described above, the semiconductor light source and the semiconductor optical detection are used. Since the device is formed on the same substrate, the reflected return light of the light wave output from the semiconductor light source, which is a transmission signal with a wavelength different from that of the reception signal, enters the semiconductor photodetector and deteriorates the SN ratio of the photodetector. There is a drawback that makes it.

【0006】本発明の目的は、信号受信用の半導体光検
出器の出力において高いSN比を得る光回路を与えるこ
とにある。
An object of the present invention is to provide an optical circuit which obtains a high SN ratio at the output of a semiconductor photodetector for signal reception.

【0007】[0007]

【課題を解決するための手段】本発明による光回路は、
光の合分岐または合分波機能を有する光導波路が基板上
に形成され、半導体光源および半導体光検出器が前記光
導波路のうちの互いに近接した第1及び第2の光導波路
のそれぞれの端面付近の前記基板上に設置され、かつ、
該第1及び第2の光導波路に光学的にそれぞれ接続され
た光回路において、前記半導体光源の発振波長の光を遮
断する導波路型の波長フィルタが前記第2の光導波路に
設置されていることを特徴とする。
The optical circuit according to the present invention comprises:
An optical waveguide having a light splitting or multiplexing / demultiplexing function is formed on a substrate, and a semiconductor light source and a semiconductor photodetector are near the respective end faces of the first and second optical waveguides of the optical waveguides which are close to each other. Installed on the substrate of, and
In an optical circuit optically connected to each of the first and second optical waveguides, a waveguide type wavelength filter that blocks light having an oscillation wavelength of the semiconductor light source is installed in the second optical waveguide. It is characterized by

【0008】[0008]

【作用】本発明による光導波路、半導体光源、半導体光
検出器を同一基板上に集積した光回路を用いれば、高い
SN比を光検出器の出力として得られる。即ち、本発明
では従来の構造と異なり、半導体光検出器と光学的に接
続された光導波路(第2の光導波路)に送信信号を出力
する半導体光源の発振波長を遮断する導波路型の波長フ
ィルターが設置されている。従って、半導体光源から特
定の発振波長で出力された光波の反射戻り光は遮断さ
れ、半導体光検出器へ到達する戻り光の量は従来の構造
に比べ大幅に低減され、半導体光検出器5の出力のSN
比が大幅に向上する。
By using an optical circuit in which the optical waveguide, the semiconductor light source and the semiconductor photodetector according to the present invention are integrated on the same substrate, a high SN ratio can be obtained as the output of the photodetector. That is, in the present invention, unlike the conventional structure, a wavelength of a waveguide type that cuts off the oscillation wavelength of a semiconductor light source that outputs a transmission signal to an optical waveguide (second optical waveguide) optically connected to a semiconductor photodetector. A filter is installed. Therefore, the reflected return light of the light wave output from the semiconductor light source at a specific oscillation wavelength is blocked, and the amount of return light reaching the semiconductor photodetector is greatly reduced compared to the conventional structure, and the semiconductor photodetector 5 Output SN
The ratio is greatly improved.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例に係わる光回路の構造を示
す平面図である。図1において、基板1にはSiを用
い、光パワー分岐または光波長分波機能光回路7を含む
光導波路2は石英系の材料からなる。光導波路2a,2
b,2cは光導波路2に含まれる。光パワー分岐または
光波長分波機能光回路7には、例えば光パワー分岐機能
光回路の場合は、Y分岐光回路や方向性結合器などが用
いられ、光波長分波機能光回路の場合は、方向性結合
器、分岐干渉器などが用いられる。光ファイバ3、半導
体光源4及び半導体光検出器5は光導波路2a,2b及
び2cに光学的にそれぞれ接続されており、また、光導
波路2、半導体光源4及び半導体光検出器5は基板1上
に集積されている。図1において、半導体光検出器5と
光学的に接続された光導波路2c(以後、検出器側光導
波路と呼ぶ)に送信信号を出力する半導体光源4の発振
波長成分をカットする導波路型波長フィルタ8が設置さ
れている。この構造により、半導体光源4から特定の発
振波長で出力された光波の光パワー分岐または光波長分
波機能光回路7部分、光導波路2aと光ファイバ3との
光学的結合部分、また、光信号伝送路に設けられる光フ
ァイバ3間を接続する光コネクタ9部分等での反射戻り
光は導波路型波長フィルタ8で遮断され、半導体光検出
器5へ到達する光量は従来の構造に比べ大幅に低減さ
れ、半導体光検出器5の出力のSN比が大幅に向上す
る。導波路型波長フィルタ8には検出器側光導波路2b
上に形成されたグレーティングや分岐干渉型フィルタな
どが用いられる。図1は導波路型波長フィルタ8として
グレーティングを用いた光回路の平面図を示している。
図2には導波路型波長フィルタ8として分岐干渉型フィ
ルタを用いた本発明の別の実施例である光回路の平面図
を示す。なお、図1と図2における効果は同一であり、
従来の構造に比べ、約20dBのSN比の改善が得られ
た。導波路型波長フィルタ8は、半導体光源4の発振波
長を遮断するものなら何でもよく、構造は限定されな
い。また、導波路型波長フィルタ8はグレーティングの
場合は光導波路2を形成後にリソグラフィ工程を用いて
製作し、分岐干渉型フィルタの場合には光導波路2の形
成と同時に製作する。なお、基板1及び光導波路2の材
料は限定されないのは明らかである。
The present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the structure of an optical circuit according to an embodiment of the present invention. In FIG. 1, Si is used for the substrate 1, and the optical waveguide 2 including the optical power branching or optical wavelength demultiplexing function optical circuit 7 is made of a silica-based material. Optical waveguides 2a, 2
b and 2c are included in the optical waveguide 2. As the optical power branching or optical wavelength demultiplexing function optical circuit 7, for example, a Y branching optical circuit or a directional coupler is used in the case of an optical power branching function optical circuit, and in the case of an optical wavelength demultiplexing function optical circuit. , Directional couplers, branch interferometers, etc. are used. The optical fiber 3, the semiconductor light source 4, and the semiconductor photodetector 5 are optically connected to the optical waveguides 2a, 2b, and 2c, respectively, and the optical waveguide 2, the semiconductor light source 4, and the semiconductor photodetector 5 are on the substrate 1. Are collected in. In FIG. 1, a waveguide-type wavelength that cuts an oscillation wavelength component of a semiconductor light source 4 that outputs a transmission signal to an optical waveguide 2c optically connected to a semiconductor photodetector 5 (hereinafter referred to as a detector-side optical waveguide). A filter 8 is installed. With this structure, the optical power branching or optical wavelength demultiplexing function optical circuit 7 portion of the light wave output from the semiconductor light source 4 at a specific oscillation wavelength, the optical coupling portion between the optical waveguide 2a and the optical fiber 3, and the optical signal The reflected return light from the optical connector 9 connecting the optical fibers 3 provided in the transmission path is blocked by the waveguide type wavelength filter 8, and the amount of light reaching the semiconductor photodetector 5 is significantly larger than that of the conventional structure. As a result, the SN ratio of the output of the semiconductor photodetector 5 is significantly improved. The waveguide type wavelength filter 8 has a detector-side optical waveguide 2b.
A grating, a branch interference type filter, or the like formed above is used. FIG. 1 shows a plan view of an optical circuit using a grating as the waveguide type wavelength filter 8.
FIG. 2 shows a plan view of an optical circuit which is another embodiment of the present invention using a branch interference type filter as the waveguide type wavelength filter 8. Note that the effects in FIGS. 1 and 2 are the same,
An improvement in SN ratio of about 20 dB was obtained as compared with the conventional structure. The waveguide type wavelength filter 8 may be anything as long as it blocks the oscillation wavelength of the semiconductor light source 4, and the structure is not limited. In the case of a grating, the waveguide type wavelength filter 8 is manufactured by using a lithography process after forming the optical waveguide 2, and in the case of a branch interference type filter, it is manufactured simultaneously with the formation of the optical waveguide 2. It is obvious that the materials of the substrate 1 and the optical waveguide 2 are not limited.

【0010】[0010]

【発明の効果】本発明による光導波路、半導体光源、半
導体光検出器を同一基板上に集積した光回路を用いれ
ば、高いSN比を光検出器の出力として得られる。即
ち、本発明では従来の構造と異なり、半導体光検出器と
光学的に接続された光導波路に送信信号を出力する半導
体光源の発振波長を遮断する導波路型の波長フィルター
が設置されている。従って、半導体光源から特定の発振
波長で出力された光波の反射戻り光は遮断され、半導体
光検出器へ到達する光量は従来の構造に比べ大幅に低減
され、半導体光検出器5の出力のSN比が大幅に向上す
る。
By using the optical circuit in which the optical waveguide, the semiconductor light source and the semiconductor photodetector according to the present invention are integrated on the same substrate, a high SN ratio can be obtained as the output of the photodetector. That is, in the present invention, unlike the conventional structure, a waveguide-type wavelength filter that cuts off the oscillation wavelength of the semiconductor light source that outputs a transmission signal is installed in the optical waveguide that is optically connected to the semiconductor photodetector. Therefore, the reflected return light of the light wave output from the semiconductor light source at a specific oscillation wavelength is blocked, and the amount of light reaching the semiconductor photodetector is greatly reduced compared to the conventional structure, and the SN of the output of the semiconductor photodetector 5 is reduced. The ratio is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である光回路の構造を示す平
面図である。
FIG. 1 is a plan view showing a structure of an optical circuit according to an embodiment of the present invention.

【図2】本発明の他の実施例である光回路の構造を示す
平面図である。
FIG. 2 is a plan view showing the structure of an optical circuit according to another embodiment of the present invention.

【図3】従来の光回路の構造を示す平面図である。FIG. 3 is a plan view showing the structure of a conventional optical circuit.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 3 光ファイバ 4 半導体光源 5,5a,5b 半導体光検出器 6 電子デバイス 7 光パワー分岐または光波長分波機能光回路 8 導波路型波長フィルタ 9 光コネクタ 1 substrate 2 optical waveguide 3 optical fiber 4 semiconductor light source 5, 5a, 5b semiconductor photodetector 6 electronic device 7 optical power branching or optical wavelength demultiplexing function optical circuit 8 waveguide type wavelength filter 9 optical connector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光の合分岐または合分波機能を有する光
導波路が基板上に形成され、半導体光源および半導体光
検出器が前記光導波路のうちの互いに近接した第1及び
第2の光導波路のそれぞれの端面付近の前記基板上に設
置され、かつ、該第1及び第2の光導波路に光学的にそ
れぞれ接続された光回路において、前記半導体光源の発
振波長の光を遮断する導波路型の波長フィルタが設置さ
れていることを特徴とする光回路。
1. A first optical waveguide and a second optical waveguide in which an optical waveguide having a function of multiplexing or demultiplexing light is formed on a substrate, and a semiconductor light source and a semiconductor photodetector are close to each other. Of the waveguide type for blocking the light of the oscillation wavelength of the semiconductor light source in the optical circuit installed on the substrate near the respective end faces of the optical circuit and optically connected to the first and second optical waveguides, respectively. An optical circuit in which the wavelength filter of is installed.
JP3273315A 1991-09-25 1991-09-25 Optical circuit Pending JPH0591049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273315A JPH0591049A (en) 1991-09-25 1991-09-25 Optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273315A JPH0591049A (en) 1991-09-25 1991-09-25 Optical circuit

Publications (1)

Publication Number Publication Date
JPH0591049A true JPH0591049A (en) 1993-04-09

Family

ID=17526169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273315A Pending JPH0591049A (en) 1991-09-25 1991-09-25 Optical circuit

Country Status (1)

Country Link
JP (1) JPH0591049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084751A1 (en) * 2000-04-28 2001-11-08 Sony Corporation Optical communication apparatus and communication method
US7215884B2 (en) 2003-06-24 2007-05-08 Samsung Electronics Co., Ltd. Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
JP2015194658A (en) * 2014-03-31 2015-11-05 富士通株式会社 semiconductor optical waveguide device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234108A (en) * 1986-02-19 1987-10-14 アルカテル エヌ.ヴエイ. Optical transmitter/receiver module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234108A (en) * 1986-02-19 1987-10-14 アルカテル エヌ.ヴエイ. Optical transmitter/receiver module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084751A1 (en) * 2000-04-28 2001-11-08 Sony Corporation Optical communication apparatus and communication method
US7072583B2 (en) 2000-04-28 2006-07-04 Sony Corporation Optical communication method and apparatus
CN1297087C (en) * 2000-04-28 2007-01-24 索尼公司 Optical communication appts. and communication method
US7215884B2 (en) 2003-06-24 2007-05-08 Samsung Electronics Co., Ltd. Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
JP2015194658A (en) * 2014-03-31 2015-11-05 富士通株式会社 semiconductor optical waveguide device
US9612411B2 (en) 2014-03-31 2017-04-04 Fujitsu Limited Semiconductor optical waveguide device with an anti-reflection diffraction grating formed on both lateral sides of a core layer along a direction of optical propagation

Similar Documents

Publication Publication Date Title
US6061481A (en) Optoelectronic circuit
CA2029171C (en) Multiport optical devices
US4910727A (en) Optical transceiver having waveguide couplers for filtering and duplexing transmit and receive wavelengths
US4708425A (en) Bidirectional optical wavelength multiplexer-demultiplexer
US5170451A (en) Optical wdm (wavelength division multiplex) coupler
EP0347120A2 (en) Optical data link dual wavelength coupler
CA1154829A (en) Modular fibre-optic bus system
US4955014A (en) Broadband optical communication system, particularly in the subscriber area
US6480647B1 (en) Waveguide-type wavelength multiplexing optical transmitter/receiver module
JPH09184934A (en) Optical transmission and reception module
JP2000059306A (en) Optical amplifying repeater
EP0058789B1 (en) Fiber optics communications modules
JPH07128541A (en) Optical communication transmitter-receiver and optical amplifier
JP4116244B2 (en) Transceiver for wavelength division multiplexing
JPH0591049A (en) Optical circuit
JP3219781B2 (en) Optical circuit
CN109617643A (en) Reconfigurable optical add/drop multiplexer and network transmission system
Reichelt et al. Wavelength-division multi demultiplexers for two-channel single-mode transmission systems
JP3120777B2 (en) Optical waveguide type signal light monitor device
JP2576408B2 (en) Optical splitter
EP0469126B1 (en) Optical duplexer
CN100487508C (en) Double diffraction grating planar lightwave circuit
JPH0591055A (en) Optical circuit
JPH0591054A (en) Optical circuit
JP3120774B2 (en) Optical transmitting / receiving module and method of manufacturing the same