JPH0591054A - Optical circuit - Google Patents

Optical circuit

Info

Publication number
JPH0591054A
JPH0591054A JP3273313A JP27331391A JPH0591054A JP H0591054 A JPH0591054 A JP H0591054A JP 3273313 A JP3273313 A JP 3273313A JP 27331391 A JP27331391 A JP 27331391A JP H0591054 A JPH0591054 A JP H0591054A
Authority
JP
Japan
Prior art keywords
optical
light source
semiconductor light
semiconductor
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273313A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3273313A priority Critical patent/JPH0591054A/en
Publication of JPH0591054A publication Critical patent/JPH0591054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain the optical circuit in which a duplex optical communication use optical transmitter-receiver is realized with completely stable operation. CONSTITUTION:Two optical guide lines 2b, 2d are formed with a semiconductor light source 4 inbetween and the semiconductor light source 4 and the two optical guide lines 2b, 2d are connected optically. Moreover, a photodetector 5a is installed to an end face 8 of the end faces of the light source side optical guide path 2d not optically in connection to the semiconductor light source 4 to monitor an optical output of the semiconductor light source 4. Since the deterioration in the semiconductor light source itself being a cause of the fluctuation in the transmission level or a change in the optical coupling efficiency due to a secular optical axis deviation between the semiconductor light source and the optical guide path are simultaneously measured the transmission level is always kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信ネットワークにお
ける光送受信器、特に光導波路を用いた光送受信器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transceiver in an optical communication network, and more particularly to an optical transceiver using an optical waveguide.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むと同時
に、多機能の高度なシステムが求められている一方で、
光ファイバネットワークの低コスト化の要求が強い。そ
の中で光送信器、光受信器等の光デバイスの小型化、高
集積化、低コスト化は必須である。現在実用に供されて
いる光送信器及び光受信器は半導体光源または半導体光
検出器と光ファイバの間にレンズを設置し空間的に光学
接続する構造が用いられている。このレンズを用いて空
間的に光学接続する構造はマイクロオプティックスと呼
ばれている。マイクロオプティックス構造ではレンズの
形状、半導体光源及び半導体光検出器のパッケージの形
状等に制限されて小型化に限界がある。また、空間を伝
搬する光を効率よく光ファイバや光検出器に結合させる
ためには、精度の良い光軸調整が要求され、その作業に
多大な工数が必要とされるためコストが下がらないのが
現状である。同一機能または異種機能の高集積化には全
く不適であるのは言うまでもない。
2. Description of the Related Art At the same time as the capacity of optical communication systems is increasing, the demand for multifunctional advanced systems is increasing.
There is a strong demand for cost reduction of optical fiber networks. Among them, downsizing, high integration, and cost reduction of optical devices such as optical transmitters and optical receivers are essential. Optical transmitters and optical receivers currently in practical use have a structure in which a lens is installed between a semiconductor light source or a semiconductor photodetector and an optical fiber to perform optical connection spatially. The structure for spatially optical connection using this lens is called micro-optics. The micro-optics structure is limited in the shape of the lens, the shape of the package of the semiconductor light source and the package of the semiconductor photodetector, etc., and thus there is a limit to miniaturization. Further, in order to efficiently couple the light propagating in the space to the optical fiber or the photodetector, accurate optical axis adjustment is required, and a large number of man-hours are required for the work, which does not reduce the cost. Is the current situation. It goes without saying that it is completely unsuitable for high integration of the same function or different functions.

【0003】最近、双方向の通信システムの必要が高ま
り、また家庭にまでこのシステムを導入することが望ま
れている。このとき双方向通信を可能にする光デバイス
として光の送信器と受信器が必要となるが、これを個別
に構成していたのでは光送受信装置が大型化し、システ
ム普及の妨げになる。従って、2つの機能を一体化した
光デバイス(光送受信器)が望まれるがマイクロオプテ
ィックス構造では前述した理由から困難である。この様
な背景から小型化、高集積化、低コスト化を目指す構造
として光導波路を用いたものがヘンリーらの文献 アイ
トリプルイ ライトウエイブテクノロジィ 1530〜
1539頁(1989年)等によれば検討されている。
図3に従来の構造の光回路の平面図を示す。
Recently, the need for a two-way communication system has increased, and it is desired to introduce this system into homes. At this time, an optical transmitter and a receiver are required as an optical device that enables bidirectional communication. However, if they are individually configured, the optical transmitter / receiver becomes large, which hinders the spread of the system. Therefore, an optical device (optical transceiver) that integrates two functions is desired, but it is difficult to use the micro-optics structure for the reasons described above. Against this background, the structure using an optical waveguide as a structure aiming at downsizing, high integration, and low cost is described in the article of Henry et al. Eye Triple Lightwave Technology 1530-
1539 (1989) and the like.
FIG. 3 shows a plan view of an optical circuit having a conventional structure.

【0004】図3の光回路では基板1上に合分岐機能を
含む光導波路2が形成され、この光導波路2と光ファイ
バ3、半導体光源4及び信号検出用の半導体光検出器5
aがそれぞれ同一の基板1上で直接光学結合されてい
る。図3では半導体光源4の光出力モニター用の半導体
光検出器5bも同一の基板1上に集積され、光導波路2
と光学的に接続されているが、この半導体光源4の光出
力モニター用の半導体光検出器5bは無くても、双方向
光通信用送受信器の機能としては何等問題無い。また、
半導体光検出器5a,5bの受信回路用電子デバイス6
が同一の基板1上に集積されているが、この電子デバイ
スは同一の基板1上に有ってもなくても双方向光通信用
送受信器の機能としては何等問題無い。図3に示した光
導波路2を用いて光送受信器を構成すれば、小型化はも
ちろんのこと、光軸がリソグラフィプロセスで決められ
一定である光導波路を伝搬する導波光との結合を行えば
良いため光軸調整も簡易化されるとともに、光導波路自
体はリソグラフィプロセスを用いて一括に多量に生産さ
れるために低コスト化が可能となる。
In the optical circuit shown in FIG. 3, an optical waveguide 2 having a coupling / branching function is formed on a substrate 1, and the optical waveguide 2, the optical fiber 3, the semiconductor light source 4 and the semiconductor photodetector 5 for signal detection are formed.
Each a is directly optically coupled on the same substrate 1. In FIG. 3, the semiconductor photodetector 5b for monitoring the optical output of the semiconductor light source 4 is also integrated on the same substrate 1, and the optical waveguide 2
However, even if the semiconductor photodetector 5b for monitoring the optical output of the semiconductor light source 4 is not provided, there is no problem in the function of the transceiver for bidirectional optical communication. Also,
Electronic device 6 for receiving circuit of semiconductor photodetectors 5a and 5b
Are integrated on the same substrate 1, but there is no problem in the function of the transceiver for bidirectional optical communication whether this electronic device is on the same substrate 1 or not. If an optical transmitter / receiver is configured using the optical waveguide 2 shown in FIG. 3, not only downsizing but also coupling with the guided light propagating in the optical waveguide whose optical axis is fixed by the lithography process and constant is performed. Since it is good, the optical axis adjustment is simplified, and the cost can be reduced because the optical waveguide itself is mass-produced in a lithographic process.

【0005】[0005]

【発明が解決しようとする課題】この双方向光通信用光
送受信器では前述したように半導体光源と半導体光検出
器が同一基板上に形成されている。このとき、送信レベ
ルの変動が半導体光源自体の劣化、または、半導体光源
と光導波路の経時的な光軸のずれによる光結合効率の変
化で発生するが、両者の変動要因を検知し、半導体光源
の光出力パワーを半導体光源への注入電流の制御によ
り、一定の送信レベルを常に安定して得る構造はなく、
安定動作が得られない欠点がある。
In this optical transceiver for bidirectional optical communication, the semiconductor light source and the semiconductor photodetector are formed on the same substrate as described above. At this time, the fluctuation of the transmission level occurs due to the deterioration of the semiconductor light source itself or the change of the optical coupling efficiency due to the shift of the optical axis of the semiconductor light source and the optical waveguide over time. There is no structure that constantly obtains a constant transmission level by controlling the injection current to the semiconductor light source of the optical output power of
There is a drawback that stable operation cannot be obtained.

【0006】本発明の目的は、完全に安定な動作が得ら
れる双方向光通信用光送受信器を実現する光回路を与え
ることにある。
An object of the present invention is to provide an optical circuit for realizing an optical transceiver for bidirectional optical communication, which can obtain a completely stable operation.

【0007】[0007]

【課題を解決するための手段】本発明による光回路は、
光の合分岐または合分波機能を有する光導波路が基板上
に形成され、また、半導体光源および第1の半導体光検
出器が前記光導波路のうちの互いに近接した第1及び第
2の光導波路のそれぞれの端面付近の前記基板上に設置
され、かつ、該第1及び第2の光導波路に光学的にそれ
ぞれ接続された光回路において、前記半導体光源を挟ん
で2本の光導波路が形成され、これら2本の光導波路の
うちの一方は前記第1の光導波路であり、かつ該光導波
路のうちの他方の光導波路の端面に第2の半導体光検出
器を具備していることを特徴とする。
The optical circuit according to the present invention comprises:
An optical waveguide having a function of splitting / multiplexing light is formed on a substrate, and a semiconductor light source and a first semiconductor photodetector are first and second optical waveguides close to each other among the optical waveguides. In the optical circuit that is installed on the substrate near each end face and is optically connected to the first and second optical waveguides, two optical waveguides are formed with the semiconductor light source interposed therebetween. One of these two optical waveguides is the first optical waveguide, and a second semiconductor photodetector is provided on an end face of the other optical waveguide of the optical waveguides. And

【0008】[0008]

【作用】本発明による光導波路、半導体光源、半導体光
検出器を同一基板上に集積した光回路を用いれば、完全
に安定な動作が得られる双方向光通信用光送受信器を実
現する光回路が得られる。即ち、本発明では従来の構造
と異なり、半導体光源を挟んで2本の光導波路が形成さ
れ、かつこの2本の光導波路のうちの一方の光導波路の
端面に送信レベルをモニターする半導体光検出器を具備
している。従って、送信レベルが変動する要因である半
導体光源自体の劣化量、または、半導体光源と光導波路
の経時的な光軸のずれによる光結合効率の変化量を同時
に計測することができるため、モニター用の半導体光検
出器の出力を用いて半導体光源への注入電流を制御する
ことにより、送信レベルを常に一定値に保つことができ
る。すなわち、完全に安定な動作が得られる双方向光通
信用光送受信器を実現する光回路を得ることができる。
When an optical circuit in which the optical waveguide, the semiconductor light source, and the semiconductor photodetector according to the present invention are integrated on the same substrate is used, an optical circuit for realizing an optical transceiver for bidirectional optical communication in which completely stable operation can be obtained. Is obtained. That is, in the present invention, unlike the conventional structure, two optical waveguides are formed so as to sandwich the semiconductor light source, and semiconductor optical detection for monitoring the transmission level on the end face of one of the two optical waveguides. Equipped with a vessel. Therefore, it is possible to simultaneously measure the deterioration amount of the semiconductor light source itself, which is a factor that changes the transmission level, or the change amount of the optical coupling efficiency due to the time-dependent shift of the optical axis of the semiconductor light source and the optical waveguide. By controlling the injection current to the semiconductor light source by using the output of the semiconductor photodetector, the transmission level can be always maintained at a constant value. That is, it is possible to obtain an optical circuit that realizes an optical transceiver for bidirectional optical communication that can obtain a completely stable operation.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例に係わる光回路の構造を示
す平面図である。図1において、基板1にはSiを用
い、光パワー分岐または光波長分波機能光回路7を含む
光導波路2は石英系の材料からなる。光導波路2a,2
b,2c,2dで光導波路2をなしている。光パワー分
岐または光波長分波機能光回路7が例えば光パワー分岐
機能光回路であれば、回路7には、Y分岐光回路や方向
性結合器などが用いられる。また光パワー分岐または光
波長分波機能光回路7が例えば光波長分波機能光回路で
あれば、回路7には、方向性結合器、分岐干渉器などが
用いられる。光ファイバ3、半導体光源4及び半導体光
検出器5はそれぞれ光導波路2に光学的に接続されてお
り、また、光導波路2、半導体光源4及び半導体光検出
器5,5aは基板1上に集積されている。図1では、半
導体光検出器5には光導波路2cが光結合されており、
半導体光源4を挟んで2本の光導波路2b,2d(以
後、光源側光導波路と呼ぶ)が形成され、かつ半導体光
源4と2本の光源側光導波路2b,2dは光学的に接続
している。また、一方の光源側光導波路2dの半導体光
源4と光学的に接続していない端面8(以後、モニター
用光導波路端面と呼ぶ)には半導体光源4の光出力をモ
ニターするために光検出器5a(以後、モニター用光検
出器と呼ぶ)が設置されている。このとき、2本の光源
側光導波路2b,2dはリソグラフィプロセスを用いて
通常は同時に形成するため、光軸は全く同一であり、ま
た、半導体光源4の両側の発光端面の光軸も当然の事な
がら同一であるから、半導体光源4と2本の光源側光導
波路2b,2dとのそれぞれの光学的接続構造などは全
く同一である。従って、送信レベルが変動する要因であ
る半導体光源4自体の出力レベルの劣化量、または、半
導体光源4と光導波路2bの経時的な光軸のずれによる
光結合効率の変化量を同時にモニター用光検出器5aに
よって計測することができるので、モニター用光検出器
5aの出力を用いて半導体光源4への注入電流を制御す
ることにより、送信レベルを常に一定値に保つことがで
きる。
The present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing the structure of an optical circuit according to an embodiment of the present invention. In FIG. 1, Si is used for the substrate 1, and the optical waveguide 2 including the optical power branching or optical wavelength demultiplexing function optical circuit 7 is made of a silica-based material. Optical waveguides 2a, 2
The optical waveguide 2 is formed by b, 2c and 2d. If the optical power branching or optical wavelength demultiplexing function optical circuit 7 is, for example, an optical power branching function optical circuit, a Y branching optical circuit or a directional coupler is used for the circuit 7. If the optical power branching or optical wavelength demultiplexing function optical circuit 7 is, for example, an optical wavelength demultiplexing function optical circuit, a directional coupler, a branching interferometer or the like is used for the circuit 7. The optical fiber 3, the semiconductor light source 4, and the semiconductor photodetector 5 are optically connected to the optical waveguide 2, and the optical waveguide 2, the semiconductor light source 4, and the semiconductor photodetectors 5 and 5a are integrated on the substrate 1. Has been done. In FIG. 1, an optical waveguide 2c is optically coupled to the semiconductor photodetector 5,
Two optical waveguides 2b and 2d (hereinafter referred to as light source side optical waveguides) are formed so as to sandwich the semiconductor light source 4, and the semiconductor light source 4 and the two light source side optical waveguides 2b and 2d are optically connected. There is. Further, a photodetector for monitoring the optical output of the semiconductor light source 4 is provided on the end face 8 of one of the light source side optical waveguides 2d which is not optically connected to the semiconductor light source 4 (hereinafter referred to as the monitor optical waveguide end face). 5a (hereinafter referred to as a monitor photodetector) is installed. At this time, since the two light source side optical waveguides 2b and 2d are normally formed at the same time by using a lithography process, the optical axes are exactly the same, and the optical axes of the light emitting end faces on both sides of the semiconductor light source 4 are also natural. Since they are the same, the optical connection structure of the semiconductor light source 4 and the two light source side optical waveguides 2b and 2d are exactly the same. Therefore, the deterioration amount of the output level of the semiconductor light source 4 itself, which is a factor of the variation of the transmission level, or the change amount of the optical coupling efficiency due to the time-dependent shift of the optical axes of the semiconductor light source 4 and the optical waveguide 2b, is simultaneously monitored. Since it can be measured by the detector 5a, by controlling the injection current to the semiconductor light source 4 by using the output of the monitoring photodetector 5a, the transmission level can always be maintained at a constant value.

【0010】また、半導体光源4を光導波路2bと光学
的に結合する際に、先に光回路上に設置されたモニター
用光検出器5a及びそれと光学的に接続された光源側光
導波路2dの光学系を用いて行うことができるため、各
半導体光素子の設置は個別に計測しながら行わなければ
ならなかった従来の構造に比べ、生産性は大幅に向上す
る。
When the semiconductor light source 4 is optically coupled to the optical waveguide 2b, the monitor photodetector 5a previously installed on the optical circuit and the light source side optical waveguide 2d optically connected thereto. Since it can be performed using an optical system, the productivity is significantly improved compared to the conventional structure in which each semiconductor optical element must be installed while being individually measured.

【0011】図2は本発明による光回路の別の実施例の
構造を示す平面図である。図2ではモニター用光導波路
端面8が光軸に対して45度傾いた後にモニター用光検
出器5aと光学的に接続されている。効果は図1と同一
であるが、モニター用光検出器5aに入射する光軸が、
半導体光源4や光導波路2等の光軸と平行でないため、
半導体光源4を光導波路2bと光学的に結合する際に結
合損失として発生する反射光や漏れ光及び伝搬損失とし
て現れる光導波路2からの漏れ光がモニター用光検出器
5aに入射する光量が少なくなる。従って、より正確な
送信レベルのモニターが可能となる。なお、図2の構造
でモニター用光導波路端面8の傾きは何度でもよく、ま
た、曲がり光導波路など用いて、光軸を変えても良い。
FIG. 2 is a plan view showing the structure of another embodiment of the optical circuit according to the present invention. In FIG. 2, the end face 8 of the monitor optical waveguide is optically connected to the monitor photodetector 5a after being inclined by 45 degrees with respect to the optical axis. The effect is the same as in FIG. 1, but the optical axis incident on the monitor photodetector 5a is
Since it is not parallel to the optical axis of the semiconductor light source 4 or the optical waveguide 2,
When the semiconductor light source 4 is optically coupled to the optical waveguide 2b, reflected light or leakage light generated as coupling loss and leakage light from the optical waveguide 2 that appears as propagation loss are incident on the monitor photodetector 5a in a small amount. Become. Therefore, more accurate transmission level monitoring is possible. In the structure shown in FIG. 2, the monitor optical waveguide end face 8 may be tilted any number of times, or the optical axis may be changed by using a curved optical waveguide or the like.

【0012】なお、基板1及び光導波路2の材料は限定
されないのは明らかである。図1及び図2における導波
路2b及び2cは前述の第1及び第2の光導波路にそれ
ぞれ相当し、半導体光検出器5及び5aが前述の第1及
び第2の半導体光検出器にそれぞれ相当する。
Obviously, the materials of the substrate 1 and the optical waveguide 2 are not limited. The waveguides 2b and 2c in FIGS. 1 and 2 correspond to the above-described first and second optical waveguides, respectively, and the semiconductor photodetectors 5 and 5a correspond to the above-described first and second semiconductor photodetectors, respectively. To do.

【0013】[0013]

【発明の効果】本発明による光導波路、半導体光源、半
導体光検出器を同一基板上に集積した光回路を用いれ
ば、完全に安定な動作が得られる双方向光通信用光送受
信器を実現する光回路が得られる。即ち、本発明では従
来の構造と異なり、半導体光源を挟んで2本の光導波路
が形成され、かつこの2本の光導波路の一方の光導波路
の端面に送信レベルをモニターする半導体光検出器を具
備している。従って、送信レベルが変動する要因である
半導体光源自体の劣化量、または、半導体光源と光導波
路の経時的な光軸のずれによる光結合効率の変化量を同
時に計測することができるから、モニター用の半導体光
検出器の出力を用いて半導体光源への注入電流を制御す
ることにより、送信レベルを常に一定値に保つことがで
きる。すなわち、完全に安定な動作が得られる双方向光
通信用光送受信器を実現する光回路を得ることができ
る。また、半導体光源を光導波路と光学的に結合する際
に、先に光回路上に設置されたモニター用半導体光検出
器及びそれと光学的に接続された光導波路の光学系を用
いて行うことができるため、各半導体光素子の設置は個
別に計測しながら行わなければならなかった従来の構造
に比べ、生産性は大幅に向上する。
By using the optical circuit in which the optical waveguide, the semiconductor light source, and the semiconductor photodetector according to the present invention are integrated on the same substrate, an optical transceiver for bidirectional optical communication can be realized in which a completely stable operation can be obtained. An optical circuit is obtained. That is, in the present invention, unlike the conventional structure, a semiconductor photodetector in which two optical waveguides are formed so as to sandwich a semiconductor light source, and a transmission level is monitored at an end face of one of the two optical waveguides. It has. Therefore, it is possible to simultaneously measure the deterioration amount of the semiconductor light source itself, which is a factor that changes the transmission level, or the change amount of the optical coupling efficiency due to the time lag of the optical axis of the semiconductor light source and the optical waveguide. By controlling the injection current to the semiconductor light source by using the output of the semiconductor photodetector, the transmission level can be always maintained at a constant value. That is, it is possible to obtain an optical circuit that realizes an optical transceiver for bidirectional optical communication that can obtain a completely stable operation. Further, when the semiconductor light source is optically coupled to the optical waveguide, it can be performed by using the monitor semiconductor photodetector previously installed on the optical circuit and the optical system of the optical waveguide optically connected thereto. Therefore, the productivity is significantly improved as compared with the conventional structure in which each semiconductor optical element has to be installed while being individually measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である光回路の構造を示した
平面図である。
FIG. 1 is a plan view showing a structure of an optical circuit according to an embodiment of the present invention.

【図2】本発明の他の実施例である光回路の構造を示し
た平面図である。
FIG. 2 is a plan view showing the structure of an optical circuit according to another embodiment of the present invention.

【図3】従来の光回路の構造を示す平面図である。FIG. 3 is a plan view showing the structure of a conventional optical circuit.

【符号の説明】 1 基板 2,2a 光導波路 2b,2d 光源側光導波路 2c 光検出器側光導波路 3 光ファイバ 4 半導体光源 5 半導体光検出器 5a モニター用光検出器 6 電子デバイス 7 光パワー分岐または光波長分波機能光回路 8 モニター用光導波路端面[Explanation of reference signs] 1 substrate 2, 2a optical waveguide 2b, 2d light source side optical waveguide 2c photodetector side optical waveguide 3 optical fiber 4 semiconductor light source 5 semiconductor photodetector 5a monitor photodetector 6 electronic device 7 optical power branch Or optical wavelength demultiplexing function Optical circuit 8 Optical waveguide end face for monitor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光の合分岐または合分波機能を有する光
導波路が基板上に形成され、また、半導体光源および第
1の半導体光検出器が前記光導波路のうちの互いに近接
した第1及び第2の光導波路のそれぞれの端面付近の前
記基板上に設置され、かつ、該第1及び第2の光導波路
に光学的にそれぞれ接続された光回路において、前記半
導体光源を挟んで2本の光導波路が形成され、これら2
本の光導波路のうちの一方は前記第1の光導波路であ
り、かつ該2本の光導波路のうちの他方の光導波路の端
面に第2の半導体光検出器を具備していることを特徴と
する光回路。
1. An optical waveguide having a function of multiplexing / branching or multiplexing / demultiplexing light is formed on a substrate, and a semiconductor light source and a first semiconductor photodetector are provided in a first and a second of the optical waveguides which are close to each other. In an optical circuit installed on the substrate near each end face of the second optical waveguide and optically connected to the first and second optical waveguides, two semiconductor optical sources are sandwiched between the two optical circuits. An optical waveguide is formed and these 2
One of the two optical waveguides is the first optical waveguide, and a second semiconductor photodetector is provided on an end face of the other optical waveguide of the two optical waveguides. And optical circuit.
JP3273313A 1991-09-25 1991-09-25 Optical circuit Pending JPH0591054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273313A JPH0591054A (en) 1991-09-25 1991-09-25 Optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273313A JPH0591054A (en) 1991-09-25 1991-09-25 Optical circuit

Publications (1)

Publication Number Publication Date
JPH0591054A true JPH0591054A (en) 1993-04-09

Family

ID=17526139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273313A Pending JPH0591054A (en) 1991-09-25 1991-09-25 Optical circuit

Country Status (1)

Country Link
JP (1) JPH0591054A (en)

Similar Documents

Publication Publication Date Title
US10935820B2 (en) Method and system for integrated power combiners
US6744945B2 (en) Wavelength multiplexer and optical unit
EP0822676A2 (en) Optical integrated circuit for bidirectional communications and method for producing the same
EP0613263A1 (en) Optical network comprising a compact wavelength-dividing component
JP2919329B2 (en) Optical transceiver module
US4910727A (en) Optical transceiver having waveguide couplers for filtering and duplexing transmit and receive wavelengths
US10892845B2 (en) Method and system for a free space CWDM MUX/DEMUX for integration with a grating coupler based silicon photonics platform
GB2251957A (en) "Wavelength (DE) multiplex optical coupler"
US20190052362A1 (en) Method And System For A Free Space CWDM MUX/DEMUX For Integration With A Grating Coupler Based Silicon Photonics Platform
JPH1168705A (en) Two-way wdm optical transmission reception module
US7142740B2 (en) Planar lightwave circuit type optical transceiver module
US6480647B1 (en) Waveguide-type wavelength multiplexing optical transmitter/receiver module
US20040086214A1 (en) Optical circulator for bi-directional communication
EP0518570B1 (en) Optical wavelength-division multiplex modules
GB2384572A (en) Optical waveguide tap with multimode interferometer(MMI)
JPH05203830A (en) Optical multiplexer demultiplexer
US6751375B1 (en) Self-referencing tunable add-drop filters
JPH0591054A (en) Optical circuit
JP3219781B2 (en) Optical circuit
JPH0591049A (en) Optical circuit
JP3120777B2 (en) Optical waveguide type signal light monitor device
JPH01222216A (en) Waveguide type polarization plane controller
KR101501140B1 (en) Planar Lightwave Circuit Module Having an Improved Structure of an Optical Power Monitor
JPH05181035A (en) Optical demultiplexing and branching device
JP3120774B2 (en) Optical transmitting / receiving module and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000229