JPH01222216A - Waveguide type polarization plane controller - Google Patents

Waveguide type polarization plane controller

Info

Publication number
JPH01222216A
JPH01222216A JP4888888A JP4888888A JPH01222216A JP H01222216 A JPH01222216 A JP H01222216A JP 4888888 A JP4888888 A JP 4888888A JP 4888888 A JP4888888 A JP 4888888A JP H01222216 A JPH01222216 A JP H01222216A
Authority
JP
Japan
Prior art keywords
waveguide
light
optical
mode
optical waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4888888A
Other languages
Japanese (ja)
Inventor
Harumi Fujima
晴美 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4888888A priority Critical patent/JPH01222216A/en
Publication of JPH01222216A publication Critical patent/JPH01222216A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type

Abstract

PURPOSE:To facilitate an axis aligning operation process and to realize high accuracy and small size by separating received light which is made incident on a three-dimensional waveguide in two orthogonal polarization directions, and rotating the plane of polarization of one separated light beams by 90 deg. and multiplexing it with the other light beam in in-phase relation. CONSTITUTION:A waveguide type polarization beam splitter 20, a mode converting element 30, a phase shifter 40, and an optical coupler 50 are provided on a substrate 10 which has optical waveguides 11 and 12. Then the incident light is separated into two orthogonal polarization-directional components, which are propagated in the different optical waveguides. Further, the plane of polarization is rotated by 90 deg. in at least one of those optical waveguides 11 and 12 and the phase of the waveguide propagated light is shifted in one of the optical waveguides 11 and 12. Further, a coupler coupling quantity and the shift quantity of the phase shifter 40 are varied so that the output light intensity is maximum. Consequently, the axis aligning process is facilitated and the high accuracy and size reduction are obtained.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、光フアイバセンサや光コヒーレント通信に用
いられる光集積回路に係わり、特に導波路型偏波面制御
装置及びこれに用いる導波路型偏光ビームスプリッタに
関する。
Detailed Description of the Invention [Objective of the Invention 1 (Field of Industrial Application) The present invention relates to optical integrated circuits used in optical fiber sensors and optical coherent communications, and particularly relates to waveguide type polarization control devices and the like. The present invention relates to a waveguide type polarizing beam splitter to be used.

(従来の技術) 光フアイバセンサやコヒーレント通信において用いられ
ている光ヘテロダイン、光ホモダイン受信装置等におい
ては、システムの性能を向上させるために受信光の偏波
面を制御することが重要である。即ち、光ファイバを伝
搬してきた信号光の偏波方向は、敷設時における光ファ
イバのねじれや曲がり、更には光フアイバ接続点におい
て不規則に変化しているため、受信光と検波に用いる局
発光との偏波面を完全に一致させることが難しい。そし
て、受信光と局発光との偏波面が一致していないと、受
信装置における検波効率、SNの低下、受光レベルの低
下等の多くの問題が発生することになる。
(Prior Art) In optical heterodyne and optical homodyne receivers used in optical fiber sensors and coherent communications, it is important to control the plane of polarization of received light in order to improve system performance. In other words, the polarization direction of the signal light propagating through the optical fiber changes irregularly due to the twisting and bending of the optical fiber during installation, as well as at the connection point of the optical fiber. It is difficult to completely match the plane of polarization with the If the planes of polarization of the received light and the local light do not match, many problems will occur, such as a decrease in detection efficiency, SN, and light reception level in the receiver.

受信先と局発光との偏波面を一致さ勧る方法としては、
次の■〜■の方法が提案されている。
The method to recommend matching the polarization planes of the receiving destination and the local light is as follows:
The following methods ■ to ■ have been proposed.

■ 伝送路自体に、偏波面保存型である定偏波光ファイ
バを用いる方法。
■ A method that uses a polarization-maintaining optical fiber for the transmission line itself.

■ 受信装置側で用いられる局部発振用半導体レーザ光
の偏波面を、受信光の偏波面に合わせる方法。
■ A method of matching the polarization plane of the local oscillation semiconductor laser light used on the receiver side to the polarization plane of the received light.

■ 偏光ビームスプリッタを用いて受信光の偏波面を2
方向に分割し、各々局発用半導体レーザと混合して別々
に光受信器であるPDにより電気信号に弯換する方法。
■ The plane of polarization of the received light is divided into two using a polarizing beam splitter.
A method in which the signal is divided into two directions, each mixed with a local oscillation semiconductor laser, and converted into an electrical signal by a separate PD, which is an optical receiver.

しかしながら、これらの方法にあっては次のような問題
があった。即ち、定偏波光ファイバを用いる■の方法で
は、原理的に受信装置側で偏波面制御を必要としないが
、光フアイバ接続点において偏波面を合わせる必要があ
る。このため、偏波面を手動で制御しなければならず、
各受信装置毎に綿密な偏波面調整作業が必要になる問題
がある。
However, these methods have the following problems. That is, in the method (2) using a polarization constant optical fiber, in principle there is no need to control the plane of polarization on the receiver side, but it is necessary to match the plane of polarization at the optical fiber connection point. Therefore, the plane of polarization must be controlled manually,
There is a problem in that careful polarization plane adjustment work is required for each receiving device.

また、導波路型素子を用いた方法で、位相変調素子とT
E/TMモード変換素子の2つを用いて受信先の偏波面
を制御する方法もあるが、この場合は1本の光導波路で
偏波面を制御するので、偏波面の変化が急激な場合の追
従性に問題がある。さらに、調整すべき箇所が3箇所も
あるため、制御系が複雑になる問題があった。
In addition, by a method using a waveguide type element, a phase modulation element and T
There is also a method of controlling the polarization plane of the receiving destination using two E/TM mode conversion elements, but in this case, the polarization plane is controlled with one optical waveguide, so it is difficult to control the polarization plane when the polarization plane changes rapidly. There is a problem with followability. Furthermore, since there are three locations to be adjusted, there is a problem that the control system becomes complicated.

局発用LDの偏波面を伝送路である光フアイバ出力端で
の信号光の偏波面に合わせる■の方法は、元々光強度が
小さい信号光の一部を取出し波長板等で2つの直交する
偏波方向の強度を7111定したのち、信号光と局発光
との偏波面を合わせるものであり、光ファイバ型ファラ
デー回転素子、λ/4回転素子等大型の光学部品を必要
とし形状的に大型なものである。さらに、受光レベルの
低下並びに偏波面を測定する際の精度が低いと言う問題
があった。
Method (2), which matches the polarization plane of the local LD to the polarization plane of the signal light at the output end of the optical fiber, which is the transmission path, takes a part of the signal light, which originally has low optical intensity, and divides it into two orthogonal waves using a wave plate, etc. After determining the intensity in the polarization direction, the polarization planes of the signal light and the local light are matched, and it requires large optical components such as an optical fiber type Faraday rotation element and a λ/4 rotation element, making it large in shape. It is something. Further, there were problems in that the level of received light was reduced and the precision in measuring the plane of polarization was low.

受信光を偏光ビームスプリッタやモードスプリッタ等の
光学部品を用い直交する2つの偏光に分離したのち、各
々局発用半導体レーザと混合して別々に受信し電気領域
で合成する■の方法は、本質的に光検出器であるPDを
2つ必要とし、またり1純に合成するだけでは検波効率
が低下するため、電気信−号での位相を一致させる必要
があり、電気回路が大きくなる等の問題があった。さら
に、波長多重伝送による光通信システム等の場合、分波
損失が大きい等の問題があった。
The essence of method (2) is to separate the received light into two orthogonal polarized lights using optical components such as a polarizing beam splitter or mode splitter, mix them with a local oscillating semiconductor laser, receive them separately, and combine them in the electrical domain. Generally speaking, two PDs, which are photodetectors, are required, and simply combining them into one will lower the detection efficiency, so it is necessary to match the phase of the electrical signals, which increases the size of the electrical circuit, etc. There was a problem. Furthermore, in the case of optical communication systems using wavelength division multiplex transmission, there are problems such as large demultiplexing loss.

一方、受信光を2つの偏波方向成分に分離する偏光ビー
ムスプリッタとしては、バルク型のものと導波路型のも
のとがある。バルク型偏光ビームスプリッタはウォラス
トンプリズム等が用いられているが、これは形状的に大
きく集積化に向がない。導波路型偏光ビームスプリッタ
としては、以下に説明するような回路素子がある。
On the other hand, there are two types of polarizing beam splitters that separate received light into two polarization direction components: bulk type and waveguide type. A Wollaston prism or the like is used as a bulk polarizing beam splitter, but this is large in shape and is not suitable for integration. Waveguide type polarizing beam splitters include circuit elements as described below.

第7図は、基板70上に2つのスラブ型単一モード光導
波路71.72が一部分において近接した積層型方向性
結合器タイプのTE/TMモードスプリッタ、即ち偏光
ビームスプリッタである。
FIG. 7 shows a stacked directional coupler type TE/TM mode splitter, that is, a polarizing beam splitter, in which two slab type single mode optical waveguides 71 and 72 are partially close to each other on a substrate 70.

多層誘電体導波路ではTEと7Mモードの分散は大きく
異なっていることを利用したもので、光導波路71.7
2の導波モード伝搬定数をβ1゜β2とし、低屈折率誘
電体中間層の厚さをTEモードでβ1とβ2が同じにな
るように、また7Mモードではβ1とβ2が大きく異な
るように設定し、近接領域即ち結合領域の長さをTEモ
ードで完全結合長となるようにすることで実現したもの
である。このとき、導波路71に入射した光の内TEモ
ードは導波路72から取出され、TMモ−ドは導波路7
1から取出されることになる。
This method takes advantage of the fact that the dispersion of TE and 7M modes in multilayer dielectric waveguides is significantly different.
The propagation constant of the guided mode of 2 is β1°β2, and the thickness of the low refractive index dielectric intermediate layer is set so that β1 and β2 are the same in TE mode, and so that β1 and β2 are significantly different in 7M mode. However, this was realized by making the length of the adjacent region, that is, the bonding region, the perfect bonding length in the TE mode. At this time, the TE mode of the light incident on the waveguide 71 is extracted from the waveguide 72, and the TM mode is extracted from the waveguide 72.
It will be taken out from 1.

しかし、このタイプのTE/TMモードスプリッタでは
、作成上TEモードでβlとβ2が同じになるように低
屈折率誘電体中間層の厚さを設定すること、並びに完全
結合長となるように結合領域の長さを設定することが非
常に難しいと言う問題があり、性能のバラツキが大きい
。さらに、光フアイバセンサとして用いる場合、基本的
に横方向の光閉込め効果が導波路にないため、このモー
ドスプリッタの他にバルク型レンズ等の光学部品が必要
とされ、光軸合わせ作業が必要となっていた。
However, in this type of TE/TM mode splitter, the thickness of the low refractive index dielectric intermediate layer must be set so that βl and β2 are the same in the TE mode, and the coupling must be made to have a perfect bond length. There is a problem in that it is very difficult to set the length of the area, and the performance varies widely. Furthermore, when used as an optical fiber sensor, since the waveguide basically has no lateral light confinement effect, optical components such as bulk lenses are required in addition to this mode splitter, and optical axis alignment work is required. It became.

他には、第8図に示すような3次元光導波路74.75
を一部分において近接して設置し、近接領域の長さをT
Eモードに対して完全結合長となるように作成し、TE
モードが出力される導波路75の上部に負の誘電率を有
する金属76を載せることを特徴としたTE/TMモー
ドスプリッタが提案されている。これは、負の誘電率を
有する金属76を導波路75上に載せることによって導
波路75の実効屈折率が7Mモードでおよそ10−”稈
度減少するのに対しTEモードではlO′5程疫と1桁
影響が小さいことを利用したものである。
In addition, three-dimensional optical waveguides 74, 75 as shown in FIG.
are placed close to each other in a part, and the length of the adjacent area is T.
Created to have a perfect bond length for E mode, and TE
A TE/TM mode splitter has been proposed in which a metal 76 having a negative dielectric constant is placed on top of a waveguide 75 through which a mode is output. This is because the effective refractive index of the waveguide 75 is reduced by about 10-'' in the 7M mode by placing the metal 76 with a negative permittivity on the waveguide 75, whereas in the TE mode it is reduced by about 1O'5. This takes advantage of the fact that the effect is one order of magnitude smaller.

このモードスプリッタでも完全結合長を実現する必要が
あり、金属膜を載せることで7Mモードの光は損失が大
きくなる等の問題がある。さらに、モードスプリッティ
ング比で1OdB程度しか実現できない等の特性的問題
、使用光波長が数nl変化した場合でも大きく特性が劣
化すると言う問題も有している。
This mode splitter also needs to realize a perfect coupling length, and the presence of a metal film causes problems such as increased loss of light in the 7M mode. Furthermore, there are also characteristic problems such as the mode splitting ratio being only about 1 OdB, and the problem that the characteristics deteriorate significantly even if the optical wavelength used changes by several nanoliters.

(発明が解決しようとする課題) このように、従来の光フアイバセンサや光コヒーレント
通信に用いられている偏波面制御装置は、作成方法が非
常に難しく調整に人手を多く必要とし、さらに形状が大
きく制御系が複雑と言った数多くの問題を付していた。
(Problems to be Solved by the Invention) As described above, the polarization plane control devices used in conventional optical fiber sensors and optical coherent communications are extremely difficult to manufacture, require a lot of manpower to adjust, and have a large shape. It had many problems, including a complicated control system.

また、従来のTE/TMモードスプリッタには、作成方
法が非常に難しく性能のバラツキが大きい1.軸合わせ
が必要である等の問題があった。
In addition, conventional TE/TM mode splitters have the following problems: 1. The manufacturing method is very difficult and the performance varies widely. There were problems such as the need for axis alignment.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、作成方法及び調整工程を簡略化するこ
とができ、且つ高信頼化、小型化を可能とし、光フアイ
バセンサや光コヒーレント通信に用いるのに適した導波
路型偏波面制御装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to simplify the manufacturing method and adjustment process, increase reliability, and reduce the size of optical fiber sensors and optical fiber sensors. An object of the present invention is to provide a waveguide type polarization control device suitable for use in coherent communication.

また、本発明の他の目的は、作成方法による性能のバラ
ツキを軽減し、軸合わせ作業工程の簡略化、高信頼化及
び小型化を可能とする高性能な導波路型偏光ビームスプ
リッタを提供することにある。
Another object of the present invention is to provide a high-performance waveguide-type polarizing beam splitter that reduces variations in performance due to manufacturing methods, simplifies the alignment work process, increases reliability, and enables miniaturization. There is a particular thing.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、3次元導波路に入射した受信先を直交
する2偏波方向に分離し、分離した一方の光の偏波面を
90度回転させて他方の光に位相を揃えて合波すること
により、偏波面を1つに合わせることにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to separate the reception destination incident on a three-dimensional waveguide into two orthogonal polarization directions, and to set the polarization plane of one of the separated lights to 90°. The purpose is to match the planes of polarization to one by rotating the light by degrees and combining the light with the same phase with the other light.

即ち本発明は、入射した光を直交する2偏波方向成分に
分離し、各々の成分に対して伝搬する光導波路を異なら
せる導波路型偏向ビームスプリッタと、このビームスプ
リッタにより分離された光をそれぞれ伝搬する2本の3
次元光導波路と、これらの光導波路の一方で導波光偏波
面を90度回転せしめるTE/TMモード変換素子と、
前記光導波路の少なくとも一方で導波路伝搬光の位相を
変化させる位相シフタと、前記光導波路を伝搬した光を
結合する光カプラとを、それぞれ同一基板上に集積形成
してなる導波路型偏波面制御装置であって、前記光カプ
ラの出力光強度が最大となるようにカプラ結合量及び前
記位相シフタのシフト量を変化させるようにしたもので
ある。
That is, the present invention provides a waveguide-type deflection beam splitter that separates incident light into two orthogonal polarization direction components and propagates each component through a different optical waveguide, and a waveguide-type polarization beam splitter that separates the light separated by the beam splitter. Two 3s each propagating
dimensional optical waveguides, a TE/TM mode conversion element that rotates the polarization plane of guided light by 90 degrees on one of these optical waveguides,
A waveguide-type polarized waveguide comprising a phase shifter that changes the phase of waveguide-propagated light on at least one side of the optical waveguide, and an optical coupler that couples the light propagated in the optical waveguide, each integrated on the same substrate. The control device changes the coupler coupling amount and the shift amount of the phase shifter so that the output light intensity of the optical coupler becomes maximum.

また本発明は、上記装置に用いる導波路型偏光ビームス
プリッタにおいて、基板上に2本の3次元単一モード光
導波路を集積形成すると共に、これらの光導波路の少な
くとも一方を曲折し、他方の光導波路に対して電気光学
係数の小さい方向に1−光した光が100%結合するよ
うに、所定間隔で所定幅に渡って近接する近接領域を設
け、該近接部分の導波路の電気光学係数の大きい方向の
屈折率成分を電気光学効果により変化せしめる複数の電
極、さらに該電極と導波路との間に導波路コア部分より
も低屈折率である誘電体層を設け、電極に印加する電圧
を調整することにより電気光学係数の大きい方向に偏光
した光が0%結合となるように設定するようにしたもの
である。
The present invention also provides a waveguide-type polarizing beam splitter used in the above device, in which two three-dimensional single mode optical waveguides are integrally formed on a substrate, and at least one of these optical waveguides is bent, and the other optical waveguide is bent. Proximity regions are provided adjacent to the waveguide over a predetermined width at predetermined intervals so that 100% of the light emitted in the direction of the smaller electro-optic coefficient is coupled to the waveguide, and the electro-optic coefficient of the waveguide in the proximal portion is A plurality of electrodes that change the refractive index component in a large direction by an electro-optical effect are provided, and a dielectric layer having a refractive index lower than that of the waveguide core is provided between the electrodes and the waveguide, and a voltage applied to the electrodes is provided. By adjusting it, it is set so that light polarized in the direction with a large electro-optic coefficient is coupled at 0%.

(作 用) 本発明によれば、3次元光導波路に入射した光フアイバ
光、即ち受信光は導波路型偏光ビームスプリッタにより
直交する2偏波底分に分離され、それぞれ異なる光導波
路に伝搬される。光導波路に伝送された光の一方はTE
/TMモード変換素子により偏波面を90度回転され、
さらにそれぞれの光の位相が位相シフタにより揃えられ
る。そして、この状態で光カプラにて2つの光が合波さ
れるので、カプラからは偏波面の制御された受信光が得
られることになる。
(Function) According to the present invention, the optical fiber light that has entered the three-dimensional optical waveguide, that is, the received light, is separated into two orthogonal polarization bases by the waveguide type polarization beam splitter, and each is propagated to a different optical waveguide. Ru. One side of the light transmitted to the optical waveguide is TE
/The plane of polarization is rotated by 90 degrees by the TM mode conversion element,
Furthermore, the phases of the respective lights are aligned by a phase shifter. In this state, the two lights are combined by the optical coupler, so that the coupler provides received light with a controlled plane of polarization.

一方、導波路型偏光ビームスプリッタでは、−方の光導
波路が他方の光導波路に対しTE又はTMMモード一方
が100%結合し、他方のモードが0%結合となるので
、受信光を完全に2つの偏波方向に分けることが可能と
なる。
On the other hand, in a waveguide-type polarizing beam splitter, the - side optical waveguide couples 100% of the TE or TMM mode to the other optical waveguide, and 0% coupling of the other mode, so the received light is completely split into two. It becomes possible to separate the waves into two polarization directions.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

まず、第1図に示すように基板10上に光導波路11.
12を形成し、さらに導波路型偏光ビームスプリッタ2
0.TE−7Mモード変換素子30、位相シフタ40及
び光カプラ50の4つの素子を形成した導波路型光集積
回路を考える。導波路型偏光ビームスプリッタ20の入
口に先ファイバ60を接続させ、偏光ビームスプリッタ
20の出口側の2本の光導波路を11.12とする。
First, as shown in FIG. 1, an optical waveguide 11.
12, and further a waveguide type polarizing beam splitter 2
0. Consider a waveguide type optical integrated circuit formed with four elements: a TE-7M mode conversion element 30, a phase shifter 40, and an optical coupler 50. The front fiber 60 is connected to the entrance of the waveguide type polarizing beam splitter 20, and the two optical waveguides on the exit side of the polarizing beam splitter 20 are designated 11 and 12.

3次元光導波路に入射した信号光は、基板垂直方向、水
平方向の2つの偏光成分に分離され、伝搬することにな
る。この2つの偏波方向、即ちTE。
The signal light incident on the three-dimensional optical waveguide is separated into two polarized components, one in the direction perpendicular to the substrate and one in the horizontal direction, and propagated. These two polarization directions, namely TE.

T Mモードの光は偏光ビームスプリッタ20により光
導波路11.12に分離される。
The TM mode light is separated into optical waveguides 11 and 12 by a polarizing beam splitter 20.

光導波路11に伝搬した光のモードを今TMモードとす
ると、光導波路11の伝搬光はTE−7Mモード変換素
子30によってTEモードに変換される。光導波路12
を伝搬する光はTEモードである。ここで、位相シフタ
40によって光導波路12の伝搬光の位相を変化させ、
光カプラ50の入口での位相を光導波路11を伝搬する
光と合わせることにより、カプラ50の出口側の導波路
11に出力する光強度を最大にすることができる。
Assuming that the mode of the light propagated to the optical waveguide 11 is now the TM mode, the propagated light of the optical waveguide 11 is converted to the TE mode by the TE-7M mode conversion element 30. Optical waveguide 12
The light propagating is in TE mode. Here, the phase of the light propagating in the optical waveguide 12 is changed by the phase shifter 40,
By matching the phase at the entrance of the optical coupler 50 with the light propagating through the optical waveguide 11, the light intensity output to the waveguide 11 on the exit side of the coupler 50 can be maximized.

さらに、光フアイバ出力端での信号光の偏波方向は一定
でないため、光導波路11.12を伝搬する光の強度は
一定とはならない。そこで、光カプラ50の結合比を出
口における光強度が最大となるように変化させることで
、原理的に光フアイバ出射光の偏波面を一方向に限定し
制御することができる。
Furthermore, since the polarization direction of the signal light at the output end of the optical fiber is not constant, the intensity of the light propagating through the optical waveguides 11 and 12 is not constant. Therefore, by changing the coupling ratio of the optical coupler 50 so that the light intensity at the exit becomes maximum, it is possible in principle to limit and control the polarization plane of the light emitted from the optical fiber to one direction.

ここで、TE−TMモード変変換素子30偵光カプラ5
0との間にあればどのような組合わせで配置してもよい
。また、偏光ビームスプリッタ20により光導波路11
にTMモード光が、光導波路12にTEモード光が出て
くるようにする必要はなく、逆であってもよいことは明
白である。
Here, TE-TM mode conversion element 30 reconnaissance coupler 5
They may be arranged in any combination between 0 and 0. In addition, the optical waveguide 11 is
It is clear that it is not necessary that the TM mode light comes out of the optical waveguide 12 and the TE mode light comes out of the optical waveguide 12; the reverse is also possible.

さらに、位相シフタ40は、光導波路12に配置する必
要はなく光導波路11に配置してもよく、また光導波路
11.12の両方に配置してもよいことは明白である。
Furthermore, it is clear that the phase shifter 40 need not be arranged in the optical waveguide 12, but may be arranged in the optical waveguide 11, or in both the optical waveguides 11, 12.

次に、上記装置のより具体的な実施例について説明する
Next, a more specific example of the above device will be described.

く第1の実施例〉 この実施例では、第2図に示す如く、導波路としてLi
NbO3結晶基板10上にTiを熱拡散を行った3次元
光導波路を用いた場合である。偏光ビームスプリッタ2
0としてY分岐素子を用いて光導波路11にTEモード
の光を、光導波路12にTMMモード光を分離して伝搬
させる。光導波路12にTM−TEモード変換素子30
を配置してTMMモード光をTEモード光に変換する。
First Example> In this example, as shown in FIG. 2, Li is used as a waveguide.
This is a case in which a three-dimensional optical waveguide in which Ti is thermally diffused on a NbO3 crystal substrate 10 is used. Polarizing beam splitter 2
0, the TE mode light is separated into the optical waveguide 11 and the TMM mode light is separated and propagated into the optical waveguide 12 using a Y branching element. TM-TE mode conversion element 30 in the optical waveguide 12
is arranged to convert TMM mode light into TE mode light.

また、光導波路11には電極2つを載せ電気光学効果に
より位相を変化させる位相シフタ40を配置する。次に
、Y分岐結合器の導波路上に電極を配置した形の光カプ
ラ50に、光導波路11。
Further, a phase shifter 40 having two electrodes and changing the phase by an electro-optic effect is arranged on the optical waveguide 11. Next, the optical waveguide 11 is connected to an optical coupler 50 having electrodes arranged on the waveguide of a Y-branch coupler.

12の光を入射させる。このカプラ50の入口ではTE
モード先のみが入射されており、出口側の光導波路13
の光強度を最大になるようにカプラ上部の電極に印加す
る電圧及び位相シフタ40に印加する電圧を制御する。
12 lights are made incident. At the entrance of this coupler 50, TE
Only the mode destination is incident, and the optical waveguide 13 on the exit side
The voltage applied to the electrode above the coupler and the voltage applied to the phase shifter 40 are controlled so as to maximize the light intensity.

本実施例の場合、先ファイバからの信号光の偏波方向が
変化しても出口の光導波路13にはTE/TMモードス
プリッタ20.TM−TEモード変換素子30の2つに
よってTEモードのみの成分を持つ光として制御される
特徴を有している。
In the case of this embodiment, even if the polarization direction of the signal light from the end fiber changes, the exit optical waveguide 13 is connected to the TE/TM mode splitter 20. It has the characteristic that it is controlled by two TM-TE mode conversion elements 30 as light having only a TE mode component.

さらに、1枚の基板上に集積化できることから、光軸合
わせ等の調整が不要であり、作成が容易であり性能のバ
ラツキ等の問題もない。また、従来装置に比べて遥かに
小型であり、制御系の構成が容易で高安定且つ高性能な
導波路型偏波面制御装置が得られる。
Furthermore, since it can be integrated on a single substrate, there is no need for adjustments such as alignment of optical axes, and it is easy to manufacture and there are no problems such as variations in performance. Furthermore, a waveguide type polarization plane control device that is much smaller than conventional devices, has an easy configuration of a control system, and has high stability and high performance can be obtained.

〈第2の実施例〉 この実施例は、導波路としてLiNbO3結晶基板りに
Tjを熱拡散を行った3次元光導波路を用いた場合であ
る。第3図に示す如く、偏光ビームスプリッタ20とし
て方向性結合器分岐素子を用いて光導波路11にTEモ
ードの光を、光導波路12に7Mモードの光を分離して
伝搬させる。
<Second Example> In this example, a three-dimensional optical waveguide in which Tj is thermally diffused onto a LiNbO3 crystal substrate is used as a waveguide. As shown in FIG. 3, a directional coupler branching element is used as a polarizing beam splitter 20 to separate and propagate TE mode light into the optical waveguide 11 and 7M mode light into the optical waveguide 12.

光導波路11にTE−7Mモード変換素子30を配置し
てTEモード光を7Mモード光に変換する。
A TE-7M mode conversion element 30 is arranged in the optical waveguide 11 to convert TE mode light into 7M mode light.

また、光導波路12には電極2つを載せ電気光学効果に
より位相を変化させた位相シフタ40を配置する。次に
、方向性結合器の導波路上に電極を配置した形の光カプ
ラ50に光導波路11.12の伝搬光を入射させる。こ
の先カプラ50の入口では7Mモード光のみが入射され
ており、出口側の光導波路11の光強度を最大になるよ
うにカプラl′、部の電極に印加する電圧及び位相シフ
タ40に印加する電圧を制御する。
Further, a phase shifter 40 having two electrodes and changing the phase by an electro-optic effect is disposed on the optical waveguide 12. Next, the propagating light of the optical waveguides 11 and 12 is made to enter an optical coupler 50 having an electrode arranged on the waveguide of the directional coupler. Only the 7M mode light is incident on the entrance of the coupler 50, and the voltage applied to the electrode of the coupler l' and the voltage applied to the phase shifter 40 are applied so as to maximize the light intensity of the optical waveguide 11 on the exit side. control.

本実施例の場合、光ファイバからの信号光の偏波ノJ°
向か変化しても出口の光導波路11にはTE/T〜1モ
ードスプリッタ20.TE−7Mモード変換素子30の
2つによって7Mモードのみの成分を持つ光として制御
される特徴を有している。
In the case of this example, the polarization of the signal light from the optical fiber J°
Even if the direction changes, the exit optical waveguide 11 has a TE/T~1 mode splitter 20. It has the characteristic that it is controlled by two TE-7M mode conversion elements 30 as light having only a 7M mode component.

また、信号光の強度が最大となるように結合量。Also, the amount of coupling is determined so that the intensity of the signal light is maximized.

位相シフト量を調整するには光導波路11.12からの
光強度の比を参照すればよく、送信側の光信号強度が変
化しても影響がないという特徴も有している。さらに、
1枚の基板上に集積化できることから、光軸合わせ等の
調整が不要であり、作成が容易である性能のバラツキ等
の問題もない。
To adjust the amount of phase shift, it is sufficient to refer to the ratio of the light intensities from the optical waveguides 11 and 12, and it also has the feature that it has no effect even if the optical signal intensity on the transmitting side changes. moreover,
Since it can be integrated on a single substrate, there is no need for adjustments such as alignment of optical axes, and there are no problems such as variations in performance, which are easy to manufacture.

また、従来装置に比べて遥かに小型であり、制御系の構
成が容易で高安定nつ高性能な導波路型偏波面制御装置
が得られる。
Furthermore, a waveguide type polarization plane control device that is much smaller than conventional devices, has an easy configuration of a control system, and has high stability and high performance can be obtained.

一方、上述した導波路型偏波面制御装置に用いる偏光ビ
ームスプリッタとして、第4図に示す如き構造を考察す
る。即ち、2つの単一モード3次元光導波路が一部分お
いて近接しており、その近接領域において導波路間隔G
が一定であり、幅即ち光伝搬方向の長さが所定長りを満
たすように作成され、その上部に導波路間隔Cよりも小
さい間隔G′を有する2つの電極を長さしで載せた構造
体を考察する。
On the other hand, a structure as shown in FIG. 4 will be considered as a polarizing beam splitter used in the above-mentioned waveguide type polarization control device. In other words, two single-mode three-dimensional optical waveguides are close to each other, and the waveguide spacing G is small in the close area.
is constant, the width, that is, the length in the light propagation direction, is made to satisfy a predetermined length, and two electrodes having a distance G' smaller than the waveguide distance C are placed on top of the structure. Consider the body.

ここで、2つの電極21.22は、光導波路11.12
よりも低屈折率な誘電体である絶縁体の薄@23を介し
て導波路表面に配置する。この近接領域は1.所311
方向性結合器で電気光学係数の小さい方向に偏光したモ
ード即ちTE、或いはTMどちらかのモードに対し完全
結合長となるように長さし2幅Gを設定する。例えば、
′電気光学係数の大きさが基板深さ方向に大きい場合、
光導波路11にTEモード光を入射させると、光導波路
12に′TEモード光が結合し近接領域を通った後で光
導波路11にはTEモード光が出射しないように長さり
1幅Gを設定する。この光回路においてTE、7Mモー
ド両方向の光を入射させた場合、7Mモード光では光導
波路11.12の両方から出射することになる。
Here, the two electrodes 21.22 are connected to the optical waveguide 11.12.
The waveguide is placed on the surface of the waveguide via a thin insulator @23 which is a dielectric material with a lower refractive index. This proximity area is 1. Tokoro 311
In the directional coupler, the length and width G are set so as to provide a complete coupling length for a mode polarized in the direction of the smaller electro-optic coefficient, ie, either TE or TM mode. for example,
'If the electro-optic coefficient is large in the depth direction of the substrate,
When TE mode light enters the optical waveguide 11, the length and width G are set so that the TE mode light is coupled to the optical waveguide 12 and does not exit the optical waveguide 11 after passing through a nearby region. do. When light in both TE and 7M modes is input into this optical circuit, the 7M mode light will be emitted from both optical waveguides 11 and 12.

このとき、電極21.22に電圧を加えると、1人板深
さ方向に電界が大きく印加されることとなり、電気光学
効果により基板深さ方向の屈折率が変化し、7Mモード
光のみの伝搬定数を変化させることができ、結果として
7Mモード光の光導波路12への光結合効率を0%とす
ることができる。
At this time, when a voltage is applied to the electrodes 21 and 22, a large electric field is applied in the depth direction of the substrate, and the refractive index in the depth direction of the substrate changes due to the electro-optic effect, causing propagation of only 7M mode light. The constant can be changed, and as a result, the optical coupling efficiency of 7M mode light to the optical waveguide 12 can be set to 0%.

なお、電極と導波路との間に配置された導波路よりも低
屈折率な誘電体である絶縁体の薄膜23は、TMモード
先の導波損失を低減させるためのものである。
Note that the insulator thin film 23, which is a dielectric material having a lower refractive index than the waveguide and is disposed between the electrode and the waveguide, is for reducing waveguide loss in the TM mode.

もし、電気光学係数の大きさが基板深さ方向に垂直な方
向に大きい場合、即ち7Mモードで完全結合を起こすよ
うに設計されている場合には、電極の位置をずらして配
置することで上記の場合と同一の機能を得ることができ
る。このとき、電極間隔G′は導波路間隔Gよりも小さ
い必要はなく、導波路それ自体と同程度となる。なお、
導波路自体の幅と導波路間隔Gは一般的には同程度と見
なすことができる。
If the magnitude of the electro-optic coefficient is large in the direction perpendicular to the depth direction of the substrate, that is, if the design is designed to cause complete coupling in the 7M mode, it is possible to You can get the same functionality as with . At this time, the electrode spacing G' does not need to be smaller than the waveguide spacing G, and is approximately the same as the waveguide itself. In addition,
The width of the waveguide itself and the waveguide spacing G can generally be considered to be approximately the same.

また、電極の位置及びTE、TMどちらで完全結合長と
なるように設定するかは導波路構造、即ち結晶構造によ
る電気光学効果の大小に依存していることは明らかであ
り、上記の組合せを変えることにより特性の向上がはか
れることになる。さらに、電気光学係数の大きさが基板
深さ方向に大きい場合、TEモードで近接領域長さしが
完全結合長となるように設計されるが、7Mモードでの
完全結合長にLが近く設計されている場合、調整用の1
′G圧は低下する。従って、低電圧駆動のためには両モ
ードで完全結合長が得られるような長さしの近傍におい
てTEモードで完全結合長となるように設計することが
より望ましい。このことは、電気光学係数の大きさが基
板深さ方向に垂直な方向か大きい場合でも同じである。
In addition, it is clear that the position of the electrode and whether to set the perfect coupling length in TE or TM depends on the waveguide structure, that is, the magnitude of the electro-optic effect due to the crystal structure. By changing it, the characteristics can be improved. Furthermore, when the electro-optic coefficient is large in the depth direction of the substrate, the proximal region length is designed to be the perfect coupling length in TE mode, but L is designed close to the perfect coupling length in 7M mode. 1 for adjustment if
'G pressure decreases. Therefore, in order to drive at a low voltage, it is more desirable to design so that the perfect coupling length is obtained in the TE mode in the vicinity of the length where the perfect coupling length can be obtained in both modes. This is true even if the electro-optic coefficient is large in the direction perpendicular to the depth direction of the substrate.

次に、導波路型偏光ビームスプリッタのより具体的な例
について、第5図及び第6図を参照して説明する。この
例は、光導波路基板としてTiを熱拡散したLiNb0
3Z板を用いた場合であり、第5図は断面構造を示し、
第6図は平面構造を示している。導波路幅を8μm、導
波路間隔即ち近接領域の間隔を5μmとし、結合長の長
さ即ち近接領域の幅を9mm1こ設定したもので、10
50℃で5時間の拡散を行つた導波路である。
Next, a more specific example of the waveguide type polarizing beam splitter will be described with reference to FIGS. 5 and 6. In this example, the optical waveguide substrate is LiNb0 with Ti thermally diffused.
This is the case when a 3Z plate is used, and Figure 5 shows the cross-sectional structure.
FIG. 6 shows the planar structure. The waveguide width is 8 μm, the waveguide spacing, that is, the spacing between adjacent regions, is 5 μm, and the coupling length, that is, the width of the adjacent region, is set to 9 mm.
This is a waveguide that underwent diffusion at 50°C for 5 hours.

そして、導波路よりも低屈折率な誘電体である絶縁体2
3として5i02のバッファ層を0.3μm導波路表面
上部に試せ、その上にCr / A uの電極21 (
21a、21b ) 、 22 (22a、22b )
を間隔4μmで試せたものである。いま、導波路11に
波長1.3μmの光をTE、7Mモードを半分づつで入
射させる。電極21.22に電圧を加えない場合、導波
路12の出射側には、TEモードで100%出射され7
Mモードでは80%が出射される。
Insulator 2 is a dielectric material with a lower refractive index than the waveguide.
3, a buffer layer of 5i02 was tried on the top of the 0.3 μm waveguide surface, and an electrode 21 of Cr/Au was placed on top of it.
21a, 21b), 22 (22a, 22b)
was tested with a spacing of 4 μm. Now, light with a wavelength of 1.3 μm is incident on the waveguide 11 in half of the TE mode and half of the light in the 7M mode. When no voltage is applied to the electrodes 21 and 22, the output side of the waveguide 12 has 100% output in the TE mode.
In M mode, 80% is emitted.

ここで、電圧を約7v加えると、電極の真下に導波路が
設定されているため、Z方向のみの屈折率、即ち7Mモ
ード光の屈折率が変化し、結果として2つの導波路間結
合係数が変化し、導波路12側には殆ど出射せず導波路
11から100%出射される。このと′きの挿入損失は
約0.8d B以下であり、モードスプリッティング比
で約20dBが得られた。
Here, when a voltage of about 7V is applied, since the waveguide is set directly below the electrode, the refractive index only in the Z direction, that is, the refractive index of 7M mode light, changes, and as a result, the coupling coefficient between the two waveguides changes. changes, almost no radiation is emitted to the waveguide 12 side, and 100% is emitted from the waveguide 11. The insertion loss at this time was about 0.8 dB or less, and a mode splitting ratio of about 20 dB was obtained.

バッファ層23としてはA/2o、を用いてもよいこと
は明らかであり、第5図に示すように電極間隔と同じ又
はそれ以下の間隔で切断しである方が長時間の安定性を
得るためには得策である。
It is clear that A/2O may be used as the buffer layer 23, and as shown in FIG. 5, long-term stability is obtained by cutting at intervals equal to or smaller than the electrode interval. It is a good idea for this purpose.

電極21.22の構造としては、Ti/Au。The structure of the electrodes 21 and 22 is Ti/Au.

T i / P t / A u等を用いてもよく、I
t’や金属単体やAuSi等の金属化合物でもよい。ま
た、導波路のパターニング時の製作方法によりTEモー
ドで100%の結合長とならなかった場合でも、導波路
12に7Mモードの光が出射することはないと言う特徴
を有する。
T i / P t / A u etc. may be used, and I
It may be t', a simple metal, or a metal compound such as AuSi. Furthermore, even if the coupling length is not 100% in the TE mode due to the fabrication method during waveguide patterning, the 7M mode light will not be emitted to the waveguide 12.

この導波路型偏光ビームスプリッタでは使用光波長が数
nII変化しても1つの偏波面が出射する導波路側での
モード分離比が若干低下することはあっても、残りの導
波路側では電圧を再度調整することで特性を劣化させる
ことはない。
In this waveguide-type polarizing beam splitter, even if the used optical wavelength changes by several nanoseconds, the mode separation ratio on the waveguide side where one polarized wave is emitted may decrease slightly, but the voltage on the remaining waveguide side may decrease slightly. The characteristics will not deteriorate by adjusting again.

[発明の効果] 以」二述べたように本発明によれば、光導波路をUする
基板上に導波路型偏光ビームスプリッタ。
[Effects of the Invention] As described above, according to the present invention, a waveguide-type polarizing beam splitter is provided on a substrate that includes an optical waveguide.

モード変換素子1泣相シフタ及び光カプラを設けた構造
としているので、作成方法による性能のバラツキを軽減
し、軸合わせ工程の簡略化、高信頼性、小型化を可能と
し、制御系の構成が容易で高安定11つ高性能の導波路
型偏波面制御装置を実現することができる。従って、光
フアイバ通信や光コヒーレント通信に用いるのに極めて
適している。
Since the structure includes a phase shifter and an optical coupler for the mode conversion element 1, it reduces performance variations due to manufacturing methods, simplifies the axis alignment process, achieves high reliability and miniaturization, and allows the configuration of the control system to be A waveguide type polarization control device that is easy, highly stable, and has high performance can be realized. Therefore, it is extremely suitable for use in optical fiber communications and optical coherent communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明の一実施例を説明するための
もので、第1図は導波路型偏波面制御装置の基本構成を
示す平面図、第2図及び第3図は同装置の具体例を示す
平面図、第4図は導波路型偏光ビームスプリッタの基本
構成を示す斜視図、□第5図は同ビームスプリッタの具
体的構成を示す断面図、第6図と同ビームスプリッタの
具体的構成を示す平面図、第7図及び第8図はそれぞれ
従来の偏光ビームスプリッタの概略構成を示す図である
。 10・・・結晶基板、11,12.13・・・光導波路
、20・・・偏光ビームスプリッタ、21.22・・・
電極、30・・・TE/TMモード変換素子、40・・
・位相シフタ、50・・・光カプラ、60・・・光ファ
イバ。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 第5図 第6図
1 to 6 are for explaining one embodiment of the present invention. FIG. 1 is a plan view showing the basic configuration of a waveguide type polarization control device, and FIGS. 2 and 3 are the same. Figure 4 is a plan view showing a specific example of the device, Figure 4 is a perspective view showing the basic configuration of a waveguide type polarizing beam splitter, Figure 5 is a sectional view showing the specific configuration of the beam splitter, Figure 6 is a perspective view of the same beam A plan view showing a specific configuration of the splitter, and FIGS. 7 and 8 are diagrams each showing a schematic configuration of a conventional polarizing beam splitter. 10... Crystal substrate, 11, 12.13... Optical waveguide, 20... Polarizing beam splitter, 21.22...
Electrode, 30... TE/TM mode conversion element, 40...
- Phase shifter, 50... optical coupler, 60... optical fiber. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)入射した光を直交する2偏波方向成分に分離し、
各々の成分に対して伝搬する光導波路を異ならせる導波
路型偏光ビームスプリッタと、この偏光ビームスプリッ
タにより分離された光をそれぞれ伝搬する2本の3次元
光導波路と、これらの光導波路の一方で導波路伝送光の
偏波面を90度回転させるTE/TMモード変換素子と
、前記光導波路の少なくとも一方で導波路伝搬光の位相
を変化させる位相シフタと、前記光導波路を伝搬した2
つの導波路伝搬光を結合する光カプラとを、それぞれ同
一基板上に集積形成してなり、前記光カプラの出力光強
度が最大となるようにカプラ結合量及び前記位相シフタ
のシフト量を変化させることを特徴とする導波路型偏波
面制御装置。
(1) Separate the incident light into two orthogonal polarization direction components,
A waveguide-type polarizing beam splitter that propagates different optical waveguides for each component, two three-dimensional optical waveguides that respectively propagate the light separated by this polarizing beam splitter, and one of these optical waveguides. a TE/TM mode conversion element that rotates the polarization plane of the waveguide-transmitted light by 90 degrees; a phase shifter that changes the phase of the waveguide-propagated light on at least one of the optical waveguides;
optical couplers that couple two waveguide propagating lights, respectively, are integrated on the same substrate, and the coupler coupling amount and the shift amount of the phase shifter are changed so that the output light intensity of the optical coupler is maximized. A waveguide type polarization plane control device characterized by the following.
(2)基板上に集積形成され、且つ所定間隔で所定幅に
渡って近接する近接領域を有するように形成された2本
の3次元単一モード光導波路と、これらの光導波路の近
接領域において導波路コア部分よりも低屈折率である誘
電体層を介して設けられ、該近接領域部分の光導波路の
電気光学係数の大きい方向の屈折率成分を電気光学効果
により変化せしめる複数の電極とを具備し、前記光導波
路の近接領域の間隔及び幅は、一方の光導波路が他方の
光導波路に対して電気光学係数の小さい方向に偏光した
光が略100%結合するように設定され、前記電極に印
加する電圧は、電気光学係数の大きい方向に偏光した光
が略0%結合となるように設定されていることを特徴と
する導波路型偏光ビームスプリッタ。
(2) Two three-dimensional single mode optical waveguides that are integrally formed on a substrate and have proximate regions that are adjacent to each other over a predetermined width at a predetermined interval, and in the proximal regions of these optical waveguides. A plurality of electrodes are provided via a dielectric layer having a refractive index lower than that of the waveguide core portion, and are configured to change the refractive index component in a direction in which the electro-optic coefficient of the optical waveguide in the adjacent region portion is large by an electro-optic effect. The spacing and width of the adjacent areas of the optical waveguides are set such that approximately 100% of light polarized in a direction with a smaller electro-optic coefficient is coupled to one optical waveguide with respect to the other optical waveguide, and the electrode A waveguide type polarizing beam splitter, characterized in that a voltage applied to the waveguide type polarizing beam splitter is set so that light polarized in a direction with a large electro-optic coefficient is coupled at approximately 0%.
JP4888888A 1988-03-02 1988-03-02 Waveguide type polarization plane controller Pending JPH01222216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4888888A JPH01222216A (en) 1988-03-02 1988-03-02 Waveguide type polarization plane controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4888888A JPH01222216A (en) 1988-03-02 1988-03-02 Waveguide type polarization plane controller

Publications (1)

Publication Number Publication Date
JPH01222216A true JPH01222216A (en) 1989-09-05

Family

ID=12815816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4888888A Pending JPH01222216A (en) 1988-03-02 1988-03-02 Waveguide type polarization plane controller

Country Status (1)

Country Link
JP (1) JPH01222216A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285507A (en) * 1992-03-27 1994-02-08 Koninklijke Ptt Nederland N.V. Controllable polarisation transformer
CN105308495A (en) * 2014-05-23 2016-02-03 华为技术有限公司 Polarization control device and polarization control method
JPWO2014034654A1 (en) * 2012-08-27 2016-08-08 国立大学法人九州大学 Inter-mode optical switch
JP2017097292A (en) * 2015-11-27 2017-06-01 日本電信電話株式会社 Optical signal processing device
JP2018508828A (en) * 2015-03-02 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization state matching device (PSA)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285507A (en) * 1992-03-27 1994-02-08 Koninklijke Ptt Nederland N.V. Controllable polarisation transformer
JPWO2014034654A1 (en) * 2012-08-27 2016-08-08 国立大学法人九州大学 Inter-mode optical switch
US9563020B2 (en) 2012-08-27 2017-02-07 Kyushu University, National University Corporation Inter-mode light switch
CN105308495A (en) * 2014-05-23 2016-02-03 华为技术有限公司 Polarization control device and polarization control method
JP2016535302A (en) * 2014-05-23 2016-11-10 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization control device and polarization control method
JP2018508828A (en) * 2015-03-02 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization state matching device (PSA)
JP2020170197A (en) * 2015-03-02 2020-10-15 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization state aligner (psa)
JP2017097292A (en) * 2015-11-27 2017-06-01 日本電信電話株式会社 Optical signal processing device

Similar Documents

Publication Publication Date Title
EP3171207B1 (en) Photonic chip grating couplers
EP0640854B1 (en) Polarisation diversity section for coherent optical receiver
US10345540B2 (en) Method and system for coupling a light source assembly to an optical integrated circuit
EP0938000A2 (en) Optical waveguide branch with reflector
GB2329482A (en) An integrated optical circuit
US5764825A (en) Optical wavelength division multiplexer device
US5661825A (en) Integrated optical circuit comprising a polarization convertor
EP0591381A1 (en) Adiabatic polarization splitter.
US10613281B2 (en) Method and system for coupling a light source assembly to an optical integrated circuit
US6112000A (en) Reflective array multiplexer with polarization compensation
US20040086214A1 (en) Optical circulator for bi-directional communication
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
GB2352290A (en) An optical circuit for a fibre optic gyroscope
US6449411B1 (en) Optical wavelength tunable filter
JPH01222216A (en) Waveguide type polarization plane controller
US11740411B2 (en) Optical couplers and hybrids
JPS63205611A (en) Dual balance type photodetector
JPH0333726A (en) Polarized wave separating optical circuit
JPH02259610A (en) Waveguide type light wavelength multiplexer
KR101501140B1 (en) Planar Lightwave Circuit Module Having an Improved Structure of an Optical Power Monitor
JP2898066B2 (en) Optical device
JP3209300B2 (en) Optical circuit for dispersion compensation
US7680370B2 (en) Optical wavelength coupler using multi-mode interference
JP2001004851A (en) Optical circuit
JPS62172308A (en) Waveguide for separating and coupling polarized light