JPS63205611A - Dual balance type photodetector - Google Patents

Dual balance type photodetector

Info

Publication number
JPS63205611A
JPS63205611A JP62038953A JP3895387A JPS63205611A JP S63205611 A JPS63205611 A JP S63205611A JP 62038953 A JP62038953 A JP 62038953A JP 3895387 A JP3895387 A JP 3895387A JP S63205611 A JPS63205611 A JP S63205611A
Authority
JP
Japan
Prior art keywords
light
optical
reflecting mirror
substrate
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62038953A
Other languages
Japanese (ja)
Inventor
Terumi Chikama
輝美 近間
Tetsuya Kiyonaga
哲也 清永
Yoshito Onoda
義人 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62038953A priority Critical patent/JPS63205611A/en
Publication of JPS63205611A publication Critical patent/JPS63205611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To stabilize signal receiving sensitivity by reflecting the output light of a photocoupler by a reflecting mirror part formed by molding the side face of a semiconductor substrate to a slant face and receiving said light by photodetectors provided on the semiconductor substrate. CONSTITUTION:The end face on one side in the longitudinal direction of the semiconductor substrate 1 is formed aslant and a metallic film 5 is provided on the slant end face to constitute the reflecting mirror part 3. The signal light and locally emitted light from optical fibers 13, 14 are synthesized by the photocoupler 8 and are then approximately equally divided. The divided light rays are detected by the photodetectors 4, 4 via the mirror part 3. The optical distance from the output port of the photocoupler 8 to the photodetector 4 is determined by the extended length of waveguide 2, 2 and the reflection position of the mirror part 3 and, therefore, the deviation of the phases of the synthesized light branched to the two rays on the photodetection surface is prevented if the waveguides 2, 2 are so formed that the optical distances between both coincide at the time of forming the waveguides on the substrate 1. The decrease in the electrical outputs taken out of the photodetectors 4, 4 is thus prevented. The good signal receiving sensitivity is thereby obtd.

Description

【発明の詳細な説明】 概  要 半導体もしくは強誘電体よりなる基板上または内部に並
設された導波路からなる光カプラーの出力光を、半導体
基板側面を斜めに成型してなる反射鏡部で反射させて、
半導体基板上に設けられた受光素子で受光するようにデ
ュアルバランス型受光器を構成する。この受光器は、繁
雑な調整を要することなく確実に動作し、実装面で有利
なものである。
[Detailed Description of the Invention] Outline The output light of an optical coupler consisting of waveguides arranged in parallel on or inside a substrate made of a semiconductor or ferroelectric is reflected by a reflecting mirror formed by obliquely molding the side surface of the semiconductor substrate. Reflect it,
A dual balance type light receiver is configured to receive light with a light receiving element provided on a semiconductor substrate. This light receiver operates reliably without requiring complicated adjustments, and is advantageous in terms of implementation.

産業上の利用分野 本発明は、コヒーレント光通信の受信側に用いるデュア
ルバランス型受光器の構造に関する。
FIELD OF THE INVENTION The present invention relates to the structure of a dual-balanced optical receiver used on the receiving side of coherent optical communications.

近年、光通信の分野においては、光の周波数使用効率の
向上及び変調速度の高速化等の要請から、光の周波数あ
るいは位相を直接制御するようにしたコヒーレント光通
信技術の研究が活尭化している。
In recent years, in the field of optical communications, research into coherent optical communication technology that directly controls the frequency or phase of light has become active due to demands for improved frequency usage efficiency and faster modulation speed. There is.

13111皿 一般に、第2図に示されるようなコヒーレント光通信シ
ステムでは、発信周波数が安定し且つスペクトル純度の
高い光源11の出力光を、直接あるいは図示しない外部
変調器により例えば周波数変調し、受光側でヘテロゲイ
ン検波を行なって、もとの情報を復元するようにしてい
る。受光側は、伝送路としての光ファイバ13から送ら
れてきた信号光と該信号光から若干ずれた一定出力周波
数のLD12から光ファイバ14を介して送られてきた
局部発信光(以下、局発光という)とを合成する光カプ
ラ−10、該合成光を受光する受光素子15.16、こ
れらを相互接続する光ファイバ21.22、及び混合器
17並びに増幅器18等の電気回路から構成され、該合
成光を低損失で受光することができ実装面に優れている
ことが要求される。
Generally, in a coherent optical communication system as shown in FIG. 2, the output light of the light source 11, which has a stable transmission frequency and high spectral purity, is frequency-modulated directly or by an external modulator (not shown), and then transmitted to the receiving side. Hetero gain detection is performed to restore the original information. The light receiving side includes a signal light sent from an optical fiber 13 as a transmission path and a local oscillation light (hereinafter referred to as local oscillation light) sent from an LD 12 with a constant output frequency slightly shifted from the signal light via an optical fiber 14. It is composed of an optical coupler 10 that combines the combined light, a light receiving element 15.16 that receives the combined light, an optical fiber 21.22 that interconnects these, and electric circuits such as a mixer 17 and an amplifier 18. It is required to be able to receive combined light with low loss and to have an excellent mounting surface.

このような要求を満たす可能性のあるものとして、デュ
アルバランス型受光器が注目されている。
Dual-balanced photodetectors are attracting attention as a device that may meet these requirements.

デュアルバランス型受光器は、光ファイバ13からの信
号光と光ファイバ14からの局発光を入力する光カプラ
−10の出力ボートが2つに分岐されており各ボートの
出力光の位相がπずれていることに着目して、受光素子
対15.16としていわゆるプッシュプル形に接続され
た同一特性のものを用い、光ファイバ21.22による
光学的接続条件が一致するように構成され、両ポートの
出力光、つまり信号光及び局発光の合成光をロスなく受
光すると共に、特に局発光の同相強度雑音を相殺するよ
うにしたものである。受光された合成光は、受光素子1
5.16及び混合器17により信号光の周波数と局発光
の周波数の差の周波数を有するビート信号(中間周波信
号)に変換され、この信号を増幅器18により増幅する
ことで同相強度雑音を取り除いた電気信号を得ている。
In the dual-balanced optical receiver, the output ports of the optical coupler 10, which input the signal light from the optical fiber 13 and the local light from the optical fiber 14, are branched into two, and the phase of the output light of each port is shifted by π. Focusing on this fact, we used photodetector pairs 15 and 16 that had the same characteristics and were connected in a so-called push-pull configuration, and configured the optical fibers 21 and 22 to have the same optical connection conditions, so that both ports The output light, that is, the combined light of the signal light and the local light, is received without loss, and in particular, the in-phase intensity noise of the local light is canceled out. The received combined light is sent to the light receiving element 1
5.16 and the mixer 17, it is converted into a beat signal (intermediate frequency signal) having a frequency that is the difference between the frequency of the signal light and the frequency of the local light, and this signal is amplified by the amplifier 18 to remove the common mode intensity noise. Obtaining electrical signals.

第3図は、従来のデュアルバランス型受光器の具体的構
成例を示したものである。21.22は一端が図示しな
い光カプラーに接続された光ファイバであり、これらの
光ファイバ21.22の他端には、テーバ先球部21a
、22aが形成されている。15.16は、基板26上
に設けられた同一特性の受光素子であり、これらの受光
素子15.16は混合器17を介して増幅器18に接続
されている。光ファイバ21.22のテーパ先球部21
a、22aは、それぞれ受光素子15,16の受光面に
対向している。このように構成されたデュアルバランス
型受光器にあっては、信号光と共に入力する局発光の強
度を高めることにより、前述した作用から良好な感度及
びS/N比で信号光を検波することができる。
FIG. 3 shows a specific example of the configuration of a conventional dual-balanced photodetector. Reference numerals 21 and 22 denote optical fibers whose one ends are connected to an optical coupler (not shown), and the other ends of these optical fibers 21 and 22 have a tapered tip 21a.
, 22a are formed. Reference numerals 15 and 16 denote light receiving elements having the same characteristics provided on the substrate 26, and these light receiving elements 15 and 16 are connected to the amplifier 18 via the mixer 17. Tapered tip spherical portion 21 of optical fiber 21, 22
a and 22a face the light receiving surfaces of the light receiving elements 15 and 16, respectively. In the dual-balanced optical receiver configured in this way, by increasing the intensity of the local light input together with the signal light, the signal light can be detected with good sensitivity and S/N ratio due to the above-mentioned effect. can.

発明が解決しようとする問題点 しかし、上述したデュアルバランス型受光器においては
、光経路の利得差及び遅延時間差を零とする必要があり
、高度な実装技術及び光結合技術が必要となる。即ち、
2つの光経路の利得差があると、受光素子15.16で
の受光強度に差が生じ、混合器17における局発光の同
相強度雑音の除去が不十分となり、また遅延時間差があ
ると、受光光の位相差がπからずれて得られる中間周波
信号の強度が低下してしまうので、光カプラ−10と受
光素子15.16との間の光ガイドとなる光ファイバ2
1.22は、両端における光カプラ−10及び受光素子
15.16との結合状態が厳密に一致しており、且つ光
学的長さが中間周波信号の波長レベルで一致しているも
のである必要がある。このため、実際に第3図に示した
ようなデュアルバランス型受光器を作成しようとすると
、極めて困難な実装作業が要求されるという問題がある
。その上、基板26に対して光ファイバ21゜22が垂
直方向に配設されているために、実装体積が増大して装
置が大型化せざるを得ないという問題もある。
Problems to be Solved by the Invention However, in the dual-balanced photoreceiver described above, it is necessary to make the gain difference and the delay time difference of the optical paths zero, which requires advanced mounting technology and optical coupling technology. That is,
If there is a gain difference between the two optical paths, there will be a difference in the received light intensity at the light receiving elements 15 and 16, and the removal of in-phase intensity noise of the local light in the mixer 17 will be insufficient, and if there is a delay time difference, the received light will be Since the phase difference of light deviates from π and the intensity of the obtained intermediate frequency signal decreases, the optical fiber 2 serving as a light guide between the optical coupler 10 and the light receiving element 15.16 is
1.22 requires that the coupling state between the optical coupler 10 and the light receiving element 15 and 16 at both ends be exactly the same, and the optical lengths must be the same at the wavelength level of the intermediate frequency signal. There is. Therefore, if an attempt is made to actually create a dual-balance type photoreceiver as shown in FIG. 3, there is a problem in that extremely difficult mounting work is required. Furthermore, since the optical fibers 21 and 22 are disposed perpendicularly to the substrate 26, there is a problem in that the mounting volume increases and the device inevitably becomes larger.

本発明はこれらの問題点に鑑みて創作されたもので、そ
の目的は、困難な実装作業を伴うことなく良好な感度及
びS/N比が得られ、且つ小型化が可能なデュアルバラ
ンス型受光器を提供することにある。
The present invention was created in view of these problems, and its purpose is to provide a dual-balanced light receiver that can obtain good sensitivity and S/N ratio without requiring difficult mounting work, and can be miniaturized. It is about providing the equipment.

ロ題、を ゛するための 上述した従来技術の問題点は、デュアルバランス型受光
器を構成するに際し、半導体もしくは強誘電体よりなる
基板に導波路を並設して光カプラーを形成し、導波路端
部が対向する基板側面側には該側面を斜めに成型して反
射鏡部を形成し、この反射鏡部で反射した導波光を受光
する受光素子を基板上に設けることにより解決される。
The problem with the above-mentioned conventional technology for solving the above problem is that when constructing a dual-balanced photodetector, optical couplers are formed by arranging waveguides in parallel on a semiconductor or ferroelectric substrate. This problem can be solved by forming a reflecting mirror section on the side surface of the substrate facing the waveguide end portion at an angle, and providing a light receiving element on the substrate to receive the guided light reflected by this reflecting mirror section. .

作   用 本発明のデュアルバランス型受光器にあっては、導波路
を並設してなる光カプラーと受光素子とを導波路及び反
射鏡部を介して結合しているので、2つの光経路の遅延
時間差が生じにく(なり、また受光素子は導波路及び反
射鏡部の位置に応じて基板上に形成することができるの
で、繁雑な光軸調整等を要することなく安定して高い結
合効率を得ることができる。光ファイバは基板に対して
垂直に接続される必要がないので、小型化が達成される
Function: In the dual-balanced light receiver of the present invention, since the optical coupler formed by the waveguides arranged in parallel and the light receiving element are coupled via the waveguide and the reflecting mirror, the two optical paths are Delay time differences are less likely to occur, and since the photodetector can be formed on the substrate according to the position of the waveguide and reflecting mirror, stable and high coupling efficiency can be achieved without the need for complicated optical axis adjustments, etc. Since the optical fiber does not need to be connected perpendicularly to the substrate, miniaturization is achieved.

衷−JLJ! 以下、本発明の望ましい実施例について図面にもとづい
て詳細に説明することにする。
衷-JLJ! Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

第1図(a)を参照すると、本発明を適用して構成され
るデュアルバランス型受光器の部分破断斜視図が示され
ている。また第1図(b)には、第1図(a)の導波路
2に沿った基板1の断面図が示されている。1は例えば
シリコン及びInP等の半導体基板であり、この半導体
基板1には長手方向に2本の導波路2.2が通常の方法
で対称に並設されている。導波路2.2の概略中央部は
、所定長さ部分が所定間隙を有するように近接配置され
ており、2人力2出力形の3dB光カプラー8として機
能するようにされている。
Referring to FIG. 1(a), there is shown a partially cutaway perspective view of a dual-balanced light receiver configured to apply the present invention. Further, FIG. 1(b) shows a cross-sectional view of the substrate 1 along the waveguide 2 of FIG. 1(a). Reference numeral 1 denotes a semiconductor substrate made of, for example, silicon or InP, and two waveguides 2.2 are arranged symmetrically in parallel in the longitudinal direction on this semiconductor substrate 1 in a conventional manner. The approximately central portion of the waveguide 2.2 is arranged close to each other so that the predetermined length portions have a predetermined gap, and is configured to function as a two-power, two-output type 3 dB optical coupler 8.

7.7は光カプラ−8に装荷される電極であり、この電
極7.7間に印加する電圧を変化させることで、光カプ
ラ−8の出力強度分配比を微調整することができるもの
である。
7.7 is an electrode loaded on the optical coupler 8, and by changing the voltage applied between the electrodes 7.7, the output intensity distribution ratio of the optical coupler 8 can be finely adjusted. be.

半導体基板1の長手方向片側端面は斜めに形成されてお
り、この傾斜端面には例えばメタライジング処理によっ
て光を良く反射する金Jill15が設けられて反射鏡
部3とされている。導波路2.2は、この傾斜端面から
他方の端面まで延設されている。
One end face in the longitudinal direction of the semiconductor substrate 1 is formed obliquely, and a gold film 15 that reflects light well is provided on this inclined end face, for example, by metallizing treatment to form a reflecting mirror portion 3. The waveguide 2.2 extends from this inclined end face to the other end face.

13.14は半導体基板1の傾斜端面と反対側の端面に
取付けられる信号光及び局発光用の光ファイバであり、
伝播光が効率良く導波路2.2に導かれるように光軸調
整されている。
13 and 14 are optical fibers for signal light and local light that are attached to the end surface opposite to the inclined end surface of the semiconductor substrate 1;
The optical axis is adjusted so that the propagating light is efficiently guided to the waveguide 2.2.

4.4は、導波路2.2を伝播してきて反射鏡部3で反
射した光線軸が半導体基板1の上面に交わる位置にその
受光面がくるように、半導体基板1上に通常の方法で形
成される受光素子である。
4.4 is placed on the semiconductor substrate 1 using the usual method so that the light receiving surface is located at a position where the axis of the light beam propagating through the waveguide 2.2 and reflected by the reflecting mirror section 3 intersects with the top surface of the semiconductor substrate 1. This is a light receiving element formed.

光ファイバ13.14からの信号光及び局発光は、図示
しない偏光制御手段により偏光状態が揃った直線偏光と
なっており、光カプラ−8で合成された後に概略等分さ
れて、反射鏡部3を介して受光素子4.4で受光される
。このとき、光カプラ−8の出力ボートから受光素子4
までの光学距離は、導波路2.2の延設長さ及び反射鏡
部3の反射位置によって決定されるので、半導体基板1
に導波路2.2を形成するときにこれらの因子をコント
ロールして前記光学距離が一致するようにすれば、2つ
に分岐された合成光の位相が受光面でずれることを容易
に防止でき、受光素子4.4から取出される電気出力が
小さくなることがない。
The signal light and the local light from the optical fibers 13 and 14 are linearly polarized light whose polarization state is uniform by a polarization control means (not shown), and after being combined by an optical coupler 8, the signal light and the local light are divided into approximately equal parts and sent to a reflecting mirror section. The light is received by the light receiving element 4.4 via the light receiving element 4.4. At this time, from the output port of the optical coupler 8 to the light receiving element 4
The optical distance from the semiconductor substrate 1 to
If these factors are controlled so that the optical distances match when forming the waveguide 2.2, it is possible to easily prevent the phase of the combined light split into two from shifting on the light receiving surface. , the electrical output extracted from the light receiving element 4.4 does not become small.

光ファイバ13.14と導波路2.2との接続部におけ
る損失のばらつき、及び受光素子の4゜4の感度のバラ
ツキは、局発光の同相強度雑音の除去特性に直接的に影
響するので、各光経路における利得が両受光素子4.4
で一致していることが望ましい。やむおえず一致させる
ことができない場合には、電極7.7間に適当な電圧を
印加して、光カプラ−8の出力ボート間の強度分配比を
調節すればよい。
Variations in the loss at the connection between the optical fiber 13.14 and the waveguide 2.2 and variations in the 4°4 sensitivity of the light-receiving elements directly affect the removal characteristics of the common-mode intensity noise of the local light, so The gain in each optical path is 4.4 for both light receiving elements.
It is desirable that they match. If it is unavoidable that they cannot be matched, an appropriate voltage may be applied between the electrodes 7 and 7 to adjust the intensity distribution ratio between the output ports of the optical coupler 8.

この実施例では、反射鏡部3を形成するために、半導体
基板の傾斜端面に金属ll15を設けているが、金属膜
を設けることなしに、端面傾斜角が導波路2.2を伝播
してきた光に対して全反射条件を満たすように設定して
もよい。
In this embodiment, a metal 115 is provided on the inclined end face of the semiconductor substrate in order to form the reflecting mirror portion 3, but the end face inclination angle propagates through the waveguide 2.2 without providing a metal film. It may be set so that the total reflection condition for light is satisfied.

及tm呈 以上詳述したように、本発明によれば、導波路及び反射
鏡部を介して入射光を受光素子に導くように構成したの
で、繁雑な調整作業を要することなく、局発光の強度雑
音を低減することができ且つ受信感度が安定して高いデ
ュアルバランス形受光器を提供することが可能になると
いう効果を奏する。
and tm Presentation As described in detail above, according to the present invention, the incident light is guided to the light receiving element via the waveguide and the reflecting mirror, so that the local light can be adjusted without the need for complicated adjustment work. It is possible to provide a dual-balanced optical receiver that can reduce intensity noise and have stable and high reception sensitivity.

また、光ファイバは、受光素子の形成される基板の長手
方向に接続することができるので、装置の小型化が可能
になるという効果もある。
Furthermore, since the optical fiber can be connected in the longitudinal direction of the substrate on which the light-receiving element is formed, there is also the effect that the device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は、本発明の望ましい実施例を示
すデュアルバランス型受光器の部分破断斜視図、及び導
波路に沿った基板の断面図、 第2図は、従来のコヒーレント光通信システムのブロッ
ク構成図、 第3図は、従来のデュアルバランス型受光器の具体的構
成を示す概略斜視図である。 1・・・(半導体)基板、 2・・・導波路、    3・・・反射鏡部、4.15
.16・・・受光素子、 5・・・金属膜、 13.14.21.22・・・光ファイバ、7・・・電
極、     8.10・・・光カプラ−。 +4 (b) 本発明/)叉邦イ列図 第1図 イ足来刀丁にアルバウソス型、受尤邪−第3図
1(a) and (b) are partially cutaway perspective views of a dual-balanced photodetector showing a preferred embodiment of the present invention, and a cross-sectional view of the substrate along the waveguide. FIG. 2 is a conventional coherent photodetector. Block Configuration Diagram of Optical Communication System FIG. 3 is a schematic perspective view showing a specific configuration of a conventional dual-balanced light receiver. DESCRIPTION OF SYMBOLS 1... (semiconductor) substrate, 2... Waveguide, 3... Reflector part, 4.15
.. 16... Light receiving element, 5... Metal film, 13.14.21.22... Optical fiber, 7... Electrode, 8.10... Optical coupler. +4 (b) The present invention/) Cross country I sequence diagram Figure 1 I Asakusa sword with Albausos type, received error - Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)半導体もしくは強誘電体よりなる基板(1)に導
波路(2)を並設して光カプラーを形成し、導波路(2
)端部が対向する基板(1)側面側には該側面を斜めに
成型して反射鏡部(3)を形成し、この反射鏡部(3)
で反射した導波光を受光する受光素子(4)を基板(1
)上に設けたことを特徴とするデュアルバランス型受光
器。
(1) Waveguides (2) are arranged in parallel on a substrate (1) made of a semiconductor or ferroelectric material to form an optical coupler.
) A reflecting mirror part (3) is formed on the side surface side of the substrate (1) whose ends face each other by molding the side face diagonally, and this reflecting mirror part (3)
The light receiving element (4) that receives the guided light reflected by the substrate (1
) A dual-balanced optical receiver.
(2)前記反射鏡部(3)には金属膜(5)が形成され
ていることを特徴とする特許請求の範囲第1項記載のデ
ュアルバランス型受光器。
(2) The dual balance type light receiver according to claim 1, wherein a metal film (5) is formed on the reflecting mirror portion (3).
(3)前記反射鏡部(3)は導波光に対して全反射条件
を満たすように斜め研磨されていることを特徴とする特
許請求の範囲第1項記載のデュアルバランス型受光器。
(3) The dual-balanced light receiver according to claim 1, wherein the reflecting mirror portion (3) is obliquely polished so as to satisfy a condition for total reflection of the guided light.
JP62038953A 1987-02-20 1987-02-20 Dual balance type photodetector Pending JPS63205611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038953A JPS63205611A (en) 1987-02-20 1987-02-20 Dual balance type photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038953A JPS63205611A (en) 1987-02-20 1987-02-20 Dual balance type photodetector

Publications (1)

Publication Number Publication Date
JPS63205611A true JPS63205611A (en) 1988-08-25

Family

ID=12539562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038953A Pending JPS63205611A (en) 1987-02-20 1987-02-20 Dual balance type photodetector

Country Status (1)

Country Link
JP (1) JPS63205611A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
US5932114A (en) * 1995-05-12 1999-08-03 Fujitsu Limited Integrated optical module including a waveguide and a photoreception device
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
JP2019054029A (en) * 2017-09-13 2019-04-04 富士通株式会社 Optical receiver, balance-type optical receiver, manufacturing method of optical receiver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932114A (en) * 1995-05-12 1999-08-03 Fujitsu Limited Integrated optical module including a waveguide and a photoreception device
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
US6406196B1 (en) 1995-08-03 2002-06-18 Matsushita Electric Industrial Co., Ltd. Optical device and method for producing the same
US7123798B2 (en) 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
US7195402B2 (en) 2002-12-20 2007-03-27 Ngk Insulators, Ltd. Optical device
US7308174B2 (en) 2002-12-20 2007-12-11 Ngk Insulators, Ltd. Optical device including a filter member for dividing a portion of signal light
US7321703B2 (en) 2002-12-20 2008-01-22 Ngk Insulators, Ltd. Optical device
US7324729B2 (en) 2003-06-02 2008-01-29 Ngk Insulators, Ltd. Optical device
JP2019054029A (en) * 2017-09-13 2019-04-04 富士通株式会社 Optical receiver, balance-type optical receiver, manufacturing method of optical receiver

Similar Documents

Publication Publication Date Title
US11811433B2 (en) Integrated coherent optical transceiver
US10935820B2 (en) Method and system for integrated power combiners
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US5259044A (en) Mach-Zehnder optical modulator with monitoring function of output light
US11329452B2 (en) Silicon photonics based tunable laser
US5307197A (en) Optical circuit for a polarization diversity receiver
JPS63164377A (en) Optical integrated circuit
US6480647B1 (en) Waveguide-type wavelength multiplexing optical transmitter/receiver module
CN113280802A (en) Multifunctional lithium niobate chip for resonant integrated optical gyroscope
JPS63205611A (en) Dual balance type photodetector
JP3269540B2 (en) Optical amplifier
JP2670519B2 (en) Optical amplifier
WO2001006212A1 (en) An optical circuit
JPH0333726A (en) Polarized wave separating optical circuit
JPH01222216A (en) Waveguide type polarization plane controller
JPH05158096A (en) Optical receiver for coherent light wave communication
JP2000010137A (en) Wavelength converter
JPH05316052A (en) Polarized wave diversity optical receiver
CN113992274B (en) Silicon-based integrated high-precision radio frequency signal stable phase transmission chip, transmitting end and system
US11063406B1 (en) Configuration for low-ripple optical gain with single-facet semiconductor optical amplifiers
JPH0566334A (en) Photodetector module
JP2798149B2 (en) Optical circuit
JPS63231428A (en) Reception system for coherent light communication
JPH0371119A (en) Waveguide type polarization diversity optical circuit
JPH06130257A (en) Bidirectional light transmission/reception module