JPH1168705A - Two-way wdm optical transmission reception module - Google Patents

Two-way wdm optical transmission reception module

Info

Publication number
JPH1168705A
JPH1168705A JP2701598A JP2701598A JPH1168705A JP H1168705 A JPH1168705 A JP H1168705A JP 2701598 A JP2701598 A JP 2701598A JP 2701598 A JP2701598 A JP 2701598A JP H1168705 A JPH1168705 A JP H1168705A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
transmission
reception
optical
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2701598A
Other languages
Japanese (ja)
Inventor
Toshikazu Hashimoto
Yoshinori Hibino
Yasuyuki Inoue
Yasubumi Yamada
Masahiro Yanagisawa
靖之 井上
泰文 山田
善典 日比野
雅弘 柳澤
俊和 橋本
Original Assignee
Nippon Telegr & Teleph Corp <Ntt>
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Abstract

PROBLEM TO BE SOLVED: To reduce crosstalk light of an LD light leaked to a PD light to be a non-problem level practically in the two-way WDM optical transmission reception module. SOLUTION: The two-way WDM optical transmission reception module is made up of an optical branch guide path formed on a plane substrate (Si substrate), a groove 10 provided to a branch part of the optical branch guide path, a dielectric multi-layer film filter 5 that is inserted in the groove 10 and branches an input light in a transmission direction and a reflection light depending on its wavelength, a transmission laser diode LD 3 and a reception photo diode PD 6 coupled optically with the optical branch guide path on the plane substrate 1. The transmission wavelength of the dielectric multi-layer film filter 5 is set to the reception wavelength of the reception PD 6 and a block wavelength of the dielectric multi-layer film filter 5 is set to the oscillation wavelength of the transmission LD 3 and the transmission LD 3 and the reception PD 6 are placed opposite to each other with the dielectric multi-layer film filter 5 inbetween.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、光通信あるいは光情報処理などの分野で用いられる波長分割多重方式(以下、単にWDMと称する)光送受信モジュールに関し、 BACKGROUND OF THE INVENTION The present invention provides an optical communication or wavelength division multiplexing scheme used in the field of optical information processing (hereinafter, simply referred to as WDM) relates to an optical transceiver module,
特に、石英系プレーナ光波回路上にレーザダイオード(以下、単にLDと称する)やフォトダイオード(以下、単にPDと称する)をハイブリッド集積して構成したWDM光送受信モジュールにおいて、その波長合分波器の構成がクロストーク光を抑制するよう配置されたことを特徴とするWDM光送受信モジュールに関するものである。 In particular, a laser diode (hereinafter, simply referred to as LD) on silica-based planar lightwave circuit or a photodiode (hereinafter, simply referred to as PD) in the WDM optical transmission and reception module configured to hybrid integrated, the wavelength division multiplexer configuration is related to WDM optical transceiver module, characterized in that it is arranged to suppress the crosstalk light.

【0002】 [0002]

【従来の技術】例えば、上りに1.3μm帯の光信号を用いて、下りに1.55μm帯の光信号を用いるようなシステムが検討され、これを実現するための双方向WD BACKGROUND ART For example, by using an optical signal of 1.3μm band uplink, the system that uses an optical signal of 1.55μm band is considered to downlink, bidirectional WD to realize this
M光送受信モジュールが、文献 ”Hybrid integration M optical transceiver module, the literature "Hybrid integration
using silica-on-silicon optical motherboards”Caro using silica-on-silicon optical motherboards "Caro
le Jones et al., Integrated Photonics Research,Tec le Jones et al., Integrated Photonics Research, Tec
hnical Digest IThB1,pp.604-607,Boston,1996.に報告されている。 hnical Digest IThB1, pp.604-607, has been reported Boston, 1996. in.

【0003】前記文献に記載されるWDM光送受信モジュールの概略構成を図11に示す。 [0003] Figure 11 shows the schematic configuration of a WDM optical transmission and reception modules described in said literature. 図11において、1 11, 1
00は光ファイバ、101は基板、102は光導波路、 00 denotes an optical fiber, 101 denotes a substrate, 102 denotes an optical waveguide,
103は送信用LD、104はモニターPD、105は方向性結合器、106は受信用PD、107は受信用増幅器、108は漏れ光遮断材料、109はミラーである。 103 transmission LD, 104 may monitor PD, 105 are directional couplers, 106 receiving PD, 107 is a receiving amplifier, 108 leakage light blocking material, is 109 is a mirror.

【0004】 [0004]

【発明が解決しようとする課題】一般的に上りと下りの光信号の波長を変えた双方向システムでは、双方向の通信を同時に送受する必要がある。 In THE INVENTION Problem to be Solved] Generally interactive system for changing a wavelength of the upstream and downstream optical signals, it is necessary to transmit and receive two-way simultaneous communications. このため双方向WDM Because of this bi-directional WDM
光送受信モジュールの大きな課題の一つが、発振光が自らの受信部に漏れ込むクロストーク光を低減することである。 One of the major challenges of the optical transceiver module, the oscillation light is to reduce crosstalk light leaking into its own receiver.

【0005】前記の文献では受信用PD106を送信用LD103に直交するよう配置してクロストーク光を低減している(図11参照)。 [0005] thereby reducing the crosstalk light is arranged perpendicular to the receiving PD106 to the transmission LD103 in the literature (see FIG. 11). しかし、この構成では、送信用LD103と受信用PD106を直交配置し、受信用PD106から方向性結合器に至る導波路を90度に曲げる必要があるので曲げ部分の占有面積が大きく、結果的にモジュールのサイズも大きくなってしまう。 However, in this configuration, it disposed perpendicularly to the receiving PD 106 and the transmission LD 103, a large area occupied by the bent portions because the waveguide leading to the directional coupler is required to bend 90 degrees from the receiving PD 106, resulting in the size of the module is also increased.

【0006】また、送信用LD103からの送出光は、 [0006] In addition, the sending light from the transmission LD103,
光ファイバ伝送路中の反射点によってモジュールに戻り、そのうち一部は方向性結合器を介して受信用PD1 Return to the module by the reflection point of the optical fiber transmission path, of which a portion is for receiving via a directional coupler PD1
06に結合する。 06 To join. この受信用PD106への戻り光量は、方向性結合器105の阻止性能で決まるが、一般的には十分な阻止特性は得られないなどの問題点があった。 Return light quantity to the reception PD106 is determined by the rejection of the directional coupler 105, generally sufficient blocking properties to have a problem, such as not obtained.

【0007】本発明の目的は、双方向WDM光送受信モジュールにおいて、LD光がPD光に漏れ込むクロストーク光を実用上問題ないレベルにまで低減することが可能な技術を提供することにある。 An object of the present invention, in the bidirectional WDM optical transceiver module is that the LD light to provide a technology capable of reducing to an acceptable level practically acceptable crosstalk light leaking into the PD light.

【0008】本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。 The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0009】 [0009]

【課題を解決するための手段】前記目的を達成するために、本発明は、平面基板上に形成された光分岐導波路と、該光分岐導波路の分岐部に設けられた溝と、該溝に挿入されて入力光を波長に応じてその透過方向および反射方向に分岐させる誘電体多層膜フィルタと、前記平面基板上で前記光分岐導波路に光結合する送信用LDおよび受信用PDとから構成される双方向WDM光送受信モジュールであって、前記誘電体多層膜フィルタの透過波長が前記受信用PDの受信波長に設定され、前記誘電体多層膜フィルタの阻止波長が前記送信用LDの発振波長に設定され、前記送信用LDと受信用PDが前記誘電体多層膜フィルタを挟んで対向する位置に配置されている。 To SUMMARY OF THE INVENTION To achieve the above object, the present invention comprises an optical branching waveguide formed on a planar substrate, a groove provided in the branch portion of the optical branch waveguide, the a dielectric multilayer filter for branching an input light is inserted into a groove in the transmission direction and the reflection direction in accordance with the wavelength, and the transmission LD and the reception PD optically coupled to the optical branch waveguide by said planar substrate a bidirectional WDM optical transceiver module consists of, the dielectric transmission wavelength of the multilayer film filter is configured to receive the wavelength of the reception PD, blocking the wavelength of the dielectric multilayer film filter of the transmission LD It is set to the oscillation wavelength, the receiving PD and the transmitting LD is arranged at a position facing each other across the dielectric multilayer film filter.

【0010】また、前記送信用レーザダイオードと誘電体多層膜フィルタと受信用フォトダイオードとを結ぶ光導波路中に、前記送信用フォトダイオードの出射光のうち前記誘電体多層膜フィルタを透過する成分を遮断する第2の誘電体多層膜フィルタが挿入されている。 Further, in the optical waveguide connecting the transmitting laser diode and the dielectric multilayer film filter and the receiving photo diode, the component transmitted through the dielectric multilayer film filter of the light emitted from the light transmitting photodiode the second dielectric multilayer filter that blocks are inserted.

【0011】即ち、従来の双方向WDM光送受信モジュールのクロストーク光を大幅に低減する手法として、本発明では、誘電体多層膜フィルタを用いた波長合分波器を採用し、更に、送信用LDを誘電体多層膜フィルタに対してその入出力ファイバ側(反射ポート側)に、受信用PDをその反対側(透過ポート側)に配置することを最も主要な特徴とする。 [0011] That is, the crosstalk light of conventional bidirectional WDM optical transceiver module as a method for greatly reduced, the present invention employs a wavelength division multiplexer using a dielectric multilayer film filter, further, for transmission the LD on the input and output fiber side of the dielectric multilayer filter (reflection port side), and most important feature to place the receiving PD on the opposite side (transmission port side).

【0012】また、前記双方向WDM光送受信モジュールにおいて、前記送信用レーザダイオードと誘電体多層膜フィルタと受信用フォトダイオードとを結ぶ光導波路中に、前記送信用フォトダイオードの出射光のうち前記誘電体多層膜フィルタを透過する成分を遮断する第2の誘電体多層膜フィルタが挿入されていることを特徴とする。 [0012] In the above bidirectional WDM optical transceiver module, in an optical waveguide connecting the transmitting laser diode and the dielectric multilayer film filter and the receiving photo diode, the dielectric of the light emitted from the light transmitting photodiode wherein the second dielectric multilayer film filter which blocks the component transmitted through the body multilayer filter is inserted.

【0013】 [0013]

【発明の実施の形態】以下、図面を参照して本発明の実施形態(実施例)を詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments (Examples) of the present invention with reference to the drawings will be described in detail.

【0014】なお、実施形態(実施例)を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 [0014] In all the drawings for describing the embodiments (examples), parts having identical functions are given same symbols and their repeated explanation is omitted.

【0015】(実施例1)図1は本発明の実施例1の双方向WDM光送受信モジュールの概略構成を示す図であり、1はSi基板、2は光導波路、3は送信用LD、4 [0015] is a diagram showing a schematic configuration of a bidirectional WDM optical transceiver module of Example 1 (Example 1) FIG. 1 is the present invention, 1 is Si substrate, 2 denotes an optical waveguide, 3 transmitting LD, 4
はモニターPD、5は誘電体多層膜フィルタ(波長合分波器)、6は受信用PD、7は電気配線、8はSiテラス、9は補強ガラス、10は光分岐導波路の分岐部に設けられた溝、11は光ファイバである。 The dielectric multilayer filter monitor PD, 5 is (wavelength demultiplexer), 6 receiving PD, 7 are electrical wiring, 8 Si terrace, the reinforcing glass 9, 10 to the branch portion of the optical branching waveguide provided grooves, 11 is an optical fiber.

【0016】図2は図1のA−A'線で切った断面の拡大断面図を、図3は図1のB−B'線で切った断面の拡大断面図を、図4は図1のC−C'線で切った断面の拡大断面図をそれぞれ示している。 [0016] Figure 2 is A-A 'of FIG. 1 enlarged sectional view of a section taken along the line, Figure 3 is B-B' in FIG. 1 an enlarged sectional view of a section taken along the line, Figure 4 Figure 1 It shows the line C-C 'in chopped sectional enlarged sectional view of each. 図2乃至図4において、21は下部クラッド層(第1下部クラッド層)、2 Figure in 2 to 4, 21 the lower cladding layer (the first lower cladding layer), 2
2は高さ調整用クラッド層(第2下部クラッド層)、2 2 height adjusting clad layer (second lower cladding layer), 2
3は光導波路2のコア、24は上部クラッド層、25は誘電体多層膜フィルタ5を固定するための接着剤、7A 3 the optical waveguide 2 of the core, 24 is an upper clad layer, 25 is an adhesive for fixing the dielectric multilayer filter 5, 7A
は電気配線および半田である。 Is the electrical wiring and solder.

【0017】本実施例1の双方向WDM光送受信モジュールは、図1乃至図4に示すように、Si基板1上に形成された光分岐導波路の分岐部に溝10が設けられている。 The bidirectional WDM optical transceiver module of the first embodiment, as shown in FIGS. 1 to 4, a groove 10 is provided in the branch portion of the optical branching waveguide formed on the Si substrate 1. この溝10に入力光を波長に応じてその透過方向および反射方向に分岐させる誘電体多層膜フィルタ5が挿入されている。 A dielectric multilayer film filter 5 for branching to the transmission direction and the reflection direction according to input light to the wavelength is inserted into the groove 10. 前記Si基板1上で前記光分岐導波路に光結合する送信用LD3および受信用PD6から構成される双方向WDM光送受信モジュールであって、前記誘電体多層膜フィルタ5の透過波長が受信用PD6の受信波長に設定され、前記誘電体多層膜フィルタ5の阻止波長が送信用LD3の発振波長に設定され、前記送信用L A bidirectional WDM optical transmission and reception module configured from the transmitting LD3 and reception PD6 optically coupled to the optical branch waveguide on the Si substrate 1, the dielectric multilayer filter 5 of the transmission wavelength for reception PD6 is set to the reception wavelength, blocking the wavelength of the dielectric multilayer film filter 5 is set to the oscillation wavelength of the transmitting LD3, the transmission L
D3および受信用PD6が前記誘電体多層膜フィルタ5 D3 and the receiving PD6 is the dielectric multilayer film filter 5
を挟んで対向する位置に配置されている。 They are arranged at opposing positions across the.

【0018】前記送信用LD3の発振波長は1.3μ In one embodiment of the invention, the oscillation wavelength of the transmission LD3 is 1.3μ
m、光ファイバ11の入光する光の波長は1.55μ m, the wavelength of light incident to the light of the optical fiber 11 is 1.55μ
m、出光する光の波長は1.3μmである。 m, the wavelength of light exiting light is 1.3 .mu.m. 誘電体多層膜フィルタ5の透過波長は1.55μm、反射波長は1. 1 transmission wavelength of the dielectric multilayer filter 5 is 1.55 .mu.m, the reflection wavelength.
3μmである。 It is 3μm.

【0019】このように、本発明では、誘電体多層膜フィルタ5を用いた波長合分波器を採用し、更に、送信用LD3を誘電体多層膜フィルタ5に対してその入出力ファイバ側(反射ポート側)に、受信用PD6をその反対側(透過ポート側)に配置する構成とすることにより、 [0019] Thus, the present invention employs a wavelength division multiplexer using a dielectric multilayer film filter 5, further the output fiber end for transmission LD3 to the dielectric multilayer film filter 5 ( the reflection port side), by the construction of arranging the reception PD6 on the opposite side (transmission port side),
従来の双方向WDM光送受信モジュールのクロストーク光を大幅に低減することができる。 Crosstalk light conventional bidirectional WDM optical transceiver module can be significantly reduced.

【0020】次に、図5を用いてPLCプラットフォームの作製法について簡単に説明する。 Next, briefly described manufacturing method of the PLC platform with reference to FIG. まず、平坦なSi First, a flat Si
基板1をパターン化して、送信用LD3/受信用PD6 The substrate 1 is patterned, a transmission LD3 / reception PD6
を搭載するSiテラス8以外の部分を約30μmの深さエッチングする。 Depth-etched approximately 30μm portions other than Si terrace 8 for mounting. この上に下部クラッド層21となるガラス層を火炎堆積法で形成する(図5a)。 A glass layer serving as the lower clad layer 21 on the form by flame hydrolysis deposition (Fig. 5a). この後、送信用LD3/受信用PD6の搭載部のSiテラスが表面に露出するまで平坦化研磨を行う(図5b)。 Thereafter, planarization is performed polishing Si terrace of the mounting portion of the transmission LD3 / reception PD6 until exposed to the surface (Figure 5b). この面が送信用LD3/受信用PD6を実装する場合の光導波路に対する高さ基準面になる。 This surface becomes the height reference surface for the optical waveguide in the case of implementing the transmission LD3 / reception PD6.

【0021】続いて高さ調整層となる高さ調整用クラッド層(第2下部クラッド層)22を設ける。 [0021] Subsequently height adjusting cladding layer of a height adjustment layer (second lower cladding layer) 22 is provided. 次に、コア23の層を約7μm堆積する(図5c)。 Next, about 7μm depositing a layer of the core 23 (FIG. 5c). コア層を光導波路パターンにエッチング加工した後、上部クラッド層24を堆積する(図5d)。 After etching the core layer to the optical waveguide pattern, depositing an upper cladding layer 24 (FIG. 5d). ここでは全てクラッド層およびコア層の堆積は火炎堆積法を用いた。 Here all of the cladding layer and the core layer deposition using flame hydrolysis deposition. 引き続き、送信用LD3/受信用PD6搭載部のSiテラスが再度露出するまで送信用LD3/受信用PD6搭載部のみエッチングする。 Subsequently, it etched only PD6 mounting portion for transmission LD3 / reception until the Si terrace PD6 mounting portion for transmission LD3 / reception is exposed again. 最後に送信用LD3/受信用PD6の電極配線および搭載用半田7Aを堆積する(図5e)。 Finally, depositing the electrode wiring and mounting solder 7A of the transmission LD3 / reception PD6 (Figure 5e).

【0022】送信用LD3/受信用PD6の実装は、その搭載部に半田リフローにより接着固定する。 [0022] Implementation of the transmitting LD3 / reception PD6 is bonded and fixed by solder reflow to the mounting portion. その手法に関しては、文献 T.Hashimoto et al.,”Hybrid integ With regard to the method, the literature T.Hashimoto et al., "Hybrid integ
ration of spot-size converted laser diode on plana ration of spot-size converted laser diode on plana
r lightwave circuit platform by passive alignment r lightwave circuit platform by passive alignment
technique,”IEEE Photon.Techno1.Lett.,8,No.11,pp.1 technique, "IEEE Photon.Techno1.Lett., 8, No.11, pp.1
504-1506,1996.に詳しく示されている。 504-1506,1996. To is shown in more detail. 一般的に、LD In general, LD
と光導波路とのモードフィールドは異なる。 The different mode field of the optical waveguide. 最近LDのモードフィールドを拡大して光導波路との結合を改善したレーザの研究が進んでいる。 Studies of the laser is proceeding with an improved coupling between the optical waveguide recently increased mode-field of LD. それでも現状でLD/光導波路間の結合率は50%程度である。 Still coupling ratio between LD / waveguide at present is about 50%. このためLDから出力された光のうち半分の光はクラッド層中に放出されることになる。 Thus half of the light of the light output from the LD will be released into the cladding layer.

【0023】図1に示す誘電体多層膜フィルタ5による光分岐部の構成法については、詳しくは、文献 Y.Inoue [0023] The construction method of the optical branching section of a dielectric multilayer film filter 5 shown in FIG. 1, details, literature Y.Inoue
et al.,”Filter-embedded wavelength-division mult et al., "Filter-embedded wavelength-division mult
iplexer for hybrid-integrated transceiver based on iplexer for hybrid-integrated transceiver based on
silica-based PLC,”Electron.Lett.,Vol.32,no.9,pp, silica-based PLC, "Electron.Lett., Vol.32, no.9, pp,
847-848,1996.に示されている。 847-848,1996 has been shown to..

【0024】前記誘電体多層膜フィルタ5の誘電体多層膜を挿入する溝10は、幅20μm、深さ150μmのものをダイシングソーにより形成した。 The groove 10 for inserting the dielectric multilayer film of the dielectric multilayer film filter 5 was formed by a dicing saw to a width of 20 [mu] m, depth 150 [mu] m. 誘電体多層膜フィルタ5としては、例えば、ポリイミドを基板とした厚さ14μmのものを使用した。 The dielectric multilayer filter 5, for example, was used with a thickness of 14μm in which the polyimide substrate. この誘電体多層膜フィルタ5のフィルタ反射型波長合分波器の波長特性を図6に示す。 It shows a wavelength characteristic of the dielectric multilayer filter 5 filters the reflection-type wavelength demultiplexer in FIG. 図6に示すように、誘電体多層膜フィルタ5は透過ポートにおいて50dBにも及ぶ高いアイソレーションを示す。 As shown in FIG. 6, a dielectric multilayer film filter 5 exhibits high isolation also extends to 50dB in the transmission port.

【0025】図1中に示すように、この優れた誘電体多層膜フィルタ5が送信用LD3と受信用PD6の間に存在するため、送信用LD3からクラッド層中に放出された1.3μm光が受信用PD6に結合することはなくなる。 As shown in FIG. 1, this excellent for dielectric multilayer filter 5 is present between the receiving PD6 a transmitting LD3, 1.3 .mu.m light emitted from the transmission LD3 the cladding layer There is no longer able to bind to the reception PD6. 具体的に送信用LD3の出力が受信用PD6に漏れ込むクロストーク光は約−70dBであった。 Crosstalk light specifically the output of the transmission LD3 leaks into the receiving PD6 was about -70 dB. このため1.3μm送信信号に比べて相対的にレベルの低い1.5 Thus a relatively low level compared to 1.3μm transmission signal 1.5
5μm光を、感度よく受信用PD6にて検出することが可能であった。 The 5μm light, it was possible to detect at high sensitivity reception PD6.

【0026】また、図1に示す本実施形態の双方向WD Further, the bidirectional WD of the embodiment shown in FIG. 1
M光送受信モジュールでは、光ファイバ伝送路に送出された1.3μm光が伝送路中で反射されてモジュールに戻る場合にも、誘電体多層膜フィルタ5の優れた阻止域特性により、受信用PD6への結合を十分に抑制することができる。 The M optical transceiver module, when the optical fiber 1.3μm light transmitted to the transmission path returns to has been modules reflected in the transmission line also, the excellent stop band characteristics of the dielectric multilayer film filter 5, for reception PD6 binding to can be sufficiently suppressed. 例えば、伝送路中の反射点における反射減衰量を30dBとして場合、受信用PD6へ結合するクロストーク光は−80dB以下である。 For example, if the 30dB return loss at the reflection point in the transmission path, crosstalk light that binds to the receiving PD6 is less -80dB.

【0027】図1の双方向WDM光送受信モジュールは、図11の従来技術のWDM光送受信モジュールに比較して、送信用LD3と受信用PD6を距離的に離すことができる。 The bidirectional WDM optical transceiver module of Figure 1 may be compared to a prior art WDM optical transceiver module of Figure 11, release the reception PD6 a transmitting LD3 a distance manner. このため送信用LD3の駆動電流が、受信用PD6の光電流に電気的に漏れ込まないという特長も有する。 Therefore drive current of the transmission LD3 has also advantage that the photocurrent not incorporated electrically leakage receiving PD6.

【0028】比較のため、図1の回路構成を図7のように置き換えた場合を想定してみる。 [0028] For comparison, let us assume a case of replacing as shown in FIG. 7 the circuit configuration of FIG. この場合、送信用L In this case, the transmission for L
D3からクラッド層中に出射した光が誘電体多層膜フィルタ5を透過して受信用PD6に結合する。 Light emitted to the cladding layer from D3 binds to the reception PD6 transmitted through the dielectric multilayer filter 5. この1.3 This 1.3
μm光は受信すべき1.55μm光に比較してそのレベルが高いため、受信用PD6は精度よく1.55μmを受信できなくなる。 Since μm light that level is higher compared to be received 1.55 .mu.m light receiving PD6 it will not receive precisely 1.55 .mu.m.

【0029】図1では、1.3μm光を送信し1.55μ [0029] In FIG. 1, it sends a 1.3μm light 1.55μ
m光を受信する双方向WDM光送受信モジュールの回路構成を示したが、反対に1.55μm光を送信し1.3μ While showing a circuit configuration of a bidirectional WDM optical transceiver module for receiving m light transmits 1.55μm light in the opposite 1.3μ
m光を受信する双方向WDM光送受信モジュールに関しては、図8のように、その誘電体多層膜フィルタ5の透過波長と阻止波長を反対にすることによって実現することができる。 For the bi-directional WDM optical transmission and reception module for receiving m light, as shown in FIG. 8 can be realized by a transmission wavelength and blocking wavelength of the dielectric multilayer filter 5 in the opposite.

【0030】(実施例2)図9は本発明の実施例2の双方向WDM光送受信モジュールの概略構成を示す図である。 [0030] (Embodiment 2) FIG. 9 is a diagram showing a schematic configuration of a bidirectional WDM optical transceiver module according to a second embodiment of the present invention.

【0031】本実施例2の双方向WDM光送受信モジュールは、送信用LD3の発振光が受信用PD6に漏れ込むことが大きな問題となる。 The bidirectional WDM optical transceiver module of the second embodiment, it becomes a major problem that the oscillation light transmission LD3 leaks into the receiving PD6. 図1に示す前記実施例1では、送信用LD3(1.3μm光)を反射する第1の誘電体多層膜フィルタ5を送信用LD3と受信用PD6の間に挿入した回路構成をとることにより、送信用LD3 In Example 1 shown in FIG. 1, by taking the inserted circuit configuration between the transmission LD3 and the receiving PD6 the first dielectric multilayer film filter 5 which reflects the transmission LD3 (1.3 .mu.m light) , transmission LD3
(1.3μm光)が受信用PD6に漏れ込むことを防いでいる。 It prevents the possibility (1.3 .mu.m light) leaks into the receiving PD6. しかし、送信用LD3の光源によっては、1. However, the light source of the transmitting LD3 is 1.
3μm発振の光になっていてもわずかに1.55μm帯にまでスペクトルが裾を引いている場合がある。 There is a case in which the spectrum is pulling the hem up to slightly 1.55μm band be made in light of 3μm oscillation.

【0032】この場合、図1に示す回路構成では送信用LD3から出力された光のうち、第1の誘電体多層膜フィルタ5を透過してしまう1.45μm〜1.55μm帯の光が受信用PD6に結合することを防ぐことができない。 [0032] In this case, among the output from the transmission LD3 light in the circuit configuration shown in FIG. 1, the transmission to become light reception 1.45μm~1.55μm band a first dielectric multilayer film filter 5 it is not possible to prevent the binding to use PD6. そこで、図9に示すように、送信用LD3と前述の第1の誘電体多層膜フィルタ5(1.3μm反射、1. Therefore, as shown in FIG. 9, the first dielectric multilayer filter 5 (1.3 .mu.m reflection above the transmitting LD3, 1.
55μm透過)との間に1.55μm光を除去する第2 Second to remove 1.55μm light between 55μm transmission)
の誘電体多層膜フィルタ12(1.55μm反射、1. Dielectric multilayer film filter 12 (1.55 .mu.m reflection, 1.
3μm透過)が導波路に対して2〜10°傾けて挿入された回路構成にする。 3μm transmission) is inserted into the circuit configuration inclined 2 to 10 ° with respect to the waveguide. ここで第2の誘電体多層膜フィルタ12を導波路に対して傾けた理由は、第2の誘電体多層膜フィルタ12で反射された光が送信用LD3に再結合してその動作が不安定になることを防ぐためである。 Here reason for tilting the second dielectric multilayer film filter 12 with respect to the waveguide, the behavior is unstable light reflected by the second dielectric multilayer film filter 12 are recombined in the transmission LD3 it is to prevent become.

【0033】前記図9に示す構成にすることにより、送信用LD3から出力されたわずかな1.45μm〜1.5 [0033] By the configuration shown in FIG. 9, a slight output from the transmission LD3 1.45Myuemu~1.5
5μm帯の光が受信用PD6に結合するのを防ぐことが可能になった。 Light of 5μm band becomes possible to prevent the binding to the reception PD6. 具体的には第2の誘電体多層膜フィルタ12の挿入前の送信用LD3の発振光が受信用PD6に結合する効率は−40dBであった。 Specifically efficiency oscillation light transmission LD3 before insertion of the second dielectric multilayer film filter 12 is attached to the receiving PD6 was -40 dB. その値が、誘電体多層膜フィルタ12を送信用LD3と第1の誘電体多層膜フィルタ5の間に挿入することにより、−75dBにまで低減することができた。 Its value, by inserting between the transmitting LD3 a dielectric multilayer filter 12 of the first dielectric multilayer film filter 5 could be reduced to -75 dB.

【0034】本実施例2では、送信用LD3(光源)の発振光波長が1.3μm、受信用PD6の受信光波長が1.55μmの場合を説明したが、送信用LD3の発振光波長が1.55μm、受信用PD6の受信光波長が1. [0034] In the second embodiment, the oscillation wavelength is 1.3μm in the transmission LD3 (light source), the reception wavelength of the reception PD6 has been described the case of 1.55 .mu.m, the oscillation wavelength of the transmission LD3 is 1.55 .mu.m, the received light wavelength of the receiving PD6 is 1.
3μmの場合は、図10に示す回路構成にすることにより同様の効果を得ることができる。 For 3 [mu] m, it is possible to obtain the same effect by the circuit configuration shown in FIG. 10. すなわち、1.3μ In other words, 1.3μ
m光を除去する第2の誘電体多層膜フィルタ12A The second dielectric multilayer filter 12A for removing m light
(1.3μm反射、1.55μm透過)を導波路に対して2〜10°傾けて挿入し、第1の誘電体多層膜フィルタ5A(1.55μm反射、1.3μm透過)を挿入する。 (1.3 .mu.m reflection, 1.55 .mu.m transmitted) inserted by tilting 2 to 10 ° with respect to the waveguide, the first dielectric multilayer filter 5A (1.55 .mu.m reflection, 1.3 .mu.m transmission) inserts a.

【0035】前記図9及び図10に示す回路構成にすることにより、更にクロストークを低減することができる。 [0035] By the circuit configuration shown in FIG. 9 and FIG. 10, it is possible to further reduce crosstalk.

【0036】以上、本発明者によってなされた発明を前記実施形態(実施例)に基づき具体的に説明したが、本発明は、前記実施形態(実施例)に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。 [0036] Although the invention made by the inventors has been concretely described based on the embodiments (examples), the present invention is not limited to the embodiment (examples), the gist it can be variously modified without departing from the as a matter of course.

【0037】 [0037]

【発明の効果】以上、説明したように、本発明によれば、双方向WDM光送受信モジュールにおいて、LD出射光が受信用PDに漏れ込むクロストーク光が−70d Effect of the Invention] As described above, according to the present invention, in the bidirectional WDM optical transceiver module, the crosstalk light LD emitting light leaks into the receiving PD is -70d
Bと極めて低いので、LD光がPD光に漏れ込むクロストーク光を実用上問題ないレベルにまで低減することができる。 Since very low is B, it is possible to LD light is reduced to an acceptable level practically acceptable crosstalk light leaking into the PD light. これにより、受信感度の高い双方向WDM光送受信モジュールを得ることができる。 Thus, it is possible to obtain a high reception sensitivity bidirectional WDM optical transceiver module.

【0038】また、前記送信用LDと第1の誘電体多層膜フィルタと受信用PDとを結ぶ光導波路中に、前記送信用LDの出射光のうち前記第1の誘電体多層膜フィルタを透過する成分を遮断する第2の誘電体多層膜フィルタを挿入することにより、更にクロストークを低減することができる。 Further, during said transmission LD and optical waveguide connecting the first dielectric multilayer film filter and the receiving PD, transmitted through the first dielectric multilayer film filter of the light emitted from the light transmission LD by inserting the second dielectric multilayer film filter which blocks the component, it is possible to further reduce crosstalk.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例1の双方向WDM光送受信モジュールの概略構成を示す図である。 1 is a diagram showing a schematic configuration of a bidirectional WDM optical transceiver module of the first embodiment of the present invention.

【図2】図1のA−A'線で切った断面の拡大断面図である。 2 is an enlarged sectional view of a section taken along the line A-A 'in FIG.

【図3】図1のB−B'線で切った断面の拡大断面図である。 3 is an enlarged sectional view of a section taken along the line B-B 'in FIG.

【図4】図1のC−C'線で切った断面の拡大断面図である。 4 is an enlarged sectional view of a section taken along the line C-C 'of FIG.

【図5】PLCプラットフォームの作製法を説明するための図である。 5 is a diagram for explaining a manufacturing method of the PLC platform.

【図6】本実施例1の誘電体多層膜フィルタのフィルタ反射型波長合分波器の波長特性を示す図である。 6 is a diagram illustrating a wavelength characteristic of the filter reflection type wavelength demultiplexer of the dielectric multilayer filter of the first embodiment.

【図7】本実施例1の双方向WDM光送受信モジュール(図1)の作用と各装置の配置を置き換えた場合の作用とを比較するための図である。 7 is a diagram for comparing activity and the effect in the case of replacing the arrangement of the devices of the bidirectional WDM optical transceiver module of the first embodiment (FIG. 1).

【図8】本実施例1の双方向WDM光送受信モジュールの作用を説明するための図である。 8 is a diagram for explaining the operation of the bidirectional WDM optical transceiver module of the first embodiment.

【図9】本発明の実施例2の双方向WDM光送受信モジュールの概略構成を示す図である。 9 is a diagram showing a schematic configuration of a bidirectional WDM optical transceiver module according to a second embodiment of the present invention.

【図10】本発明の実施例2の別の双方向WDM光送受信モジュールの概略構成を示す図である。 Is a diagram showing a schematic configuration of another bidirectional WDM optical transceiver module according to a second embodiment of the invention; FIG.

【図11】従来のWDM光送受信モジュールの概略構成を示す図である。 11 is a diagram showing a schematic configuration of a conventional WDM optical transceiver module.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…Si基板、2…光導波路、3…送信用LD、4…モニターPD、5…第1の誘電体多層膜フィルタ、6…受信用PD、7…電気配線、7A…電気配線および半田、 1 ... Si substrate, 2 ... optical waveguide, 3 ... transmission LD, 4 ... monitor PD, 5 ... first dielectric multilayer film filter, 6 ... receiving PD, 7 ... electric wiring, 7A ... electric wiring and solder,
8…Siテラス、9…補強ガラス、10…溝、11…光ファイバ、12…第2の誘電体多層膜フィルタ、21… 8 ... Si Terrace, 9 ... reinforcing glass, 10 ... groove, 11 ... optical fiber, 12 ... second dielectric multilayer film filter, 21 ...
下部クラッド層、22…高さ調整用クラッド層、23… A lower cladding layer, 22 ... Height adjusting cladding layer, 23 ...
光導波路のコア、24…上部クラッド層、25…接着剤。 Optical waveguide core, 24 ... upper cladding layer, 25 ... adhesive.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 FI H04B 10/14 10/04 10/06 (72)発明者 山田 泰文 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 日比野 善典 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 6 identification symbol FI H04B 10/14 10/04 10/06 (72) inventor Yasufumi Yamada Tokyo Nishi-Shinjuku, Shinjuku-ku, Third Street No. 19 No. 2 Nippon telegraph and telephone within Co., Ltd. (72) inventor Yoshinori Hibino Tokyo Nishi-Shinjuku, Shinjuku-ku, Third Street No. 19 No. 2, Nippon telegraph and telephone Corporation in the

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 平面基板上に形成された光分岐導波路と、該光分岐導波路の分岐部に設けられた溝と、該溝に挿入されて入力光を波長に応じてその透過方向および反射方向に分岐させる誘電体多層膜フィルタと、前記平面基板上で前記光分岐導波路に光結合する送信用レーザダイオードおよび受信用フォトダイオードとから構成される双方向WDM光送受信モジュールであって、前記誘電体多層膜フィルタの透過波長が前記受信用フォトダイオードの受信波長に設定され、前記誘電体多層膜フィルタの阻止波長が前記送信用レーザダイオードの発振波長に設定され、前記送信用レーザダイオードと受信用フォトダイオードが前記誘電体多層膜フィルタを挟んで対向する位置に配置されていることを特徴とする双方向WDM 1. A an optical branching waveguide formed on a planar substrate, a groove provided in the branch portion of the optical branch waveguide, the transmission direction and in accordance with the wavelength of the input light is inserted into the groove a dielectric multilayer filter for branching the reflected direction, a bidirectional WDM optical transceiver module composed of a transmitting laser diode and receiving photodiode optically coupled to the optical branch waveguide by the planar substrate, the transmission wavelength of the dielectric multilayer filter is set to the reception wavelength of the receiving photodiode, wherein the dielectric blocking wavelengths of the multilayer film filter is set to the oscillation wavelength of the transmitting laser diode, and the transmitting laser diode bidirectional WDM the receiving photodiode, characterized in that it is arranged at a position facing each other across the dielectric multilayer film filter
    光送受信モジュール。 Optical transceiver module.
  2. 【請求項2】 請求項1に記載の双方向WDM光送受信モジュールにおいて、前記送信用レーザダイオードと誘電体多層膜フィルタと受信用フォトダイオードとを結ぶ光導波路中に、前記送信用フォトダイオードの出射光のうち前記誘電体多層膜フィルタを透過する成分を遮断する第2の誘電体多層膜フィルタが挿入されていることを特徴とする双方向WDM光送受信モジュール。 2. A bidirectional WDM optical transceiver module according to claim 1, in an optical waveguide connecting the transmitting laser diode and the dielectric multilayer film filter and the receiving photodiode, output of the transmission photo-diode the second dielectric bidirectional WDM optical transceiver module, wherein the multilayer filter is inserted to block the component transmitted through the dielectric multilayer film filter of Shako.
JP2701598A 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module Pending JPH1168705A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9-151825 1997-06-10
JP15182597 1997-06-10
JP2701598A JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2701598A JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Publications (1)

Publication Number Publication Date
JPH1168705A true true JPH1168705A (en) 1999-03-09

Family

ID=26364878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2701598A Pending JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Country Status (1)

Country Link
JP (1) JPH1168705A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
EP1312960A1 (en) * 2001-11-19 2003-05-21 Matsushita Electric Industrial Co., Ltd Optical transmitting/receiving module and optical transmitting/receiving device comprising the same
US6684012B2 (en) 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
US6748143B2 (en) 2002-05-10 2004-06-08 Sumitomo Electric Industries, Ltd. Optical transceiver module and optical communications system using the same
US6793410B2 (en) 2001-12-25 2004-09-21 Sumitomo Electric Industries, Ltd. Optical communications module
US6798932B2 (en) 2002-02-13 2004-09-28 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6819840B2 (en) 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
US6853776B2 (en) 2000-10-23 2005-02-08 Nec Corporation Optical communication module and manufacturing method thereof
US6859601B2 (en) 2001-09-20 2005-02-22 Sumitomo Electric Industries, Ltd. Optical waveguide-integrated substrate, method for producing the substrate, and optical transceiver using the substrate
US6863449B2 (en) 2002-02-08 2005-03-08 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6870595B1 (en) 1998-09-22 2005-03-22 Minolta Co., Ltd. Optical filter device and method of making same
US6877914B2 (en) 2002-06-18 2005-04-12 Sumitomo Electric Industries, Ltd. Optical communications module and method for producing the module
US6882763B2 (en) 2002-04-03 2005-04-19 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6886996B2 (en) 2002-06-19 2005-05-03 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing the same module
US6904209B2 (en) 2002-04-26 2005-06-07 Sumitomo Electric Industries, Ltd. Optical communication module
US6937779B2 (en) 2000-12-01 2005-08-30 Nec Corporation Optical module
JP2005532592A (en) * 2002-07-03 2005-10-27 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation True position bench
US6973239B2 (en) 2001-02-14 2005-12-06 Nec Corporation Optical semiconductor module equipped with a light monitor for monitoring signal light emitted from a light emitting element
US7142740B2 (en) 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
US7486846B2 (en) 2004-02-17 2009-02-03 Hammatsu Photonics K.K. Optical transmitting /receiving module
US8049159B2 (en) 2007-07-31 2011-11-01 Nec Corporation Optical transmitter-receiver subassembly and optical transmitter-receiver module
US8532494B2 (en) 2009-09-29 2013-09-10 Oki Electric Industry Co., Ltd. Optical bidirectional communication module and optical bidirectional communication apparatus
CN104065417A (en) * 2014-07-02 2014-09-24 潘国新 Integrated optical transmitting-receiving assembly
CN104092500A (en) * 2014-07-13 2014-10-08 潘国新 Integrated optical transceiver module
US20160291268A1 (en) * 2015-03-30 2016-10-06 Oki Electric Industry Co., Ltd. Bidirectional optical communication module

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
US6870595B1 (en) 1998-09-22 2005-03-22 Minolta Co., Ltd. Optical filter device and method of making same
US6684012B2 (en) 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
US7140131B2 (en) 2000-10-23 2006-11-28 Nec Corporation Optical communication module and manufacturing method thereof
US6853776B2 (en) 2000-10-23 2005-02-08 Nec Corporation Optical communication module and manufacturing method thereof
US6937779B2 (en) 2000-12-01 2005-08-30 Nec Corporation Optical module
US6973239B2 (en) 2001-02-14 2005-12-06 Nec Corporation Optical semiconductor module equipped with a light monitor for monitoring signal light emitted from a light emitting element
US6819840B2 (en) 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
US6859601B2 (en) 2001-09-20 2005-02-22 Sumitomo Electric Industries, Ltd. Optical waveguide-integrated substrate, method for producing the substrate, and optical transceiver using the substrate
EP1312960A1 (en) * 2001-11-19 2003-05-21 Matsushita Electric Industrial Co., Ltd Optical transmitting/receiving module and optical transmitting/receiving device comprising the same
US6793410B2 (en) 2001-12-25 2004-09-21 Sumitomo Electric Industries, Ltd. Optical communications module
US6863449B2 (en) 2002-02-08 2005-03-08 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6798932B2 (en) 2002-02-13 2004-09-28 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US7153037B2 (en) 2002-04-03 2006-12-26 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6882763B2 (en) 2002-04-03 2005-04-19 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6904209B2 (en) 2002-04-26 2005-06-07 Sumitomo Electric Industries, Ltd. Optical communication module
US6748143B2 (en) 2002-05-10 2004-06-08 Sumitomo Electric Industries, Ltd. Optical transceiver module and optical communications system using the same
US7044659B2 (en) 2002-06-18 2006-05-16 Sumitomo Electric Industries, Ltd. Optical communications module and method for producing the module
US6877914B2 (en) 2002-06-18 2005-04-12 Sumitomo Electric Industries, Ltd. Optical communications module and method for producing the module
US6904220B2 (en) 2002-06-19 2005-06-07 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing same module
US6886996B2 (en) 2002-06-19 2005-05-03 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing the same module
JP2005532592A (en) * 2002-07-03 2005-10-27 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation True position bench
US7486846B2 (en) 2004-02-17 2009-02-03 Hammatsu Photonics K.K. Optical transmitting /receiving module
US7142740B2 (en) 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
US8049159B2 (en) 2007-07-31 2011-11-01 Nec Corporation Optical transmitter-receiver subassembly and optical transmitter-receiver module
US8532494B2 (en) 2009-09-29 2013-09-10 Oki Electric Industry Co., Ltd. Optical bidirectional communication module and optical bidirectional communication apparatus
CN104065417A (en) * 2014-07-02 2014-09-24 潘国新 Integrated optical transmitting-receiving assembly
CN104092500A (en) * 2014-07-13 2014-10-08 潘国新 Integrated optical transceiver module
US20160291268A1 (en) * 2015-03-30 2016-10-06 Oki Electric Industry Co., Ltd. Bidirectional optical communication module
US9726839B2 (en) 2015-03-30 2017-08-08 Oki Electric Industry Co., Ltd. Bidirectional optical communication module

Similar Documents

Publication Publication Date Title
US5170451A (en) Optical wdm (wavelength division multiplex) coupler
US5963349A (en) Inexpensive single-fiber bidirectional data link
Ishio et al. Review and status of wavelength-division-multiplexing technology and its application
US6222958B1 (en) Optical interleaver/de-interleaver
US5579154A (en) Optical fiber amplifier
US6281997B1 (en) Dense WDM optical multiplexer and demultiplexer
US5933270A (en) Optical equalizer
US20030007754A1 (en) Optical waveguide transmitter-receiver module
US5946331A (en) Integrated multi-wavelength transmitter
US5982518A (en) Optical add-drop multiplexers compatible with very dense WDM optical communication systems
US6061481A (en) Optoelectronic circuit
US5440416A (en) Optical network comprising a compact wavelength-dividing component
US5633962A (en) Bidirectional optical semiconductor apparatus
US20040175077A1 (en) Pad architecture for backwards compatibility for bi-directional transceiver module
US20010038478A1 (en) Structure of a bidirectional wavelength optical function module
US4955014A (en) Broadband optical communication system, particularly in the subscriber area
US6433924B1 (en) Wavelength-selective optical amplifier
US5960135A (en) Optical integrated circuit for bidirectional communications and method for producing the same
US5799120A (en) Waveguide type wavelength multiplexing/demultiplexing module
US6359730B2 (en) Amplification of an optical WDM signal
US20010046352A1 (en) Fiber-type optical coupler, manufacturing method thereof and optical parts and apparatuses using the same
US20070146881A1 (en) Optical prism and optical transceiver module for optical communications
US20040246568A1 (en) Optical amplifier having polarization mode dispersion compensation function
US5479547A (en) Optical multiplexer and demultiplexer module including multiplexing and demultiplexing filter film
US6327062B1 (en) Optical communication system