JPH1168705A - Two-way wdm optical transmission reception module - Google Patents

Two-way wdm optical transmission reception module

Info

Publication number
JPH1168705A
JPH1168705A JP10027015A JP2701598A JPH1168705A JP H1168705 A JPH1168705 A JP H1168705A JP 10027015 A JP10027015 A JP 10027015A JP 2701598 A JP2701598 A JP 2701598A JP H1168705 A JPH1168705 A JP H1168705A
Authority
JP
Japan
Prior art keywords
transmission
wavelength
dielectric multilayer
multilayer filter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10027015A
Other languages
Japanese (ja)
Inventor
Yasuyuki Inoue
靖之 井上
Toshikazu Hashimoto
俊和 橋本
Masahiro Yanagisawa
雅弘 柳澤
Yasubumi Yamada
泰文 山田
Yoshinori Hibino
善典 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10027015A priority Critical patent/JPH1168705A/en
Publication of JPH1168705A publication Critical patent/JPH1168705A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Abstract

PROBLEM TO BE SOLVED: To reduce crosstalk light of an LD light leaked to a PD light to be a non-problem level practically in the two-way WDM optical transmission reception module. SOLUTION: The two-way WDM optical transmission reception module is made up of an optical branch guide path formed on a plane substrate (Si substrate), a groove 10 provided to a branch part of the optical branch guide path, a dielectric multi-layer film filter 5 that is inserted in the groove 10 and branches an input light in a transmission direction and a reflection light depending on its wavelength, a transmission laser diode LD 3 and a reception photo diode PD 6 coupled optically with the optical branch guide path on the plane substrate 1. The transmission wavelength of the dielectric multi-layer film filter 5 is set to the reception wavelength of the reception PD 6 and a block wavelength of the dielectric multi-layer film filter 5 is set to the oscillation wavelength of the transmission LD 3 and the transmission LD 3 and the reception PD 6 are placed opposite to each other with the dielectric multi-layer film filter 5 inbetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信あるいは光
情報処理などの分野で用いられる波長分割多重方式(以
下、単にWDMと称する)光送受信モジュールに関し、
特に、石英系プレーナ光波回路上にレーザダイオード
(以下、単にLDと称する)やフォトダイオード(以
下、単にPDと称する)をハイブリッド集積して構成し
たWDM光送受信モジュールにおいて、その波長合分波
器の構成がクロストーク光を抑制するよう配置されたこ
とを特徴とするWDM光送受信モジュールに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing (hereinafter simply referred to as "WDM") optical transceiver module used in the field of optical communication or optical information processing.
In particular, in a WDM optical transceiver module in which a laser diode (hereinafter simply referred to as LD) and a photodiode (hereinafter simply referred to as PD) are hybrid-integrated on a quartz-based planar lightwave circuit, the wavelength multiplexer / demultiplexer is used. The present invention relates to a WDM optical transmitting / receiving module characterized in that the configuration is arranged to suppress crosstalk light.

【0002】[0002]

【従来の技術】例えば、上りに1.3μm帯の光信号を
用いて、下りに1.55μm帯の光信号を用いるような
システムが検討され、これを実現するための双方向WD
M光送受信モジュールが、文献 ”Hybrid integration
using silica-on-silicon optical motherboards”Caro
le Jones et al., Integrated Photonics Research,Tec
hnical Digest IThB1,pp.604-607,Boston,1996.に報告
されている。
2. Description of the Related Art For example, a system in which an optical signal in the 1.3 μm band is used in the upstream and an optical signal in the 1.55 μm band in the downstream is studied, and a bidirectional WD for realizing this is studied.
M optical transmission / reception module
using silica-on-silicon optical motherboards ”Caro
le Jones et al., Integrated Photonics Research, Tec
hnical Digest IThB1, pp. 604-607, Boston, 1996.

【0003】前記文献に記載されるWDM光送受信モジ
ュールの概略構成を図11に示す。図11において、1
00は光ファイバ、101は基板、102は光導波路、
103は送信用LD、104はモニターPD、105は
方向性結合器、106は受信用PD、107は受信用増
幅器、108は漏れ光遮断材料、109はミラーであ
る。
FIG. 11 shows a schematic configuration of a WDM optical transmission / reception module described in the above document. In FIG. 11, 1
00 is an optical fiber, 101 is a substrate, 102 is an optical waveguide,
103 is a transmitting LD, 104 is a monitor PD, 105 is a directional coupler, 106 is a receiving PD, 107 is a receiving amplifier, 108 is a leak light blocking material, and 109 is a mirror.

【0004】[0004]

【発明が解決しようとする課題】一般的に上りと下りの
光信号の波長を変えた双方向システムでは、双方向の通
信を同時に送受する必要がある。このため双方向WDM
光送受信モジュールの大きな課題の一つが、発振光が自
らの受信部に漏れ込むクロストーク光を低減することで
ある。
Generally, in a bidirectional system in which the wavelengths of upstream and downstream optical signals are changed, it is necessary to transmit and receive bidirectional communications simultaneously. Therefore, bidirectional WDM
One of the major problems of the optical transceiver module is to reduce crosstalk light that leaks oscillation light into its own receiving unit.

【0005】前記の文献では受信用PD106を送信用
LD103に直交するよう配置してクロストーク光を低
減している(図11参照)。しかし、この構成では、送
信用LD103と受信用PD106を直交配置し、受信
用PD106から方向性結合器に至る導波路を90度に
曲げる必要があるので曲げ部分の占有面積が大きく、結
果的にモジュールのサイズも大きくなってしまう。
In the above document, the crosstalk light is reduced by arranging the receiving PD 106 so as to be orthogonal to the transmitting LD 103 (see FIG. 11). However, in this configuration, it is necessary to arrange the transmitting LD 103 and the receiving PD 106 orthogonally and to bend the waveguide from the receiving PD 106 to the directional coupler by 90 degrees. The size of the module also increases.

【0006】また、送信用LD103からの送出光は、
光ファイバ伝送路中の反射点によってモジュールに戻
り、そのうち一部は方向性結合器を介して受信用PD1
06に結合する。この受信用PD106への戻り光量
は、方向性結合器105の阻止性能で決まるが、一般的
には十分な阻止特性は得られないなどの問題点があっ
た。
The light emitted from the transmitting LD 103 is:
The reflection point in the optical fiber transmission line returns to the module, and a part of it returns to the receiving PD1 via the directional coupler.
06. The amount of light returning to the receiving PD 106 is determined by the blocking performance of the directional coupler 105, but generally has a problem that sufficient blocking characteristics cannot be obtained.

【0007】本発明の目的は、双方向WDM光送受信モ
ジュールにおいて、LD光がPD光に漏れ込むクロスト
ーク光を実用上問題ないレベルにまで低減することが可
能な技術を提供することにある。
An object of the present invention is to provide a technique capable of reducing crosstalk light, in which LD light leaks into PD light, to a practically acceptable level in a bidirectional WDM optical transceiver module.

【0008】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、平面基板上に形成された光分岐導波路
と、該光分岐導波路の分岐部に設けられた溝と、該溝に
挿入されて入力光を波長に応じてその透過方向および反
射方向に分岐させる誘電体多層膜フィルタと、前記平面
基板上で前記光分岐導波路に光結合する送信用LDおよ
び受信用PDとから構成される双方向WDM光送受信モ
ジュールであって、前記誘電体多層膜フィルタの透過波
長が前記受信用PDの受信波長に設定され、前記誘電体
多層膜フィルタの阻止波長が前記送信用LDの発振波長
に設定され、前記送信用LDと受信用PDが前記誘電体
多層膜フィルタを挟んで対向する位置に配置されてい
る。
In order to achieve the above object, the present invention provides an optical branching waveguide formed on a flat substrate, a groove provided at a branch portion of the optical branching waveguide, and A dielectric multilayer filter that is inserted into the groove and branches input light in the transmission direction and the reflection direction according to the wavelength; a transmission LD and a reception PD optically coupled to the optical branching waveguide on the flat substrate; A transmission wavelength of the dielectric multilayer filter is set to a reception wavelength of the reception PD, and a stop wavelength of the dielectric multilayer filter is set to a transmission wavelength of the transmission LD. The oscillation wavelength is set, and the transmitting LD and the receiving PD are arranged at positions facing each other with the dielectric multilayer filter interposed therebetween.

【0010】また、前記送信用レーザダイオードと誘電
体多層膜フィルタと受信用フォトダイオードとを結ぶ光
導波路中に、前記送信用フォトダイオードの出射光のう
ち前記誘電体多層膜フィルタを透過する成分を遮断する
第2の誘電体多層膜フィルタが挿入されている。
In the optical waveguide connecting the transmitting laser diode, the dielectric multilayer filter, and the receiving photodiode, a component of the light emitted from the transmitting photodiode that passes through the dielectric multilayer filter is included. A second dielectric multilayer filter to cut off is inserted.

【0011】即ち、従来の双方向WDM光送受信モジュ
ールのクロストーク光を大幅に低減する手法として、本
発明では、誘電体多層膜フィルタを用いた波長合分波器
を採用し、更に、送信用LDを誘電体多層膜フィルタに
対してその入出力ファイバ側(反射ポート側)に、受信
用PDをその反対側(透過ポート側)に配置することを
最も主要な特徴とする。
That is, as a method for greatly reducing the crosstalk light of the conventional bidirectional WDM optical transmitting and receiving module, the present invention employs a wavelength multiplexer / demultiplexer using a dielectric multilayer filter, The most important feature is that the LD is arranged on the input / output fiber side (reflection port side) of the dielectric multilayer filter and the receiving PD is arranged on the opposite side (transmission port side).

【0012】また、前記双方向WDM光送受信モジュー
ルにおいて、前記送信用レーザダイオードと誘電体多層
膜フィルタと受信用フォトダイオードとを結ぶ光導波路
中に、前記送信用フォトダイオードの出射光のうち前記
誘電体多層膜フィルタを透過する成分を遮断する第2の
誘電体多層膜フィルタが挿入されていることを特徴とす
る。
Further, in the bidirectional WDM optical transmitting and receiving module, in the optical waveguide connecting the transmitting laser diode, the dielectric multilayer filter, and the receiving photodiode, the dielectric waveguide of the light emitted from the transmitting photodiode is provided. A second dielectric multilayer filter for intercepting a component transmitting through the body multilayer filter is inserted.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態(実施例)を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments (examples) of the present invention will be described below in detail with reference to the drawings.

【0014】なお、実施形態(実施例)を説明するため
の全図において、同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。
In all the drawings for describing the embodiments (examples), those having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.

【0015】(実施例1)図1は本発明の実施例1の双
方向WDM光送受信モジュールの概略構成を示す図であ
り、1はSi基板、2は光導波路、3は送信用LD、4
はモニターPD、5は誘電体多層膜フィルタ(波長合分
波器)、6は受信用PD、7は電気配線、8はSiテラ
ス、9は補強ガラス、10は光分岐導波路の分岐部に設
けられた溝、11は光ファイバである。
(Embodiment 1) FIG. 1 is a diagram showing a schematic configuration of a bidirectional WDM optical transmitting and receiving module according to Embodiment 1 of the present invention, wherein 1 is a Si substrate, 2 is an optical waveguide, 3 is a transmission LD,
Is a monitor PD, 5 is a dielectric multilayer filter (wavelength multiplexer / demultiplexer), 6 is a receiving PD, 7 is an electric wiring, 8 is a Si terrace, 9 is a reinforcing glass, and 10 is a branch portion of an optical branching waveguide. The provided groove 11 is an optical fiber.

【0016】図2は図1のA−A’線で切った断面の拡
大断面図を、図3は図1のB−B’線で切った断面の拡
大断面図を、図4は図1のC−C’線で切った断面の拡
大断面図をそれぞれ示している。図2乃至図4におい
て、21は下部クラッド層(第1下部クラッド層)、2
2は高さ調整用クラッド層(第2下部クラッド層)、2
3は光導波路2のコア、24は上部クラッド層、25は
誘電体多層膜フィルタ5を固定するための接着剤、7A
は電気配線および半田である。
FIG. 2 is an enlarged sectional view taken along line AA 'of FIG. 1, FIG. 3 is an enlarged sectional view taken along line BB' of FIG. 1, and FIG. Are enlarged sectional views taken along the line CC ′ of FIG. 2 to 4, reference numeral 21 denotes a lower cladding layer (first lower cladding layer);
2 is a cladding layer for height adjustment (second lower cladding layer), 2
3 is a core of the optical waveguide 2, 24 is an upper clad layer, 25 is an adhesive for fixing the dielectric multilayer filter 5, 7A
Are electrical wiring and solder.

【0017】本実施例1の双方向WDM光送受信モジュ
ールは、図1乃至図4に示すように、Si基板1上に形
成された光分岐導波路の分岐部に溝10が設けられてい
る。この溝10に入力光を波長に応じてその透過方向お
よび反射方向に分岐させる誘電体多層膜フィルタ5が挿
入されている。前記Si基板1上で前記光分岐導波路に
光結合する送信用LD3および受信用PD6から構成さ
れる双方向WDM光送受信モジュールであって、前記誘
電体多層膜フィルタ5の透過波長が受信用PD6の受信
波長に設定され、前記誘電体多層膜フィルタ5の阻止波
長が送信用LD3の発振波長に設定され、前記送信用L
D3および受信用PD6が前記誘電体多層膜フィルタ5
を挟んで対向する位置に配置されている。
In the bidirectional WDM optical transceiver module of the first embodiment, as shown in FIGS. 1 to 4, a groove 10 is provided in a branch portion of an optical branch waveguide formed on a Si substrate 1. Into the groove 10 is inserted a dielectric multilayer filter 5 for splitting the input light in the transmission direction and the reflection direction according to the wavelength. A bidirectional WDM optical transmitting and receiving module comprising a transmitting LD 3 and a receiving PD 6 optically coupled to the optical branching waveguide on the Si substrate 1, wherein the transmission wavelength of the dielectric multilayer filter 5 is , The stop wavelength of the dielectric multilayer filter 5 is set to the oscillation wavelength of the transmission LD 3, and the transmission L
D3 and the receiving PD 6 are the dielectric multilayer filter 5
Are disposed opposite to each other.

【0018】前記送信用LD3の発振波長は1.3μ
m、光ファイバ11の入光する光の波長は1.55μ
m、出光する光の波長は1.3μmである。誘電体多層
膜フィルタ5の透過波長は1.55μm、反射波長は1.
3μmである。
The oscillation wavelength of the transmitting LD 3 is 1.3 μm.
m, the wavelength of light entering the optical fiber 11 is 1.55 μm
m, the wavelength of the emitted light is 1.3 μm. The transmission wavelength of the dielectric multilayer filter 5 is 1.55 μm, and the reflection wavelength is 1.
3 μm.

【0019】このように、本発明では、誘電体多層膜フ
ィルタ5を用いた波長合分波器を採用し、更に、送信用
LD3を誘電体多層膜フィルタ5に対してその入出力フ
ァイバ側(反射ポート側)に、受信用PD6をその反対
側(透過ポート側)に配置する構成とすることにより、
従来の双方向WDM光送受信モジュールのクロストーク
光を大幅に低減することができる。
As described above, in the present invention, the wavelength multiplexer / demultiplexer using the dielectric multilayer filter 5 is employed, and the transmitting LD 3 is connected to the input / output fiber side (with respect to the dielectric multilayer filter 5). By disposing the receiving PD 6 on the opposite side (transmission port side) on the reflection port side,
Crosstalk light of the conventional bidirectional WDM optical transceiver module can be significantly reduced.

【0020】次に、図5を用いてPLCプラットフォー
ムの作製法について簡単に説明する。まず、平坦なSi
基板1をパターン化して、送信用LD3/受信用PD6
を搭載するSiテラス8以外の部分を約30μmの深さ
エッチングする。この上に下部クラッド層21となるガ
ラス層を火炎堆積法で形成する(図5a)。この後、送
信用LD3/受信用PD6の搭載部のSiテラスが表面
に露出するまで平坦化研磨を行う(図5b)。この面が
送信用LD3/受信用PD6を実装する場合の光導波路
に対する高さ基準面になる。
Next, a method of manufacturing a PLC platform will be briefly described with reference to FIG. First, a flat Si
By patterning the substrate 1, the transmitting LD3 / receiving PD6
Is etched to a depth of about 30 μm other than the Si terrace 8 on which is mounted. A glass layer serving as the lower cladding layer 21 is formed thereon by a flame deposition method (FIG. 5A). Thereafter, flattening polishing is performed until the Si terrace of the mounting portion of the transmitting LD3 / receiving PD6 is exposed on the surface (FIG. 5B). This surface serves as a height reference surface for the optical waveguide when the transmission LD3 / reception PD6 is mounted.

【0021】続いて高さ調整層となる高さ調整用クラッ
ド層(第2下部クラッド層)22を設ける。次に、コア
23の層を約7μm堆積する(図5c)。コア層を光導
波路パターンにエッチング加工した後、上部クラッド層
24を堆積する(図5d)。ここでは全てクラッド層お
よびコア層の堆積は火炎堆積法を用いた。引き続き、送
信用LD3/受信用PD6搭載部のSiテラスが再度露
出するまで送信用LD3/受信用PD6搭載部のみエッ
チングする。最後に送信用LD3/受信用PD6の電極
配線および搭載用半田7Aを堆積する(図5e)。
Subsequently, a height adjusting cladding layer (second lower cladding layer) 22 to be a height adjusting layer is provided. Next, a layer of the core 23 is deposited to about 7 μm (FIG. 5c). After etching the core layer into an optical waveguide pattern, an upper cladding layer 24 is deposited (FIG. 5d). Here, the flame deposition method was used for depositing the cladding layer and the core layer. Subsequently, only the transmission LD3 / reception PD6 mounting portion is etched until the Si terrace of the transmission LD3 / reception PD6 mounting portion is exposed again. Finally, the electrode wiring of the transmitting LD3 / receiving PD6 and the mounting solder 7A are deposited (FIG. 5e).

【0022】送信用LD3/受信用PD6の実装は、そ
の搭載部に半田リフローにより接着固定する。その手法
に関しては、文献 T.Hashimoto et al.,”Hybrid integ
ration of spot-size converted laser diode on plana
r lightwave circuit platform by passive alignment
technique,”IEEE Photon.Techno1.Lett.,8,No.11,pp.1
504-1506,1996.に詳しく示されている。一般的に、LD
と光導波路とのモードフィールドは異なる。最近LDの
モードフィールドを拡大して光導波路との結合を改善し
たレーザの研究が進んでいる。それでも現状でLD/光
導波路間の結合率は50%程度である。このためLDか
ら出力された光のうち半分の光はクラッド層中に放出さ
れることになる。
The transmission LD3 / reception PD6 is mounted and fixed to the mounting portion by solder reflow. For the method, see T. Hashimoto et al., “Hybrid integ
ration of spot-size converted laser diode on plana
r lightwave circuit platform by passive alignment
technique, ”IEEE Photon.Techno1.Lett., 8, No.11, pp.1
504-1506, 1996. Generally, LD
And the optical waveguide have different mode fields. Recently, research on a laser in which the mode field of an LD is expanded to improve coupling with an optical waveguide has been advanced. Nevertheless, at present, the coupling ratio between the LD and the optical waveguide is about 50%. For this reason, half of the light output from the LD is emitted into the cladding layer.

【0023】図1に示す誘電体多層膜フィルタ5による
光分岐部の構成法については、詳しくは、文献 Y.Inoue
et al.,”Filter-embedded wavelength-division mult
iplexer for hybrid-integrated transceiver based on
silica-based PLC,”Electron.Lett.,Vol.32,no.9,pp,
847-848,1996.に示されている。
The method of forming the light branching section by the dielectric multilayer filter 5 shown in FIG. 1 is described in detail in the document Y. Inoue.
et al., ”Filter-embedded wavelength-division mult
iplexer for hybrid-integrated transceiver based on
silica-based PLC, "Electron.Lett., Vol.32, no.9, pp,
847-848, 1996.

【0024】前記誘電体多層膜フィルタ5の誘電体多層
膜を挿入する溝10は、幅20μm、深さ150μmの
ものをダイシングソーにより形成した。誘電体多層膜フ
ィルタ5としては、例えば、ポリイミドを基板とした厚
さ14μmのものを使用した。この誘電体多層膜フィル
タ5のフィルタ反射型波長合分波器の波長特性を図6に
示す。図6に示すように、誘電体多層膜フィルタ5は透
過ポートにおいて50dBにも及ぶ高いアイソレーショ
ンを示す。
The groove 10 for inserting the dielectric multilayer film of the dielectric multilayer filter 5 was formed with a width of 20 μm and a depth of 150 μm using a dicing saw. As the dielectric multilayer filter 5, for example, a filter having a thickness of 14 μm using a polyimide substrate was used. FIG. 6 shows the wavelength characteristics of the filter reflection type wavelength multiplexer / demultiplexer of the dielectric multilayer filter 5. As shown in FIG. 6, the dielectric multilayer filter 5 exhibits high isolation of up to 50 dB at the transmission port.

【0025】図1中に示すように、この優れた誘電体多
層膜フィルタ5が送信用LD3と受信用PD6の間に存
在するため、送信用LD3からクラッド層中に放出され
た1.3μm光が受信用PD6に結合することはなくな
る。具体的に送信用LD3の出力が受信用PD6に漏れ
込むクロストーク光は約−70dBであった。このため
1.3μm送信信号に比べて相対的にレベルの低い1.5
5μm光を、感度よく受信用PD6にて検出することが
可能であった。
As shown in FIG. 1, since this excellent dielectric multilayer filter 5 exists between the transmitting LD 3 and the receiving PD 6, the 1.3 μm light emitted from the transmitting LD 3 into the cladding layer. Will not be coupled to the receiving PD 6. Specifically, the crosstalk light from which the output of the transmitting LD 3 leaks into the receiving PD 6 is about -70 dB. For this reason, 1.5, which is relatively lower in level than the 1.3 μm transmission signal,
5 μm light could be detected with high sensitivity by the receiving PD 6.

【0026】また、図1に示す本実施形態の双方向WD
M光送受信モジュールでは、光ファイバ伝送路に送出さ
れた1.3μm光が伝送路中で反射されてモジュールに
戻る場合にも、誘電体多層膜フィルタ5の優れた阻止域
特性により、受信用PD6への結合を十分に抑制するこ
とができる。例えば、伝送路中の反射点における反射減
衰量を30dBとして場合、受信用PD6へ結合するク
ロストーク光は−80dB以下である。
The bidirectional WD of this embodiment shown in FIG.
In the M optical transmitting and receiving module, even when 1.3 μm light transmitted to the optical fiber transmission line is reflected in the transmission line and returns to the module, the excellent stop band characteristic of the dielectric multilayer filter 5 allows the receiving PD 6 to be used. Can be sufficiently suppressed. For example, when the return loss at the reflection point in the transmission path is 30 dB, the crosstalk light coupled to the receiving PD 6 is -80 dB or less.

【0027】図1の双方向WDM光送受信モジュール
は、図11の従来技術のWDM光送受信モジュールに比
較して、送信用LD3と受信用PD6を距離的に離すこ
とができる。このため送信用LD3の駆動電流が、受信
用PD6の光電流に電気的に漏れ込まないという特長も
有する。
The bidirectional WDM optical transmitting / receiving module of FIG. 1 can separate the transmitting LD 3 and the receiving PD 6 from each other as compared with the conventional WDM optical transmitting / receiving module of FIG. For this reason, there is also a feature that the drive current of the transmitting LD 3 does not electrically leak into the photocurrent of the receiving PD 6.

【0028】比較のため、図1の回路構成を図7のよう
に置き換えた場合を想定してみる。この場合、送信用L
D3からクラッド層中に出射した光が誘電体多層膜フィ
ルタ5を透過して受信用PD6に結合する。この1.3
μm光は受信すべき1.55μm光に比較してそのレベ
ルが高いため、受信用PD6は精度よく1.55μmを
受信できなくなる。
For the sake of comparison, it is assumed that the circuit configuration of FIG. 1 is replaced as shown in FIG. In this case, the transmission L
Light emitted from D3 into the cladding layer passes through the dielectric multilayer filter 5 and is coupled to the PD 6 for reception. This 1.3
Since the level of the μm light is higher than the 1.55 μm light to be received, the receiving PD 6 cannot receive 1.55 μm with high accuracy.

【0029】図1では、1.3μm光を送信し1.55μ
m光を受信する双方向WDM光送受信モジュールの回路
構成を示したが、反対に1.55μm光を送信し1.3μ
m光を受信する双方向WDM光送受信モジュールに関し
ては、図8のように、その誘電体多層膜フィルタ5の透
過波長と阻止波長を反対にすることによって実現するこ
とができる。
In FIG. 1, 1.3 μm light is transmitted and 1.55 μm is transmitted.
The circuit configuration of the bidirectional WDM optical transmitting / receiving module for receiving the m light is shown.
A bidirectional WDM optical transceiver module for receiving m light can be realized by reversing the transmission wavelength and the blocking wavelength of the dielectric multilayer filter 5 as shown in FIG.

【0030】(実施例2)図9は本発明の実施例2の双
方向WDM光送受信モジュールの概略構成を示す図であ
る。
(Embodiment 2) FIG. 9 is a diagram showing a schematic configuration of a bidirectional WDM optical transceiver module according to Embodiment 2 of the present invention.

【0031】本実施例2の双方向WDM光送受信モジュ
ールは、送信用LD3の発振光が受信用PD6に漏れ込
むことが大きな問題となる。図1に示す前記実施例1で
は、送信用LD3(1.3μm光)を反射する第1の誘
電体多層膜フィルタ5を送信用LD3と受信用PD6の
間に挿入した回路構成をとることにより、送信用LD3
(1.3μm光)が受信用PD6に漏れ込むことを防い
でいる。しかし、送信用LD3の光源によっては、1.
3μm発振の光になっていてもわずかに1.55μm帯
にまでスペクトルが裾を引いている場合がある。
In the bidirectional WDM optical transmitting and receiving module of the second embodiment, a major problem is that the oscillation light of the transmitting LD 3 leaks into the receiving PD 6. In the first embodiment shown in FIG. 1, a circuit configuration is employed in which the first dielectric multilayer filter 5 that reflects the transmission LD 3 (1.3 μm light) is inserted between the transmission LD 3 and the reception PD 6. LD3 for transmission
(1.3 μm light) is prevented from leaking into the receiving PD 6. However, depending on the light source of the transmitting LD 3, 1.
Even when the light is oscillated at 3 μm, the spectrum may have a tail extending only to the 1.55 μm band.

【0032】この場合、図1に示す回路構成では送信用
LD3から出力された光のうち、第1の誘電体多層膜フ
ィルタ5を透過してしまう1.45μm〜1.55μm帯
の光が受信用PD6に結合することを防ぐことができな
い。そこで、図9に示すように、送信用LD3と前述の
第1の誘電体多層膜フィルタ5(1.3μm反射、1.
55μm透過)との間に1.55μm光を除去する第2
の誘電体多層膜フィルタ12(1.55μm反射、1.
3μm透過)が導波路に対して2〜10°傾けて挿入さ
れた回路構成にする。ここで第2の誘電体多層膜フィル
タ12を導波路に対して傾けた理由は、第2の誘電体多
層膜フィルタ12で反射された光が送信用LD3に再結
合してその動作が不安定になることを防ぐためである。
In this case, in the circuit configuration shown in FIG. 1, of the light output from the transmitting LD 3, light in the 1.45 μm to 1.55 μm band that passes through the first dielectric multilayer filter 5 is received. Cannot be prevented from being bonded to the PD 6 for use. Therefore, as shown in FIG. 9, the transmitting LD 3 and the above-mentioned first dielectric multilayer filter 5 (1.3 μm reflection, 1.
Second to remove 1.55 μm light between
Of the dielectric multilayer filter 12 (1.55 μm reflection, 1.
(3 μm transmission) is inserted at an angle of 2 to 10 ° with respect to the waveguide. Here, the reason that the second dielectric multilayer filter 12 is tilted with respect to the waveguide is that the light reflected by the second dielectric multilayer filter 12 is recombined with the transmission LD 3 and the operation is unstable. It is to prevent that.

【0033】前記図9に示す構成にすることにより、送
信用LD3から出力されたわずかな1.45μm〜1.5
5μm帯の光が受信用PD6に結合するのを防ぐことが
可能になった。具体的には第2の誘電体多層膜フィルタ
12の挿入前の送信用LD3の発振光が受信用PD6に
結合する効率は−40dBであった。その値が、誘電体
多層膜フィルタ12を送信用LD3と第1の誘電体多層
膜フィルタ5の間に挿入することにより、−75dBに
まで低減することができた。
With the configuration shown in FIG. 9, only 1.45 μm to 1.5 μm output from the transmitting LD 3
It has become possible to prevent light in the 5 μm band from being coupled to the PD 6 for reception. Specifically, the efficiency of coupling of the oscillation light of the transmission LD 3 to the reception PD 6 before the insertion of the second dielectric multilayer filter 12 was −40 dB. The value could be reduced to -75 dB by inserting the dielectric multilayer filter 12 between the transmitting LD 3 and the first dielectric multilayer filter 5.

【0034】本実施例2では、送信用LD3(光源)の
発振光波長が1.3μm、受信用PD6の受信光波長が
1.55μmの場合を説明したが、送信用LD3の発振
光波長が1.55μm、受信用PD6の受信光波長が1.
3μmの場合は、図10に示す回路構成にすることによ
り同様の効果を得ることができる。すなわち、1.3μ
m光を除去する第2の誘電体多層膜フィルタ12A
(1.3μm反射、1.55μm透過)を導波路に対し
て2〜10°傾けて挿入し、第1の誘電体多層膜フィル
タ5A(1.55μm反射、1.3μm透過)を挿入す
る。
In the second embodiment, the case where the oscillation light wavelength of the transmission LD 3 (light source) is 1.3 μm and the reception light wavelength of the reception PD 6 is 1.55 μm is explained. 1.55 μm, the receiving light wavelength of the receiving PD 6 is 1.
In the case of 3 μm, a similar effect can be obtained by adopting the circuit configuration shown in FIG. That is, 1.3μ
Second dielectric multilayer filter 12A for removing m light
(1.3 μm reflection, 1.55 μm transmission) is inserted at an angle of 2 ° to 10 ° with respect to the waveguide, and the first dielectric multilayer filter 5A (1.55 μm reflection, 1.3 μm transmission) is inserted.

【0035】前記図9及び図10に示す回路構成にする
ことにより、更にクロストークを低減することができ
る。
With the circuit configuration shown in FIGS. 9 and 10, crosstalk can be further reduced.

【0036】以上、本発明者によってなされた発明を前
記実施形態(実施例)に基づき具体的に説明したが、本
発明は、前記実施形態(実施例)に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更可能
であることは勿論である。
As described above, the invention made by the inventor has been specifically described based on the above embodiment (example). However, the present invention is not limited to the above embodiment (example), and the gist of the invention is as follows. Of course, various changes can be made without departing from the scope.

【0037】[0037]

【発明の効果】以上、説明したように、本発明によれ
ば、双方向WDM光送受信モジュールにおいて、LD出
射光が受信用PDに漏れ込むクロストーク光が−70d
Bと極めて低いので、LD光がPD光に漏れ込むクロス
トーク光を実用上問題ないレベルにまで低減することが
できる。これにより、受信感度の高い双方向WDM光送
受信モジュールを得ることができる。
As described above, according to the present invention, in the bidirectional WDM optical transmitting / receiving module, the crosstalk light leaking from the LD to the receiving PD is −70d.
Since it is extremely low as B, crosstalk light that leaks LD light into PD light can be reduced to a level that causes no practical problem. This makes it possible to obtain a bidirectional WDM optical transmitting / receiving module having high reception sensitivity.

【0038】また、前記送信用LDと第1の誘電体多層
膜フィルタと受信用PDとを結ぶ光導波路中に、前記送
信用LDの出射光のうち前記第1の誘電体多層膜フィル
タを透過する成分を遮断する第2の誘電体多層膜フィル
タを挿入することにより、更にクロストークを低減する
ことができる。
Further, in an optical waveguide connecting the transmitting LD, the first dielectric multilayer filter, and the receiving PD, outgoing light of the transmitting LD passes through the first dielectric multilayer filter. By inserting a second dielectric multilayer filter that blocks components that cause crosstalk, crosstalk can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の双方向WDM光送受信モジ
ュールの概略構成を示す図である。
FIG. 1 is a diagram illustrating a schematic configuration of a bidirectional WDM optical transceiver module according to a first embodiment of the present invention.

【図2】図1のA−A’線で切った断面の拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view taken along line AA ′ of FIG.

【図3】図1のB−B’線で切った断面の拡大断面図で
ある。
FIG. 3 is an enlarged cross-sectional view taken along line BB ′ of FIG. 1;

【図4】図1のC−C’線で切った断面の拡大断面図で
ある。
FIG. 4 is an enlarged cross-sectional view of a cross section taken along line CC ′ of FIG. 1;

【図5】PLCプラットフォームの作製法を説明するた
めの図である。
FIG. 5 is a diagram for explaining a method of manufacturing a PLC platform.

【図6】本実施例1の誘電体多層膜フィルタのフィルタ
反射型波長合分波器の波長特性を示す図である。
FIG. 6 is a diagram illustrating wavelength characteristics of a filter reflection type wavelength multiplexer / demultiplexer of the dielectric multilayer filter according to the first embodiment.

【図7】本実施例1の双方向WDM光送受信モジュール
(図1)の作用と各装置の配置を置き換えた場合の作用
とを比較するための図である。
FIG. 7 is a diagram for comparing the operation of the bidirectional WDM optical transmission / reception module (FIG. 1) of the first embodiment with the operation when the arrangement of each device is replaced.

【図8】本実施例1の双方向WDM光送受信モジュール
の作用を説明するための図である。
FIG. 8 is a diagram for explaining the operation of the bidirectional WDM optical transceiver module according to the first embodiment;

【図9】本発明の実施例2の双方向WDM光送受信モジ
ュールの概略構成を示す図である。
FIG. 9 is a diagram illustrating a schematic configuration of a bidirectional WDM optical transceiver module according to a second embodiment of the present invention.

【図10】本発明の実施例2の別の双方向WDM光送受
信モジュールの概略構成を示す図である。
FIG. 10 is a diagram illustrating a schematic configuration of another bidirectional WDM optical transceiver module according to the second embodiment of the present invention.

【図11】従来のWDM光送受信モジュールの概略構成
を示す図である。
FIG. 11 is a diagram showing a schematic configuration of a conventional WDM optical transmission / reception module.

【符号の説明】[Explanation of symbols]

1…Si基板、2…光導波路、3…送信用LD、4…モ
ニターPD、5…第1の誘電体多層膜フィルタ、6…受
信用PD、7…電気配線、7A…電気配線および半田、
8…Siテラス、9…補強ガラス、10…溝、11…光
ファイバ、12…第2の誘電体多層膜フィルタ、21…
下部クラッド層、22…高さ調整用クラッド層、23…
光導波路のコア、24…上部クラッド層、25…接着
剤。
DESCRIPTION OF SYMBOLS 1 ... Si board | substrate, 2 ... Optical waveguide, 3 ... Transmission LD, 4 ... Monitor PD, 5 ... First dielectric multilayer filter, 6 ... Reception PD, 7 ... Electrical wiring, 7A ... Electrical wiring and solder,
8 ... Si terrace, 9 ... reinforced glass, 10 ... groove, 11 ... optical fiber, 12 ... second dielectric multilayer filter, 21 ...
Lower cladding layer, 22 ... height adjusting cladding layer, 23 ...
Core of optical waveguide, 24: upper clad layer, 25: adhesive.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/14 10/04 10/06 (72)発明者 山田 泰文 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 日比野 善典 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H04B 10/14 10/04 10/06 (72) Inventor Yasufumi Yamada 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Inside (72) Inventor Yoshinori Hibino 3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平面基板上に形成された光分岐導波路
と、該光分岐導波路の分岐部に設けられた溝と、該溝に
挿入されて入力光を波長に応じてその透過方向および反
射方向に分岐させる誘電体多層膜フィルタと、前記平面
基板上で前記光分岐導波路に光結合する送信用レーザダ
イオードおよび受信用フォトダイオードとから構成され
る双方向WDM光送受信モジュールであって、前記誘電
体多層膜フィルタの透過波長が前記受信用フォトダイオ
ードの受信波長に設定され、前記誘電体多層膜フィルタ
の阻止波長が前記送信用レーザダイオードの発振波長に
設定され、前記送信用レーザダイオードと受信用フォト
ダイオードが前記誘電体多層膜フィルタを挟んで対向す
る位置に配置されていることを特徴とする双方向WDM
光送受信モジュール。
An optical branching waveguide formed on a planar substrate, a groove provided at a branch portion of the optical branching waveguide, and a transmission direction of input light inserted into the groove according to a wavelength and corresponding to a wavelength. A bidirectional WDM optical transmitting and receiving module including a dielectric multilayer filter that branches in a reflection direction, and a transmitting laser diode and a receiving photodiode that are optically coupled to the optical branching waveguide on the planar substrate, The transmission wavelength of the dielectric multilayer filter is set to the reception wavelength of the reception photodiode, the stop wavelength of the dielectric multilayer filter is set to the oscillation wavelength of the transmission laser diode, and the transmission laser diode and A two-way WDM, wherein a receiving photodiode is arranged at a position facing the dielectric multilayer filter.
Optical transceiver module.
【請求項2】 請求項1に記載の双方向WDM光送受信
モジュールにおいて、前記送信用レーザダイオードと誘
電体多層膜フィルタと受信用フォトダイオードとを結ぶ
光導波路中に、前記送信用フォトダイオードの出射光の
うち前記誘電体多層膜フィルタを透過する成分を遮断す
る第2の誘電体多層膜フィルタが挿入されていることを
特徴とする双方向WDM光送受信モジュール。
2. The bidirectional WDM optical transmitting and receiving module according to claim 1, wherein the transmitting photodiode is provided in an optical waveguide connecting the transmitting laser diode, the dielectric multilayer filter, and the receiving photodiode. A bidirectional WDM optical transmission / reception module, wherein a second dielectric multilayer filter for blocking a component of the emitted light that passes through the dielectric multilayer filter is inserted.
JP10027015A 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module Pending JPH1168705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10027015A JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15182597 1997-06-10
JP9-151825 1997-06-10
JP10027015A JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Publications (1)

Publication Number Publication Date
JPH1168705A true JPH1168705A (en) 1999-03-09

Family

ID=26364878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10027015A Pending JPH1168705A (en) 1997-06-10 1998-02-09 Two-way wdm optical transmission reception module

Country Status (1)

Country Link
JP (1) JPH1168705A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131586A (en) * 2000-10-23 2002-05-09 Nec Corp Optical communication module and its manufacturing method
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
EP1312960A1 (en) * 2001-11-19 2003-05-21 Matsushita Electric Industrial Co., Ltd Optical transmitting/receiving module and optical transmitting/receiving device comprising the same
JP2004020978A (en) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd Element for optical communications and method for manufacturing element for optical communications
US6684012B2 (en) 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
US6748143B2 (en) 2002-05-10 2004-06-08 Sumitomo Electric Industries, Ltd. Optical transceiver module and optical communications system using the same
US6793410B2 (en) 2001-12-25 2004-09-21 Sumitomo Electric Industries, Ltd. Optical communications module
US6798932B2 (en) 2002-02-13 2004-09-28 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6819840B2 (en) 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
US6859601B2 (en) 2001-09-20 2005-02-22 Sumitomo Electric Industries, Ltd. Optical waveguide-integrated substrate, method for producing the substrate, and optical transceiver using the substrate
US6863449B2 (en) 2002-02-08 2005-03-08 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6870595B1 (en) 1998-09-22 2005-03-22 Minolta Co., Ltd. Optical filter device and method of making same
US6882763B2 (en) 2002-04-03 2005-04-19 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6886996B2 (en) 2002-06-19 2005-05-03 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing the same module
US6904209B2 (en) 2002-04-26 2005-06-07 Sumitomo Electric Industries, Ltd. Optical communication module
US6937779B2 (en) 2000-12-01 2005-08-30 Nec Corporation Optical module
JP2005532592A (en) * 2002-07-03 2005-10-27 タイコ・エレクトロニクス・コーポレイション True position bench
US6973239B2 (en) 2001-02-14 2005-12-06 Nec Corporation Optical semiconductor module equipped with a light monitor for monitoring signal light emitted from a light emitting element
US7142740B2 (en) 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
US7486846B2 (en) 2004-02-17 2009-02-03 Hammatsu Photonics K.K. Optical transmitting /receiving module
US8049159B2 (en) 2007-07-31 2011-11-01 Nec Corporation Optical transmitter-receiver subassembly and optical transmitter-receiver module
US8532494B2 (en) 2009-09-29 2013-09-10 Oki Electric Industry Co., Ltd. Optical bidirectional communication module and optical bidirectional communication apparatus
CN104065417A (en) * 2014-07-02 2014-09-24 潘国新 Integrated optical transmitting-receiving assembly
CN104092500A (en) * 2014-07-13 2014-10-08 潘国新 Integrated optical transceiver module
US20160291268A1 (en) * 2015-03-30 2016-10-06 Oki Electric Industry Co., Ltd. Bidirectional optical communication module

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480647B1 (en) 1998-06-04 2002-11-12 Nec Corporation Waveguide-type wavelength multiplexing optical transmitter/receiver module
US6870595B1 (en) 1998-09-22 2005-03-22 Minolta Co., Ltd. Optical filter device and method of making same
US6684012B2 (en) 2000-09-13 2004-01-27 Nec Corporation Optical communication module and process for producing the same
US6853776B2 (en) 2000-10-23 2005-02-08 Nec Corporation Optical communication module and manufacturing method thereof
JP2002131586A (en) * 2000-10-23 2002-05-09 Nec Corp Optical communication module and its manufacturing method
US7140131B2 (en) 2000-10-23 2006-11-28 Nec Corporation Optical communication module and manufacturing method thereof
US6937779B2 (en) 2000-12-01 2005-08-30 Nec Corporation Optical module
US6973239B2 (en) 2001-02-14 2005-12-06 Nec Corporation Optical semiconductor module equipped with a light monitor for monitoring signal light emitted from a light emitting element
US6819840B2 (en) 2001-06-25 2004-11-16 Matsushita Electric Industrial Co., Ltd. Optical transmitting/receiving module and method for manufacturing the same
US6859601B2 (en) 2001-09-20 2005-02-22 Sumitomo Electric Industries, Ltd. Optical waveguide-integrated substrate, method for producing the substrate, and optical transceiver using the substrate
EP1312960A1 (en) * 2001-11-19 2003-05-21 Matsushita Electric Industrial Co., Ltd Optical transmitting/receiving module and optical transmitting/receiving device comprising the same
US6793410B2 (en) 2001-12-25 2004-09-21 Sumitomo Electric Industries, Ltd. Optical communications module
US6863449B2 (en) 2002-02-08 2005-03-08 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US6798932B2 (en) 2002-02-13 2004-09-28 Sumitomo Electric Industries, Ltd. Parallel light emitting device—photosensitive device module
US7153037B2 (en) 2002-04-03 2006-12-26 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6882763B2 (en) 2002-04-03 2005-04-19 Sumitomo Electric Industries, Ltd. Multichannel optical communications module
US6904209B2 (en) 2002-04-26 2005-06-07 Sumitomo Electric Industries, Ltd. Optical communication module
US6748143B2 (en) 2002-05-10 2004-06-08 Sumitomo Electric Industries, Ltd. Optical transceiver module and optical communications system using the same
US6877914B2 (en) 2002-06-18 2005-04-12 Sumitomo Electric Industries, Ltd. Optical communications module and method for producing the module
US7044659B2 (en) 2002-06-18 2006-05-16 Sumitomo Electric Industries, Ltd. Optical communications module and method for producing the module
JP2004020978A (en) * 2002-06-18 2004-01-22 Sumitomo Electric Ind Ltd Element for optical communications and method for manufacturing element for optical communications
US6904220B2 (en) 2002-06-19 2005-06-07 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing same module
US6886996B2 (en) 2002-06-19 2005-05-03 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing the same module
JP2005532592A (en) * 2002-07-03 2005-10-27 タイコ・エレクトロニクス・コーポレイション True position bench
US7486846B2 (en) 2004-02-17 2009-02-03 Hammatsu Photonics K.K. Optical transmitting /receiving module
US7142740B2 (en) 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
JP2008209904A (en) * 2007-01-30 2008-09-11 Nec Corp Bidirectional optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
US8049159B2 (en) 2007-07-31 2011-11-01 Nec Corporation Optical transmitter-receiver subassembly and optical transmitter-receiver module
US8532494B2 (en) 2009-09-29 2013-09-10 Oki Electric Industry Co., Ltd. Optical bidirectional communication module and optical bidirectional communication apparatus
CN104065417A (en) * 2014-07-02 2014-09-24 潘国新 Integrated optical transmitting-receiving assembly
CN104092500A (en) * 2014-07-13 2014-10-08 潘国新 Integrated optical transceiver module
US20160291268A1 (en) * 2015-03-30 2016-10-06 Oki Electric Industry Co., Ltd. Bidirectional optical communication module
US9726839B2 (en) 2015-03-30 2017-08-08 Oki Electric Industry Co., Ltd. Bidirectional optical communication module

Similar Documents

Publication Publication Date Title
JPH1168705A (en) Two-way wdm optical transmission reception module
JP3749652B2 (en) Optical multiplexer / demultiplexer, optical waveguide module, and optical communication device
US20190089475A1 (en) Optical modules having an improved optical signal to noise ratio
US5960135A (en) Optical integrated circuit for bidirectional communications and method for producing the same
US9020001B2 (en) Tunable laser using III-V gain materials
JP2919329B2 (en) Optical transceiver module
EP1164367A2 (en) Optical device for use in detecting the wavelength and intensity of light
CA2225135A1 (en) Optoelectronic circuit
JP2867859B2 (en) Optical transceiver module for bidirectional transmission
US20060088246A1 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
JP2000171671A (en) Optical communication module and its mounting method
US7142740B2 (en) Planar lightwave circuit type optical transceiver module
JPH11237529A (en) Optical transmission/reception module
US11320598B2 (en) Optical demultiplexer with truncated profile and an optical transceiver module implementing same
EP2652534B1 (en) Silicon-based opto-electronic integrated circuit with reduced polarization dependent loss
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
JPH10293219A (en) Structure of optical waveguide coupler
JP3269540B2 (en) Optical amplifier
JP2002221628A (en) Multi-wavelength optical communication module
JPH0255304A (en) Optical integrated circuit
Han et al. Fabrication of a TFF-attached WDM-type triplex transceiver module using silica PLC hybrid integration technology
JP3011735B2 (en) Optical module
US20060104562A1 (en) Printed circuit board comprising electrical conductor paths and means for electro-optical and/or opto-electrical conversion
JPH05157944A (en) Two-way optical device
Hashimoto et al. Full duplex 1.3/1.55/spl mu/m wavelength division multiplexing optical module using a planar lightwave circuit platform