CN100487508C - Double diffraction grating planar lightwave circuit - Google Patents

Double diffraction grating planar lightwave circuit Download PDF

Info

Publication number
CN100487508C
CN100487508C CN 200580009498 CN200580009498A CN100487508C CN 100487508 C CN100487508 C CN 100487508C CN 200580009498 CN200580009498 CN 200580009498 CN 200580009498 A CN200580009498 A CN 200580009498A CN 100487508 C CN100487508 C CN 100487508C
Authority
CN
China
Prior art keywords
wavelength
waveguide
grating
optical
planar lightwave
Prior art date
Application number
CN 200580009498
Other languages
Chinese (zh)
Other versions
CN1950738A (en
Inventor
瑟治·比达克
阿斯霍克·巴拉克里斯南
马特·皮尔森
Original Assignee
铱诺博伦斯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US55568604P priority Critical
Priority to US60/555,686 priority
Priority to US10/923,987 priority
Application filed by 铱诺博伦斯有限公司 filed Critical 铱诺博伦斯有限公司
Publication of CN1950738A publication Critical patent/CN1950738A/en
Application granted granted Critical
Publication of CN100487508C publication Critical patent/CN100487508C/en

Links

Abstract

本发明涉及一种平面光波电路,其包含一对相对的、共用同一焦线的凹反射衍射光栅,该焦线将第一和第二平板波导区域分隔开。 The present invention relates to a planar lightwave circuit, comprising a pair of opposing, share the same focal line concave reflective diffraction grating, the first focal line and spaced apart from the second slab waveguide region. 输入和输出波导的末端被沿着焦线设置,目的是为了发射并接收由衍射光栅的一个或者两个引导的光。 Input and output end of the waveguide is disposed along the focal line, the purpose is to transmit and receive light of the diffraction grating by one or two guided. 本发明使得某一波长范围的光能从输入波导发射出来,通过单个衍射光栅和几个输出波导引导,所有这些都在单个平板波导区域内,而另一波长范围的光将被从不同平板波导区域的输出波导的一个衍射光栅引导到另一个衍射光栅。 The present invention is such that light of a certain wavelength range emitted from the input waveguide, a single diffraction grating and the output waveguide several guide, all of which are within a single slab waveguide region and the light of another wavelength range is different from the slab waveguide a diffraction grating of the output waveguide region to guide another diffraction grating.

Description

双衍射光栅平面光波电路 Double diffraction grating planar lightwave circuit

技术领域 FIELD

本发明涉及一种双衍射光栅平面光波电路,尤其涉及一种用在光纤到户(Fiber-to-the-Home, FTTH)光接入网络中的平面光波电路(Planar Lightwave Circuit, PLC)光学单纤三向器(triplexer)。 The present invention relates to a dual diffraction grating planar lightwave circuit, in particular, it relates to an FTTH (Fiber-to-the-Home, FTTH) optical access network in a planar lightwave circuit (Planar Lightwave Circuit, PLC) optical unit fiber triplexers (triplexer).

背景技术 Background technique

单纤三向器或声音-数据-视频(VDV)处理器充当从FTTP光网进入用户家中的光学网关。 Triplexer or sound - act as the FTTP optical network user enters the optical gateway home video (VDV) Processor - Data. 单纤三向器是非常小巧且成本很低的连接设备,它可以接收两个高速信道(例如:1490nm,用于电话和因特网信号传输;1550nm,用于视频信号传输)的信号,而且同时在第三信道(例如1310nm,用于信号输出)上传输信号。 Triplexer is very compact and low cost connection device, it can receive two high-speed channel (e.g.: 1490nm, and the Internet for telephone signal transmission; of 1550 nm, for video signal transmission) signal, but at the same time a third channel (e.g. 1310nm, a signal output) on a transmission signal. 为了敷设简单,所有这些信号被复用到单根光纤上。 For simple laying, all of these signals are multiplexed onto a single fiber.

典型的单纤三向器需求向传统PLC设计技术提出了相当大的挑战。 Typical triplexer filter needs to put forward a considerable challenge to the traditional PLC design techniques. 光学结构中必须有激光器,通常波长是1310nm,被耦合到一根单模光纤,用于传输来自用户家中的光学信号。 Optical structure must have a laser, the wavelength is typically 1310nm, is coupled to a single mode optical fiber for transmitting the optical signal from the user's home. 在同一根光纤的另一方向,来自户外的波长名义上为1490nm和1550nm的光被获取、被解复用并被导出到光学检测器。 The same fiber in the other direction, from the nominal wavelength of 1490nm outdoor light and 1550nm is acquired, and is demultiplexed to derive the optical detector. 由于这些波长上可操作的通频带导致了困难加大。 Since the operable wavelength passband which led to increased difficulties. 在1310nm信道,期望的带宽是50nm到100nm,这就提供了一个大的范围,在此范围内,实际上激光器能够无热工作,其中对于检测器信道而言只需要10nm 到20nrn的带宽。 1310nm in the channel, a desired bandwidth 50nm to 100 nm or, which provides a wide range, in this range, the laser can actually no hot work, wherein a channel for the detector only needs to 20nrn 10nm bandwidth. 更确切地说,发光二极管工作在单横向模式,且常用的输入/输出光纤是单模光纤,因此沿激光器信道的轨道在所有点上一定与单模光学一致。 More specifically, the light emitting diode operating in a single transverse mode, and the common input / output fiber is a single mode fiber, and therefore along the rail channel laser with a single mode optical necessarily the same at all points. 换句话说,激光器信道的轨道必须是可逆的。 In other words, the laser channel must be reversible rails. 在现有技术中,特别是在PLC中采用单衍射结构的这些设计技术,没有实用的办法利用具有基本上不同的通频带的信道来选择较宽的波长范围(〜1250nm到1600nrn)。 In the prior art, especially the use of these design techniques single diffractive structure in the PLC, not to select a wide range of wavelengths (~1250nm to 1600nrn) practical ways to use channels having substantially different passband.

现有技术设备,举例来说,2002年12月10授予Althaus的专利号6,493,121的美国专利公开了一个这样的设备,如图1所示,采用许多独立的、精巧制作的薄膜滤光片(thin film filters, TFF) 2a和2b,它们被放置在沿准直光路的特定位置,实现了VDV处理器(单纤三向器l)的功能。 The prior art apparatus, for example, granted December 10, 2002 to Althaus U.S. Patent No. 6,493,121 discloses one such device, shown in Figure 1, using a number of independent, making delicate thin film filter (thin film filters, TFF) 2a and 2b, there they are placed at specific locations along the path of the collimated light, to achieve the VDV processor (Triplexer device l) function. TFF 2a和TFF 2b与离散激光器3、光电检测器4a及光电检测器4b耦合,并被封装在独立的圆柱式(Transistor-Outline,TO)封装6中, 然后被装配成一个组件。 TFF 2a and TFF 2b coupled with discrete lasers 3, the photodetector and the photodetector 4a 4b, and enclosed in the package separate cylindrical formula (Transistor-Outline, TO) 6, and then are assembled into one component. 带有两个输入信道(1490nm和1550nm)的输入信号通过光纤7进入单纤三向器1。 An input signal having two input channels (of 1550 nm and 1490nm) enter the triplexer 1 via an optical fiber to 7. 第一信道由第一TFF 2a解复用,并被引导至第一光电检测器4a;第二信道由第二TFF2b解复用,并被引导至第二光电检测器4b。 The first channel is multiplexed by the first TFF 2a solutions, and guided to the first photodetector. 4A; a second channel a second multiplexed TFF2b solution, and is guided to the second photodetector 4b. 在激光器3中生成输出信道(1310nm)并通过第一TFF 2a和第二TFF 2b输出光纤7。 3 in the laser generating output channels (1310nm) and through the first TFF 2a and the output optical fiber 7 second TFF 2b. 不幸的是,这些器件的装配是非常精密的,要求所有的元件被调整至装配公差非常小。 Unfortunately, the assembly of these devices are very sophisticated, requiring all of the elements are adjusted to a very small assembly tolerances.

为了试图简化外壳结构,因此在2004年5月4公开的、授予Althaus等人的美国专利号6,731,882以及2004年6月29日公开的授予Melchoir等人的6,757,460的专利中介绍了装配工艺。 In an attempt to simplify the structure of the shell, so in 2004, May 4 open, patent awarded Althaus et al., US Patent No. 6,731,882, and June 29, 2004 disclosed et al 6,757,460 granted to Melchoir introduced in the assembly process. 为了进一步改进,如图2所示,包括在半导体微装置(microbench)上配置所有的元器件,保证可重复和精确调整。 For further improvement, shown in Figure 2, including all components arranged on the semiconductor micro device (microbench), to ensure repeatable and accurate adjustment. 不幸地是,所有这些解决方法仍然牵涉到带有TO封装的多个TFF的调整问题。 Unfortunately, all of these solutions are still involved in the adjustment problem with the TO package of multiple TFF. 2004年2月17日公开的授予Baumann等人的美国专利6,694,102中介绍了现有技术的一个不带TFF的解决方案,其中介绍了一种利用多个Mach-Zehnder干涉仪的双向复用器。 Granted February 17, 2004 public Baumann et al., US Patent 6,694,102 is described in the prior art TFF without a solution, which describes a two-way multiplexer utilizing multiple Mach-Zehnder interferometer.

本发明的目的是通过利用双衍射光栅装置提供平面光波电路三向器来克服现有技术的缺陷,该双衍射光栅装置可实现具有不同通频带的信道的较宽波长范围的应用。 Object of the present invention is to overcome the drawbacks of the prior art by providing a planar lightwave circuit of three means using two diffraction gratings, the diffraction grating device of the dual application may be implemented in a wide wavelength range of channels having different pass bands.

发明内容 SUMMARY

因此,本发明所涉及一种平面光波电路波分复用器/解复用器,其包含: Accordingly, the present invention relates to a planar lightwave circuit wavelength division multiplexer / demultiplexer, comprising:

平板波导,其限定由间隙连接的第一和第二平板区域; 第一和第二面对面凹反射衍射光栅,其位于平板波导的各一端; 第一波导,其延伸至第一平板区域; 第二波导,其延伸至第一平板区域; 第三波导,其延伸至第二平板区域; Slab waveguide defining first and second plates connected by a gap region; first and second facing concave reflection diffraction grating, each of which is located at one end of the slab waveguide; a first waveguide region which extends to a first plate; a second a waveguide region which extends to a first plate; a third waveguide that extends to a second slab region;

其中第一和第二反射光栅和第一、第二、第三波导的末端被安置,使得第一波长范围内的波长光将通过第一光栅在第一和第二波导之间传输,并且因此第二波长范围内的波长的光将通过所述第一和第二光栅在所述第一和第三波导之间传输,所述第二波长范围的波长高于或者低于所述第一波长范围的波长。 Wherein ends of the first and second reflective grating and the first, second, third waveguide is positioned such that the wavelength of the light within the first wavelength range will be transmitted between the first and second waveguide via the first grating, and thus light having a wavelength within the second wavelength range will be between the first and third waveguide transmission through said first and second gratings, the wavelength of the second wavelength range is higher or lower than said first wavelength wavelength range.

附图说明 BRIEF DESCRIPTION

下面将结合代表优选实施例的附图更加详细的介绍本发明,其中; 图1所示是基于单纤三向器的传统薄膜滤光片;图2所示是基于采用半导体基片的单纤三向器的传统薄膜滤光片; 图3所示是传统的反射衍射光栅; Described in more detail below in conjunction with the accompanying drawings represents a preferred embodiment of the present invention, in which; Figure 1 is a conventional thin film filter based triplexer to the filter shown; FIG. 2 is based on a single fiber using a semiconductor substrate shown in FIG. three conventional thin film filter to the filter; FIG. 3 shows a conventional reflective diffraction grating;

图4所示为本发明所介绍的带减色散的双衍射光栅装置; Save dual band dispersion diffraction grating device described in the present invention shown in FIG 4;

图5所示为图4所介绍的采用双衍射光栅装置的复用器/解复用器; FIG. 5 shows a double diffraction grating multiplexer apparatus described in FIG. 4 / demultiplexer;

图6所示为图4所介绍的采用双衍射光栅装置的单纤三向器; Figure is a dual single fiber grating device according to FIG. 4 described three-6;

图7所示为图4所介绍的减色散单纤三向器的响应曲线; Figure 7 shows three response curves of the dispersion is reduced to a single fiber described in FIG. 4;

图8所示为本发明所介绍的带增色散的双衍射光栅装置; Shown by double diffraction grating with a dispersion apparatus of the present invention described in FIG 8;

图9所示为图8所介绍的采用增强双衍射光栅装置的单纤三向器;和 As shown in FIG. 9 described in FIG. 8 using a reinforced double diffraction grating means Triplexer device; and

图IO所示为图8所介绍的增色散单纤三向器的响应曲线。 FIG IO shown in FIG. 8 is a presentation by the dispersion triplexer filter response curve.

优选实施例的详细描述 Detailed description of preferred embodiment

平面光波反射衍射光栅包括一组按特定顺序排列的小平面。 Planar Lightwave reflecting diffraction grating comprising a set of facets arranged in a specific order. 单个衍射光栅的特性 The individual characteristics of the diffraction grating

参照图3来介绍。 Referring to FIG. 3 described. 光束ii,包含多个波长信道^,^,^ ...,以特定的入射角em射入衍 II beam, comprising a plurality of wavelength channels ^, ^, ^ ..., em specific incident angle is incident derivative

射光栅12,分段坡度为A且衍射阶数为m。 Incidence grating 12, the slope of the segment A and the diffraction order is m. 随后根据波长和衍射阶数,该光束以角度e。 Then according to the wavelength and diffraction order, the light beam at an angle e. ui被分散丌來,依据光栅方程: ui Ji to be dispersed, according to the grating equation:

从光栅方程(1)来看,由入射光波长^来确定衍射阶数的形成。 From the grating equation (1) point of view, determined by the wavelength of incident light to form ^ diffraction order number. 当考虑光谱构 When considering spectrum configuration

成时,必须已知衍射角6N。 When so, the diffraction angle must be known 6N. ut是如何随入射光的入射角6m变化的。 ut is changing how 6m with incidence angle. 因此,对方程式 Therefore, the equation

(i)求关于ew。 (I) requirements on ew. ut的微分,假设入射角em不变,推导出下式: ut differential, assuming constant incident angle em derived formula:

量d6w。 Amount d6w. ut/dX是与波长X的小变化相对应的衍射角9N。 ut / dX X is the wavelength corresponding to small variations in the diffraction angle 9N. ut的变化,这被称作衍射光栅的角色散(angular dispersion)。 Ut of change, which is referred to as the role of the diffraction grating dispersion (angular dispersion). 角色散随着阶数m的加大、分段坡度八的降低以及 With increasing angular dispersion of order m, the slope of the segment and lower eight

7衍射角9N。 7 diffraction angle 9N. ut加大而增加。 ut increased increases. 衍射光栅的线性色散(linear disperskm)是该项(角色散) 与系统有效焦距的乘积。 Linear dispersion diffraction grating (linear disperskm) is the product of the (angular dispersion) and the effective focal length of the system.

由于不同波长^的光以不同的角度6w。 Since different wavelengths of light 6w ^ at different angles. t,t发生衍射,每一阶数m被引入光谱中。 t, t to diffraction order m is introduced into each of the spectrum. 由一个给定的衍射光栅生成的阶数是受分段坡度A限定的,因为^。 The order generated by a diffraction grating is given by the slope of the segment A is defined as ^. t,t不能超过90°。 t, t not exceed 90 °. 最高阶数由A/^确定,所以,粗光栅(较大八)能够生成很多级光谱,而细光栅只能生成一阶或二阶光谱。 Is determined by the highest order of A / ^, so the crude grating (larger h) a number of stages capable of generating spectra, and thin grating can generate a first or second order spectrum.

就单纤三向器而言,对于激光器相应的通频带为100 nm,对于检测器信道相应的通频带为〜20nm。 Triplexer it is concerned for the respective laser passband of 100 nm, corresponding to the detector channel passband is ~20nm. 用单个衍射结构来实现这样的装置是不切实际的,因为各信道将共用公共的物理色散(physical dispersion)。 With a single diffractive structure to achieve such an apparatus is impractical because each channel will share a common physical dispersion (physical dispersion). 假设分光平板区域已经经选定,这样最小合理的引导波导宽度可在光栅输出处理20 nm的通频带。 Suppose flat spectral region has been chosen, so that a reasonable minimum waveguide width guide 20 nm can be processed in the raster output passband. 对于100 nm的通频带信道, 如果可逆轨道是必须的,那么波导宽度要足够宽以便能够支持各祌各样的模态,同时需制造带有对制造公差高度敏感的装置。 For channel passband of 100 nm, the track is reversible if necessary, the width of the waveguide to be wide enough to be able to support the respective Chong variety of modes, and is highly sensitive to manufacturing tolerances to be produced with a device.

根据上述方程(1),输出角可以被分离出来,由下式给定: According to the above equation (1), output angle can be isolated, given by the following formula to:

<formula>formula see original document page 8</formula> (3) <Formula> formula see original document page 8 </ formula> (3)

方程(3)说明的是输出角e。 (3) Description of the equation is the output angle e. ut直接随波长^的变化关系,假设输入角是固定值, ut direct relation with the variation of the wavelength ^, assuming the input angle is a fixed value,

这种情况发生在:从位于第一衍射光栅的单个波导发射的单复用光束。 This occurs: single multiplexed beam from a single waveguide at a first transmission diffraction grating. 下面的方程是由方程(1)通过分离输入角推导得到的: The following equation is equation (1) derived by separating the input angle obtained:

<formula>formula see original document page 8</formula> (4) <Formula> formula see original document page 8 </ formula> (4)

因此,如果第二光栅被放置在第一光栅的输出处,和适当选择阶数(m2)、坡度(A2)和输入/输出角,只要第一光栅输出角(方程3)的变化与第二光栅输入角(方程4)的变化相同,就可以稳定与波长相关的第二光栅的输出角。 Thus, if the second grating is placed at the output of the first grating, and appropriately select the number (m2) step, the slope (A2) and an input / output angle, output angles change as long as the first grating (Equation 3) and the second same change in the grating input angle (equation 4), the output angle can be stably associated with the second wavelength grating.

图4中所描述的是减色散双光栅结构的基本操作情况。 In FIG. 4 describes the basic operation of a dispersion Save double grating structure. 给定波长范围的输入光经由输入波导21从平面光波电路(PLC) 20a的边缘发射出去。 Given wavelength range of the input light 21 emitted from the waveguide edge of the planar lightwave circuit (PLC) 20a via the input. 输入光到达输入22处进入第一平板波导区域23,该区域包含第一凹反射衍射光栅24。 Input light reaching the input slab waveguide 22 into the first region 23, the region including a first concave reflecting diffraction grating 24. 第一光栅24将光聚焦到焦线26的某一位置上,此位置随波长的变化而变化。 The first grating 24 to a position to focus light on the focal line 26, this position changes with wavelength changes. 焦线26 (这里用罗兰圆(Rowland circle)表示,尽管其它实施例也是可以的)也是第二凹反射衍射光栅27的焦线。 Focal line 26 (herein represented by Rowland circle (Rowland circle), although other embodiments are possible embodiment) concave reflective diffraction grating is a second focal line 27. 来自于第一光栅24的光,其沿着焦线26聚焦,穿越缝隙28进入第二平板波导29,并照亮第二光栅27。 Light from the first grating 24, which is focused along a focal line 26, through the slit 28 into the second slab waveguide 29, and illuminates the second grating 27. 超出给定波长范围的光不能穿越缝隙28,而能够通过从芯片20a边缘延伸到第一波导区域23的附加波导聚集,如下文所述。 Beyond a given wavelength range of light can not pass through the gap 28, it is possible to collect through the additional waveguide 20a extending from the chip to the edge of the first waveguide region 23, as described below. 第二光栅27使光重新聚焦到输出端点31上,在此处光由输出波导32捕获并输出。 The second grating 27 to refocus light output terminal 31, and outputs the captured optical output waveguide 32 here. 选择输出端点31的位置以及第二光栅27的参数(阶数m和坡度A),以便精确补偿由于波长的改变而导致的沿第一光栅24的焦线26的变化。 Varies along the first grating parameters (order m and gradient A) position selection and a second output terminal 31 of the grating 27 in order to precisely compensate for the change in wavelength caused by the focal line 24 26. 所以,来自于输入波导21的光在输出端点31上成像,且被输出到装置的输出端而与波长无关。 Therefore, the light from the input waveguide 21 at the output terminal 31 of the imaging, and is outputted to the output device and is independent of wavelength. 该装置预期能对波长平传输。 The device is expected to transmit the wavelength level. 在实际应用中,由于各种原因,这种传输将不是完全与波长无关。 In practice, for various reasons, this will not be completely independent of the transmission wavelength. 第一光栅24的焦线26只能接近于第二光栅27的焦线,平场(flat-field)设计的特殊情况除外。 Focal line of the first grating 24 grating 26 can close the second focal line 27 except for the special case of the flat-field (flat-field) design. 尽管这样,当第二光栅27的输入位置沿着焦线26发生改变时,第二光栅27的照明也将发生改变。 Despite this, when the input position of the second grating 27 is changed along the focal line 26, a second illumination grating 27 will also change. 但是,波长相关传输的实质的平坦化还是可以实现的。 However, the wavelength dependent transmission of substantial flattening is achievable.

参照图5,根据本发明的减色散双光栅装置可以用作波分复用器/解复用器(Wavelength Division Multiplexer/Demultiplexer),更确切地说,可作为分波或通波的复用器,在该装置中,具有多个波长信道的光经由第一端口(也就是输入波导21)从位于第一凹反射光栅24的PLC 20b的边缘处发射出去。 Referring to FIG. 5, the dispersion according to the present invention reduce the device may be used a double grating wavelength division multiplexer / demultiplexer (Wavelength Division Multiplexer / Demultiplexer), more specifically, as a partial wave or waves through multiplexer in this device, having a plurality of optical wavelength channels via a first port (i.e. input waveguide 21) emitted from the first concave reflection grating is located at the edge 24 of the PLC 20b. 第一光栅24在第一波长范围内分离出一个或多个波长信道,并分别在单独的输出波导(例如33和34)上聚集这些波长的光。 Separating the first grating 24 in a first wavelength range of one or more wavelength channels, respectively, and separate output waveguides (e.g. 33 and 34) on the collected light at these wavelengths. 剩余的光,即在具有更高或更低波长的第二波长范围内,穿越缝隙28射到第二反射光栅27上,其引导并将该光(也就是在第二波长范围内)聚焦到波导32 上,其通频带比输出波导33和34信道输出通频带宽2, 3, 4或5倍。 The remaining light, i.e. at a second wavelength range having a higher or lower wavelengths, incident through the slit 28 on the second reflective grating 27, and directs the light (i.e. within the second wavelength range) onto 32, pass band than the output waveguides 33 and 34 output channel passband 2, 3, 4, or 5 times. 在波长范围内穿越缝隙28、从另一个输入波导41射入第一平板波导区域23的光将会耦合到不同的输出波导,例如波导42。 Through the slot 28 in the wavelength range, from the other input waveguide 41 is incident on the first optical slab waveguide region 23 will be coupled to a different output waveguide, the waveguide 42, for example.

对于由波导32发射的复用光波长信道和由波导33和34发射的光波长信道可以采用同样的结构。 For the waveguide 32 by the emitted optical wavelength multiplexing and optical wavelength channels transmitted from the waveguide channels 33 and 34, the same configuration may be employed. 在第二波长范围内,来自于波导32的波长信道,穿过第二光栅27, 穿越缝隙28,离开第一光栅24,进入波导21。 In a second wavelength range, the wavelength channels from the waveguide 32, passes through the second grating 27, through the slot 28, away from the first grating 24 into the waveguide 21. 在第一波长范围内,来自于波导33和34的波长信道,直接离开第一光栅24进入波导21。 In a first wavelength range, the wavelength from the channel waveguides 33 and 34 directly away from the first grating 24 into the waveguide 21.

参照图6,制造一个单纤三向器,其结合了图4和图5的特点。 Referring to FIG. 6, for producing a Triplexer device, which combines the features of FIG. 4 and FIG. 5. 携带两个(或多个)信息信道(例如,1490 nm和1550 nm)输入光经由波导21被发射出去,该波导21成为被光学耦合到FTTH光网络的输入/输出波导。 Carrying two (or more) channels of information (e.g., 1490 nm and 1550 nm) of input light is transmitted via waveguide 21 out of the waveguide 21 is optically coupled to optical FTTH network input / output waveguides. 第一凹反射光栅装置24用合适的方式、以20 - 30 nm的通频带将输入光分散成所选的波长,并且将被分散的子光束 A first concave reflective grating means 24 in a suitable manner, to 20 - 30 nm passband of the input light is dispersed into the selected wavelength, and dispersed sub-beams

9分别聚集到第一输出波导33和第二输出波导34的末端上,其在焦线26上。 9 are respectively gathered to the end of the first output waveguide 33 and the second output waveguide 34, 26 on which the focal line. 如果需要,可以增加另外的输出波导,其邻近第一波导33和第二波导34 ,以便捕获其他所需的波长。 If necessary, add additional output waveguides 33 adjacent to the first waveguide and the second waveguide 34 so as to capture other desired wavelengths. 光电检测器阵列36 (例如光电二极管)被放置在输出波导33和34的相对末端,用于将光信号转换为电信号。 Photodetector array 36 (e.g. photodiode) are placed at opposite ends of the output waveguides 33 and 34, for converting optical signals to electrical signals.

以相对方向传播的输出信号光波长信道(信道),例如在1310nm信道,源自激光源37,该激光源37被光学耦合到PLC 20c的边缘。 The output signal light wavelength channel (channels) propagating in opposite directions in the 1310nm channel e.g., from a laser source 37, the laser light source 37 is optically coupled to an edge of the PLC 20c. 对激光器信道而自.,所需的实际色散太高以至于激光器信道被捕获到一个波导中。 And since the laser channel., The desired dispersion is so high that the actual laser is captured into a channel waveguide. 相反,激光经由延伸到焦线26的波导32发射,在第二凹反射光栅27处进入第二平板波导区域29,第二凹反射光栅27将光沿着焦线26聚焦,并引导光穿越缝隙28到达第一凹反射光栅24,第一凹反射光栅24被成形以使分散的光不能进入输入/输出波导21。 In contrast, the laser emission through the waveguide 32 extends to the focal line 26, into the second slab waveguide region 29 at a second concave reflection grating 27, the second concave reflection grating 27 focusing light along a focal line 26, and guiding the light through the slit 28 reaches a first concave reflection grating 24, a first concave reflecting grating 24 is formed so that the dispersed light can not enter the input / output waveguide 21. 第二光栅27与第一光栅24 (减色散)的实际波长色散是相对的,因此对于经历两个光栅的光波长,可降低、消除、逆转其净实际色散。 The second grating 27 and the actual wavelength dispersion (chromatic dispersion minus) of the first grating 24 is relative, and therefore subjected to two wavelengths of light gratings, can reduce, eliminate, reverse the actual net dispersion. 因为反射光栅24和反射光栅27被排列,如上所述,以稳定不同波长的输出角,对于波长范围内的任一波长,沿激光器信道的轨道是可逆的,任一波长将经过缝隙28。 Because the reflection grating 24 and reflection grating 27 are arranged, as described above, to stabilize an output angle different wavelengths, for any wavelength within the wavelength range of the laser along the track channels are reversible, any wavelength through the slit 28.

如图7所示,在减色散装置中,基于两种光栅的使用,对〜1310nm的激光波长, 在超过100nm带宽上,得到了非常平坦的传输通频带。 As shown in FIG 7, the dispersion in the reduction apparatus, based on the use of two gratings, the wavelength of the laser ~1310nm in bandwidth exceeds 100nm, to give a very flat transmission passband. 1490 nm和1550 nm的检测器信道各自只经历一个光栅,并且它们只分散成很窄的带宽。 1490 nm and 1550 nm channel detectors are each subjected to only one grating, and they are dispersed to only a very narrow bandwidth.

在VDV处理器中,在1310nm的激光源与1490nm和1550 nm的接收器信道之间,有时需要对接近50dB进行隔离。 In the VDV processor, between 1310nm and 1490nm laser source and receiver channel at 1550 nm, sometimes nearly 50dB of isolation. 在基于光栅的装置中,背景光的主光源起因于由于平面侧面上的缺陷导致的散射。 In grating-based apparatus, a main source of background light caused by scattering due to defects due to the flat side. 平面自身被排列以生成相位相干干涉从而分散并按波长特定方式聚焦光。 Plane are arranged itself to generate a phase coherent interference press wavelength-specific manner thereby dispersing the focused light. 在反射面和非反射面的侧壁之间的拐角(corner rounding)也是周期性的,从而保证空间一致性,但是由于不适当的相位,导致出现低亮度的周期性重像。 In the non-reflective surface and a corner (corner rounding) between the sidewalls of the reflecting surface is also periodic, thus ensuring spatial consistency, but because of improper phase, resulting in low brightness periodic ghosting. 平面的粗糙程度将在空间上是不相干的,导致出现随机的低级别的背景光。 The roughness of the plane in space is irrelevant, resulting in low levels of background light appears random. 因此,如果强的激光信号入射到光栅上,且接收器信道也从这个光栅获得了此信号,那么接收器信道将会具有由于激光器而产生的强背景光,其低于激光器强度的典型级别是30dB。 Thus, if a strong laser light signal is incident on the grating, and the receiver channel may also be obtained from this grating this signal, the receiver channel will have a strong background light due to the laser generated, typically below the level of the laser intensity is 30dB. ~50dB的间隔更接近于实用VDV处理器的要求。 Spacing ~ 50dB VDV processor closer to practical requirements.

如果第二光栅放置在第一光栅的输出处,并且正确选择阶数(m2)、坡度(八2) 和角度,那么就可以通过利用由于第一光栅散射而导致第二光栅输入角变化和波长变化这两个变化来改变与波长相关的第二光栅输出角。 If the second grating is placed at the output of the first grating, and correctly selects an order (M2), the slope (h 2) and angle, since it can cause second first grating scattering and grating input angle changes by using a wavelength change change change in these two grating output angle associated with the second wavelength. 图8显示了被设计用来改善激光源与接收器相隔离的增色散双衍射光栅结构的工作原理。 Figure 8 shows the operating principle is designed to improve the laser source and the receiver is isolated from the dispersion by the double diffraction grating structure. 输入信号,包含多个光波长信道,其从PLC 50a的边缘沿着输入波导51发射到第一平板波导区域53的输入端口52。 Input signal, comprising a plurality of optical wavelength channels, which are emitted from the edge of the PLC 50a along the input waveguide 51 to the input port 52 of the first slab waveguide region 53. 信号被引导至第一凹面衍射光栅54,第一凹面衍射光栅54将输入信号散射成构成的波长信道,并将他们沿着焦线56聚焦,其聚焦位置随波长的改变而改变。 Signal is directed to a first concave diffraction grating 54, a first concave diffraction grating 54 to the input signal scattering wavelength channel configuration, and they are focused along a focal line 56, which change with the wavelength of the focus position is changed. 焦线56 (这军.用罗兰圆(Rowland circle)表示,尽管其它实施例也是可以的)也是第二凹反射衍射光栅57的焦线。 Focal line 56 (which forces. Rowland circle represented by (Rowland circle), although other embodiments are possible embodiment) is the second focal line concave reflective diffraction grating 57. 在指定波长范围内的光, 经间隙58传播,穿越第二波导区域59到达第二光栅57。 Light in a specified wavelength range, spread through the gap 58, through the second waveguide region 59 reaches the second grating 57. 第二光栅57将这些光进一步散射,并且将不同的波长信道沿着焦线56重新聚焦至输出端点6la, 61b等处,在此处根据波长,它们被输出波导62a, 62b等中的一个捕获。 The second grating 57 is further scattering the light, and the different wavelength channels to refocus the output terminal 61a, 61b, etc. along the focal line 56, where according to the wavelength, which are output a captured waveguides 62a, 62b and the like . 选择输出端点61a, 61b等的位置以及第二光栅57的参数(阶数m和坡度A),就可以加大由于波长的改变而使得沿着第二光栅57焦线56的聚焦位置发生的变化,在输出端点61a, 61b等处产生平滑的更大的物理色散。 Position selecting the output terminal 61a, 61b, etc., and a second 57 grating parameters (order m and gradient A), can be increased such that a change in wavelength due to the change in position of the second focus along the focal line 56 of the grating 57 , etc. produce smooth larger physical dispersion at the output terminal 61a, 61b. 因此,来自输入波导51的光在输出端点61a, 61b等处成像,并将光提取到具有比单独采用第一光栅54或第二光栅57所得到的散射作用大的装置的输出端。 Accordingly, the light from the input waveguide 51 in the output terminal 61a, 61b, etc. forming, and extracting light to scattering alone than the first or second grating 54 grating 57 resulting in a large apparatus having an output terminal. 当与只使用光栅中的一个光栅的装置相比时,该装置被期望具有更窄的传输带宽对波长。 When compared to the device using only one of the gratings, the device is expected to have a narrower wavelength bandwidth.

参照图9,对图8中增色散双衍射光栅做了较小的修改(例如附加的输入波导63)以提供单纤三向器的功能。 9, increasing the dispersion of the double grating 8 with minor modifications (e.g., additional input waveguide 63) to provide a single fiber's three-way function. 来自于激光器64的1310應的激光从芯片50b的边缘射出进入输入波导63,波导63的末端位于焦线56上,并且沿着第一平板波导区域53 传播到第一凹面反射光栅装置54。 1310 corresponding to the laser light from the laser 64 is emitted from the edge of the chip 50b into the input waveguide 63, the end of the waveguide 63 located on the focal line 56, and the waveguide region 53 is propagated to a first concave reflective grating means 54 along the first plate. 光栅54以便利的方式,即利用激光器信道的100nm通频带将输入光复用到第一波导51,第一波导51充当输入/输出波导,其末端也落在焦线56上。 Grating 54 in a convenient manner, i.e. using a laser of 100nm channel passband of the input waveguide 51 of the first optical multiplexer is used, the first waveguide 51 acts as an input / output waveguides, the ends 56 also falls on the focal line. 光沿着芯片的边缘离开第一输入/输出波导51 ,传输到FTTH网络。 Light exits along the edge of the chip a first input / output waveguide 51, transmitted to the FTTH network. 1490 nm和1550 nm的输入光进入第一输入/输出波导51,沿着1310nm激光的相反方向传输。 1490 nm and 1550 nm light input into the first input / output waveguide 51, the transmission in the opposite direction 1310nm laser. 1490 nm和1550 nm信道的光通过第一平板波导53传到第一凹面反射光栅装置54,在接近焦线56处被分散开。 1490 nm and 1550 nm optical channels transmitted through the first slab waveguide 53 of the first concave reflective grating means 54, near the focal line 56 are dispersed. 光所需的物理色散被设计得太低以至不足以将检测器信道与第一光栅装置54区分开来。 Desired physical dispersion of light is designed to be too low to be detected is not sufficient to distinguish a channel region of the first grating device 54. 光通过间隙58传输到第二凹面反射光栅57上的第二平板波导区域59,这样的结构设计用于增强散射作用,因此1490 nm和1550 nm信道的光被充分分散以分别被输出波导62a和62b接收,其末端也是落在焦线56上。 Transmitted light passes through the gap 58 to the second plate on the second concave grating 57 is reflective waveguide region 59, such a structure designed to enhance the scattering effect, thus 1490 nm and 1550 nm light channels are to be sufficiently dispersed and the output waveguides 62a 62b reception, which is terminal 56 falls on the focal line. 带宽20nm到30nm通频带的两个信道从芯片边缘射出进入光电检测器66a和66b。 Bandwidth of 20nm to 30nm through two channel band is emitted from the chip edge 66a and enters the photodetector 66b. 对特定波长带宽(即1260-1360 nm的带宽)而言,沿激光器信道的轨道是可逆的。 For a specific wavelength band (i.e., 1260-1360 nm bandwidth), the laser channel along the track is reversible. 因为1310nm的激光射线在打到第一光栅54之上时立即被截获,该光在散射离开 Because the laser beam is intercepted 1310nm immediately when hit on the first grating 54, the light scatters off

11第一光栅54后,射到第二光栅57上得到仅有的1310nm射线。 11 the first grating 54, only light to obtain the second grating 57 on the 1310nm radiation. 期望的光强为度〜30 dB,比激光光强要低。 Desired light intensity of ~30 dB, the intensity is lower than the laser. 1310 nm的射线被打到第二光栅57上〜30 dB的光进一歩减弱,正如在波导62a或62b处看到的,因为安置这些波导是用来捕获1490 nm和1550 nm的射线。 At 1310 nm radiation is hit into a second optical grating on the ho weakening 57 ~30 dB, as seen in the waveguide 62a or 62b, since the waveguides are disposed to capture 1490 nm and 1550 nm radiation. 因此,才有可能得到来自检测器信道的激光射线〜60 dB独立光。 Thus, possible to obtain a laser beam from a ~60 dB independent optical detector channel. 因此, 附加散射结构具有非常高的独立等级。 Thus, additional scattering structure having a very high level of independence.

与减色散双光栅结构类似,从输入/输出波导51或输入波导63发射出的第一波长范围内的光沿着焦线56传播,但停留在第一平板波导区域54,而第二波长范围内的光透过间隙58到达第二光栅57。 Save dispersion and double-grating-like structure, the light propagating along the focal line 56 or 51 within the input waveguide 63 emits a first wavelength range of the input / output waveguides, but stay in the first slab waveguide region 54, while the second wavelength range the light reaches the second gap 58 through the grating 57. 与减色散结构相反,由输入Z输出波导51发射的、包含1310nm信道波长范围的光停留在第一平板棋波导区域53,而包含检测器信道1490 nm和1550 nm波长范围的光穿越间隙58射到第二光栅57上。 Light Save dispersing structure Conversely, Z outputted from the input waveguide 51 emits comprising 1310nm channel wavelength range to stay in a first plate moves waveguide region 53, and comprising a detector channel 1490 nm and 1550 nm light through the gap wavelength range 58 exit onto the second grating 57.

如图IO所示,检测器信道的传输通频带很狭窄,而激光器信道相当宽。 FIG IO, the detector channels of the transmission pass band is very narrow, and relatively wide laser channel. 1490 nm 和1552 nm的检测器信道分别经过两个光栅,它们被散射到很窄的带宽内,也就是20nm到30nm的带宽。 1490 nm and 1552 nm channel detectors respectively through the two gratings, which are scattered within a very narrow bandwidth, i.e. the bandwidth of 20nm to 30nm. 1310 nm射线仅被下列的一个光栅截获,也就是具有100nm以上的带宽,这就改善了激光射线与检测器信道之间的独立等级,在上述情况下可以达到45dB之上的独立等级。 1310 nm radiation in the following only one grating intercepted, i.e. having a bandwidth of 100nm or more, which improves the level of independence between the laser beam and the detector channel, in the case described above can be achieved independent of the level above 45dB. 对标准光栅而言,独立等级由典型的30dB显著提高,并且只有通过使用双光栅增色散结构才有可能实现。 For the standard grating, significantly increased levels independently from a typical 30dB, and can only be realized by using a double grating enhancing dispersing structure.

Claims (19)

1. 一种平面光波电路波分复用器/解复用器装置,其包含:平板波导,其限定通过间隙相连接的第一和第二平板区域;第一和第二面对面凹反射衍射光栅,其位于所述平板波导的各一端;第一波导,其延伸至所述第一平板区域;第二波导,其延伸至所述第一平板区域;第三波导,其延伸至所述第二平板区域;其中所述第一和第二光栅和所述第一、第二、第三波导的末端被安置,使得第一波长范围内的波长的光将通过所述第一光栅在所述第一和第二波导之间传输,并且因此第二波长范围内的波长的光将通过所述第一和第二光栅在所述第一和第三波导之间传输,所述第二波长范围的波长高于或者低于所述第一波长范围的波长;其中,所述第一和第二光栅具有同一焦线;并且其中,所述第一和第二波导的末端位于所述间隙一侧上的焦线上,而所述第三波导 A planar lightwave circuit wavelength division multiplexer / demultiplexer apparatus, comprising: a slab waveguide defining first and second plates are connected by a gap region; first and second facing concave reflection diffraction grating , each of which is located at one end of the slab waveguide; a first waveguide region extending to the first plate; a second waveguide region extending to the first plate; third waveguide, which extends to the second plate area; and wherein the first end of the second grating and the first, second, third waveguide is positioned such that light having a wavelength within a first wavelength in the range of the first through the first grating and a second transmission between the waveguide and thus light having a wavelength within the second wavelength range will be transmitted between the first and third waveguide through said first and second gratings, the second wavelength range wavelengths above or below the wavelength of the first wavelength range; wherein said first and second gratings having the same focal line; and wherein the first end and the second waveguide positioned on the side of the gap of the focal line, and the third waveguide 的末端位于所述间隙另一侧上的焦线上。 End of the gap located on the other side of the focal line.
2.根据权利要求1所述的平面光波电路波分复用器/解复用器装置,其中,所述焦线由罗兰圆限定。 The planar lightwave circuit of claim 1 WDM claim / demultiplexer means, wherein said focal line is defined by a Rowland circle.
3. 根据权利要求1所述的平面光波电路波分复用器/解复用器装置,其中,所述第二光栅的物理色散与所述第一光栅的物理色散是相反的,因此实际上在所述第二波长范围内的所有光波长信道将在所述第一和第三波导之间传播。 3. The planar lightwave circuit of claim 1 wavelength division multiplexer / demultiplexer apparatus, wherein the second grating is a physical dispersion of a physical dispersion of the first grating is reversed, so in fact claims All optical wavelength channels in the second wavelength range propagating between the first and third waveguides.
4. 根据权利要求3所述的平面光波电路波分复用器/解复用器装置,还包含从所述第一平板区域延伸出的第四波导,其中所述第一波导能够发射包含第一和第二光波长信道的第一光信号,所述第一和第二光波长信道位于所述第一光栅处的所述第一波长范围内;并且其中所述第一光栅能够分散所述第一和第二光波长信道,并能够将所述第一和第二光波长信道分别聚焦到所述第二和第四波导上。 4. The planar lightwave circuit of claim 3 wavelength division multiplexer / demultiplexer means further comprises a fourth waveguide extending from said first plate region, wherein the first waveguide capable of emitting a first claim comprising a first optical signal and a second optical wavelength channel, said first and second optical wavelength channel at the first grating positioned within the first wavelength range; and wherein the first grating is capable of dispersing the the first and second optical wavelength channel and capable of placing the first and second optical wavelength channels are focused onto the second and the fourth waveguides.
5. 根据权利要求4所述的平面光波电路波分复用器/解复用器装置,其中,所述第三波导能够发射包含所述第二波长范围内的第三光波长信道的第二光信号,所述第二光信号通过所述第一和第二光栅被聚焦到所述第一波导上。 The planar lightwave circuit of claim 4 wavelength division multiplexer / demultiplexer means, wherein said third waveguide capable of emitting third light comprising a second wavelength as claimed in claim channels within the second wavelength range an optical signal, the second optical signal is focused onto the first waveguide through said first and second gratings.
6. 根据权利要求5所述的平面光波电路波分复用器/解复用器装置,其中,从所述第一和第二光栅两者反射离开的光波长信道通频带比仅从所述第一光栅反射离开的光波长信道通频带宽2到5倍。 The wavelength division multiplexer planar lightwave circuit as claimed in claim 5, wherein the multiplexer / demultiplexer means, wherein, from both the first and the second grating reflects light exiting channel passband wavelength only from the ratio of the first grating reflects light exiting passband wavelength channels 2 to 5 times.
7. 根据权利要求5所述的平面光波电路波分复用器/解复用器装置,其中,所述第一和第二光波长信道的通频带分别为20nm到30nm,其中所述第三光波长信道的通频带为100nm。 The wavelength division multiplexer planar lightwave circuit as claimed in claim 5 / demultiplexer means, wherein said first and second wavelength pass band channel of 20nm to 30 nm, respectively, wherein said third an optical wavelength channel passband of 100nm.
8. 根据权利要求7所述的平面光波电路波分复用器/解复用器装置,其中,所述第一和第二光波长信道的通频带分别由1490nm和1550nm的中心波长所限定,其中所述第三光波长信道的通频带由1310腿的中心波长所限定。 8. The planar lightwave circuit of claim 7, the wavelength division multiplexer / demultiplexer means, wherein said first and second wavelength pass band channels are defined by the center wavelength of 1550nm and 1490nm, wherein said third optical wavelength channels defined by the passband center wavelength of 1310 legs.
9. 根据权利要求5所述的平面光波电路波分复用器/解复用器装置,还包括: 激光器,其被光学耦合到所述第三波导,用于产生所述第二光信号;以及第一和第二光电检测器,其被光学耦合到所述第二和第四波导,用于将所述第一和第二光波长信道转换成电信号。 9. The planar lightwave circuit of the wavelength division multiplexer of claim 5 / demultiplexer apparatus further comprising: a laser that is optically coupled to the third waveguide, for generating the second optical signal; and first and second photodetectors which is optically coupled to the second and fourth waveguide, for converting said first and second optical wavelength channels into an electrical signal.
10. 根据权利要求1所述的平面光波电路波分复用器/解复用器装置,其中,所述第二光栅的物理色散增强了由所述第一光栅引起的物理色散,因此在所述第二波长范围内仅仅一个光波长信道将在所述第一和第三波导之间传输。 10. The planar lightwave circuit of claim 1 wavelength division multiplexer / demultiplexer apparatus as claimed in claim wherein said second dispersive grating enhanced physical physical dispersion caused by the first grating, so the only one optical wavelength channel is to be transmitted between the first and the third waveguides of said second wavelength range.
11. 根据权利要求10所述的平面光波电路波分复用器/解复用器装置,还包含从所述第二平板区域延伸出的第四波导,其中所述第一波导能够发射包含第一和第二光波长信道的第一光信号,所述第一和第二光波长信道在位于所述第一光栅处的所述第二波长范围内,所述第一光栅与所述第二光栅共同将所述第一和第二光波长信道分散开并将所述第一和第二光波长信道分别聚焦到所述第三和第四波导上。 11 / demultiplexer means further comprises a fourth waveguide extending from said second plate region, wherein the first waveguide is capable of transmitting includes a first planar lightwave circuit as claimed in claim 10, said wavelength division a first optical signal and a second optical wavelength channel, said first and second optical wavelength channels located within the first grating at the second wavelength range, the first grating and the second the grating of the first and second common optical wavelength channel and spread the first and second optical wavelength channels are focused on the third and fourth waveguides.
12. 根据权利要求11所述的平面光波电路波分复用器/解复用器装置,其中,所述第二波导能够发射包含所述第一波长范围内的第三光波长信道的第二光信号,所述第二光信号通过所述第一光栅被聚焦到所述第一波导上。 12. The wavelength division multiplexer planar lightwave circuit as claimed in claim 11, wherein the multiplexer / demultiplexer means, wherein said second waveguide comprises a second capable of emitting a third optical wavelength channels within the first wavelength range an optical signal, the second optical signal is focused onto the first waveguide through said first grating.
13. 根据权利要求12所述的平面光波电路波分复用器/解复用器装置,其中,仅从所述第一光栅反射离开的光波长信道通频带比从所述第一和第二光栅两者反射离开的光波长信道通频带宽2到5倍。 13. The wavelength division multiplexer planar lightwave circuit as claimed in claim 12, wherein the multiplexer / demultiplexer means, wherein only the light reflected off the first grating wavelength channel from said pass band than the first and second both reflected off grating optical wavelength channel passband 2 to 5 times.
14. 根据权利要求12所述的平面光波电路波分复用器/解复用器装置,其中,所述第一和第二光波长信道的通频带分别为20nm到30nm,其中,所述第三光波长信道的通频带为100nm。 14. The wavelength division multiplexer planar lightwave circuit as claimed in claim 12, said multiplexer / demultiplexer means, wherein said first and second wavelength pass band channel of 20nm to 30 nm, respectively, wherein said first Sanko wavelength channel passband of 100nm.
15. 根据权利要求14所述的平面光波电路波分复用器/解复用器装置,其中,所述第一和第二光波长信道的通频带分别由14卯nm和1550nm的中心波长所限定;其中, 所述第^光波长信道的通频带由1310nm的中心波长所限定。 15. The planar lightwave circuit as claimed in claim 14, the wavelength division multiplexer / demultiplexer means, wherein said first and second optical wavelength channel passband d respectively, by 14 nm and the center wavelength of 1550nm defined; wherein ^ the first optical wavelength channels defined by the passband center wavelength of 1310nm.
16. 根据权利要求12所述的平面光波电路波分复用器/解复用器装置,还包括: 激光器,其被光学耦合到所述第二波导,用于产生所述第二光信号;以及第一和第二光电检测器,其被光学耦合到所述第三和第四波导,用于将所述第一和第二光波长信道转换成电信号。 16. The planar lightwave circuit as claimed in claim 12, wherein the wavelength division multiplexer / demultiplexer apparatus further comprising: a laser that is optically coupled to the second waveguide, for generating the second optical signal; and first and second photodetectors which is optically coupled to the third and fourth waveguide, for converting said first and second optical wavelength channels into an electrical signal.
17. 根据权利要求11所述的平面光波电路波分复用器/解复用器装置,其中,所述第一光信号还包含所述第一波长范围内的第三光波长信道,所述第一光信号通过第一光栅被聚焦到所述第二波导上。 17. The wavelength division multiplexer planar lightwave circuit as claimed in claim 11, wherein the multiplexer / demultiplexer means, wherein the first optical signal further comprises a third optical wavelength channels within the first wavelength range, the the first optical signal is focused onto the second waveguide via the first grating.
18. 根据权利要求1所述的平面光波电路波分复用器/解复用器装置,其中,将从所述第二波导发射出的、所述第一波长范围内的光波长信道与从所述第三波导发射出的、所述第二波长范围内的另一光波长信道一起复用到所述第一波导上。 18. The planar lightwave circuit of claim 1 WDM claim / demultiplexer means, wherein said second waveguide from the emitted optical wavelength channels within the first wavelength range and from the third waveguide emitted multiplexed with other optical channels within the wavelength range used in the second wavelength on the first waveguide.
19. 根据权利要求1所述的平面光波电路波分复用器/解复用器装置,其中,将从第一波导发射出的所述第一波长范围内的光波长信道与从第一波导发射出的、所述第二波长范围内的另一光波长信道解复用,并将它们分别聚焦到所述第二和第三波导上。 The planar lightwave circuit 19. The WDM according to claim 1 / demultiplexer means, wherein the first waveguide from the light emitted in a first wavelength channel from the first wavelength range and the waveguide emitted, another optical channel wavelength within the second wavelength range is demultiplexed, and respectively focused on the second and third waveguides.
CN 200580009498 2004-03-24 2005-03-07 Double diffraction grating planar lightwave circuit CN100487508C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US55568604P true 2004-03-24 2004-03-24
US60/555,686 2004-03-24
US10/923,987 2004-08-24

Publications (2)

Publication Number Publication Date
CN1950738A CN1950738A (en) 2007-04-18
CN100487508C true CN100487508C (en) 2009-05-13

Family

ID=38019385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580009498 CN100487508C (en) 2004-03-24 2005-03-07 Double diffraction grating planar lightwave circuit

Country Status (1)

Country Link
CN (1) CN100487508C (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937113A (en) 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
CA2279765A1 (en) 1998-07-30 2000-01-30 National Research Council Of Canada Wavelength stabilized planar waveguide optical devices incorporating a dispersive element
CA2364270A1 (en) 1999-02-11 2000-08-17 Michael Cowin Optical components
CN2552259Y (en) 2002-06-25 2003-05-21 浙江大学 Etching diffraction grating wave dividing multiplex device using two-point focusing to realize pass-band evenness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937113A (en) 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
CA2279765A1 (en) 1998-07-30 2000-01-30 National Research Council Of Canada Wavelength stabilized planar waveguide optical devices incorporating a dispersive element
CA2364270A1 (en) 1999-02-11 2000-08-17 Michael Cowin Optical components
CN2552259Y (en) 2002-06-25 2003-05-21 浙江大学 Etching diffraction grating wave dividing multiplex device using two-point focusing to realize pass-band evenness

Also Published As

Publication number Publication date
CN1950738A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
Shirasaki Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer
CA2490603C (en) Optical off-chip interconnects in multichannel planar waveguide devices
JP3464081B2 (en) Wavelength splitter
US5026131A (en) High channel density, broad bandwidth wavelength division multiplexer with highly non-uniform Bragg-Littrow holographic grating
JP3883601B2 (en) Optical equalizer
JP3516165B2 (en) Optical device using virtual image phase array to generate chromatic dispersion
US5832156A (en) Article comprising an optical waveguide tap
US4335933A (en) Fiber optic wavelength demultiplexer
US6769816B2 (en) Multi-wavelength transceiver device with integration on transistor-outline cans
US7386206B2 (en) Optical device with slab waveguide and channel waveguides on substrate
JP2009276747A (en) Wavelength selective switch having distinct planes of operation
JP2005077964A (en) Spectroscope apparatus
US20020041735A1 (en) Multiple grating optical waveguide monitor
US5608826A (en) Wavelength division multiplexed optical modulator and multiplexing method using same
EP1178535A2 (en) Photodetector array and optical communication monitoring
US7352927B2 (en) Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
EP0571379B1 (en) Tunable optical filters
CN100472258C (en) Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6337935B1 (en) Dispersed image inverting optical wavelength multiplexer
US6449066B1 (en) Polarization insensitive, high dispersion optical element
CN1152274C (en) Optical apparatus using virtual image phase array to produce dispersion
US6441959B1 (en) Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
DE602004003429T2 (en) Laser diode with an external grating in a waveguide
US7085492B2 (en) Wavelength division multiplexed device
US6301048B1 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right