JPS592008A - Production of embedding type quartz optical waveguide - Google Patents

Production of embedding type quartz optical waveguide

Info

Publication number
JPS592008A
JPS592008A JP57109795A JP10979582A JPS592008A JP S592008 A JPS592008 A JP S592008A JP 57109795 A JP57109795 A JP 57109795A JP 10979582 A JP10979582 A JP 10979582A JP S592008 A JPS592008 A JP S592008A
Authority
JP
Japan
Prior art keywords
quartz
substrate
sputtering
layer
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57109795A
Other languages
Japanese (ja)
Other versions
JPH0145881B2 (en
Inventor
Nobuyuki Imoto
信之 井元
Hidefumi Mori
森 英史
Nobuo Shimizu
清水 延男
Masahiro Ikeda
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57109795A priority Critical patent/JPS592008A/en
Publication of JPS592008A publication Critical patent/JPS592008A/en
Publication of JPH0145881B2 publication Critical patent/JPH0145881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a waveguide without forming any gap in the stage of providing a quartz layer having the refractive index larger than the refractive index of a quartz substrate as a waveguide on the substrate and forming a quartz clad layer for embedding the waveguide by applying RF electric power on the electrode on the substrate side and performing sputtering. CONSTITUTION:A quartz layer 4 contg. a doping material having the refractive index larger than the refractive index of a quartz substrate 3 is deposited on said substrate, and a Ti layer 6 and a photoresist layer 7 are provided thereon. The resist layer is allowed to remain in the waveguide pattern, and with the resist as a mask, the layer 6 is etched, then with the Ti as a mask, the layer 4 is etched to form core glass 4, whereafter quartz glass 8 is sputtered on the core glass. In the stage of sputtering, the substrate 3 is mounted to an electrode 9 by using an RF sputtering device and a quartz target 11 is placed on an electrode 11, then the sputtering is accomplished by applying RF electric power on the electrode 9. The embedding type waveguide having a small transmission loss without forming any gap between the glass 8 and the core in the stage of depositing said glass is thus obtd.

Description

【発明の詳細な説明】 本発明は低損失にして温度安定性、長期信頼性に優れる
光集積回路用の埋め込み型石英光導波路の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a buried quartz optical waveguide for an optical integrated circuit, which has low loss, excellent temperature stability, and long-term reliability.

光フアイバ伝送技術の開発に伴い、従来空間中で行われ
た光分岐、光フィルタ、光分波等の機能を光導波回路で
実現することが望まれている。特に石英ガラスな媒質と
する光導波路は低損失が見込まれ、光ファイバとの結合
に適し、機械的にも化学的にも安定な導波路として期待
されるため、いくつかの製造法が提案されている。第1
図に化学蒸着法による石英光導波路の製造方法を示す(
文献:森他電子通信学会技術報告OQE 80−135
 。
With the development of optical fiber transmission technology, it is desired that functions such as optical branching, optical filtering, and optical demultiplexing, which were conventionally performed in space, be realized using optical waveguide circuits. In particular, optical waveguides using silica glass as a medium are expected to have low loss, are suitable for coupling with optical fibers, and are expected to be mechanically and chemically stable waveguides, so several manufacturing methods have been proposed. ing. 1st
The figure shows the method for manufacturing a quartz optical waveguide using the chemical vapor deposition method (
Literature: Mori et al. Technical Report OQE 80-135, Institute of Electronics and Communication Engineers
.

1980 )。スナワチ、マス70−コントローラMF
OIによシ流量を制御された酸素を、810j4. G
e014. PCl、 、 BBr、の各蒸気を伴って
高温炉2に導入し、ここで導波路の主成分となるS10
.及び不純物となるGem、 、 P、O,、B、0.
の微粒子を生成し、基板石英3上に堆積させた後、熱処
理によって透明ガラス化して導波路のコア4を形成する
ものである。この方法で作製した導波路は一様性が恋い
ため散乱損失が大きい上に、伝搬定数に一様性を要求さ
れる方向性結合器等の応用に不向きである。
1980). Sunawachi, Mass 70-Controller MF
810j4.oxygen whose flow rate was controlled by OI. G
e014. The vapors of PCl, , and BBr are introduced into the high-temperature furnace 2, where S10, which becomes the main component of the waveguide, is introduced into the high-temperature furnace 2.
.. and Gem as an impurity, , P, O,, B, 0.
After fine particles are generated and deposited on a quartz substrate 3, they are turned into transparent glass by heat treatment to form the core 4 of the waveguide. Waveguides fabricated by this method lack uniformity, resulting in large scattering losses, and are unsuitable for applications such as directional couplers that require uniform propagation constants.

ま九1500°C程度の熱処理を伴うのでクランクも生
じやすい等の欠点がある。他の方法として発明者は先に
スパッタリングを用いる石英光導波路の製造方法を提案
した(特願昭56−199490 )。
Since it involves heat treatment at about 1,500°C, it has drawbacks such as being prone to cracking. As another method, the inventor previously proposed a method for manufacturing a quartz optical waveguide using sputtering (Japanese Patent Application No. 199490/1983).

この方法は一様性及び熱処理を伴わない点で上記の化学
蒸着法よシ優れているが、熱処理により石英ガラスを溶
かしこむプロセメがないため、任意の凹凸上に導波路を
作製して埋めこむことができない。たとえば、石英基板
上に設けた10μm角の溝や約171mピッチのグレー
ティングの上に石英をスパッタすると、埋め込まれずに
中空部を生ずる。
This method is superior to the above chemical vapor deposition method in terms of uniformity and no heat treatment, but since there is no process to melt the quartz glass through heat treatment, it is necessary to fabricate and embed the waveguide on any uneven surface. I can't. For example, when quartz is sputtered onto a 10 μm square groove provided on a quartz substrate or a grating with a pitch of approximately 171 m, a hollow portion is created without being filled.

第2図に本発明者による実験及び顕微鏡観察によシ得ら
れた断面図を示す。(a)は10μm角の溝、(b)は
(a)図に示す溝の上に石英をスパッタした状態を示す
。(0)+1約1μmピッチのグレーティングの場合で
ある。3は石英基板、4はスパッタした石英膜、5は中
空部を示す。この結果かられかるように、上記の方法で
は凹凸をつけた基板を埋めこむことができず、これが埋
め込み型環波路の作製法としては致命的な欠点となって
いる。
FIG. 2 shows a cross-sectional view obtained through experiments and microscopic observation by the inventor. (a) shows a 10 μm square groove, and (b) shows a state in which quartz is sputtered onto the groove shown in (a). (0)+1 This is the case of a grating with a pitch of approximately 1 μm. 3 is a quartz substrate, 4 is a sputtered quartz film, and 5 is a hollow portion. As can be seen from this result, the above method cannot embed a substrate with unevenness, and this is a fatal drawback as a method for manufacturing a buried ring wave path.

本発明はこれらの欠点を除去するため、スパッタリング
時に基板側−に−RF電力を、印−加することによシ基
板の溝や突起を完全に埋めこんでコアを形成する光縛波
路製造法を提案することを目的とする。
In order to eliminate these drawbacks, the present invention provides an optically bound waveguide manufacturing method in which the core is formed by completely filling the grooves and protrusions of the substrate by applying RF power to the substrate side during sputtering. The purpose is to propose.

前記の目的を達成するため、本発明は石英又は石英にド
ーパントを添加したものをターゲットとするスパッタリ
ングによシ石英基板上に基板よシ屈折率の高い石英層を
堆積させ、該石英層を導波路のコアとすべき所望の形状
を残してエツチングしたものの上に、再び石英をターゲ
ットとするスパッタリングによりクラッドとすべき石英
層を堆積させてコアを埋め込むプロセスにおいて、第二
回目のスパッタリングの際、RF電力を基板側電極に印
加することを特徴とする埋め込み型石英光導波路の作製
方法1を発明の要旨とするものである。
In order to achieve the above object, the present invention deposits a quartz layer having a higher refractive index than the substrate on a quartz substrate by sputtering using quartz or quartz doped with a dopant as a target, and deposits a quartz layer with a higher refractive index than that of the substrate, and guides the quartz layer. In the process of embedding the core by depositing a quartz layer to become the cladding by sputtering again using quartz as a target, on the etched material leaving the desired shape to become the core of the wave channel, during the second sputtering, The gist of the invention is a method 1 for manufacturing a buried quartz optical waveguide characterized by applying RF power to a substrate-side electrode.

さらに本発明は石英基板上に導波路のコアとすべき所望
の形状をし丸溝をエツチングにょシ設け、石英又は石英
にドーパントを添加したものをターゲットとするスパッ
タリングにょシ該石英基板上に基板よシ屈折率の高い石
英層を堆積させるに際し、RP電力を基板側電極に印加
しながらターゲツト材で前出の溝を埋め、かつ表面が平
面になるまで堆積させた後、石英基板の最初の表面が現
れるまでエツチングし、再び石英をターゲットとするス
パッタリングによルクラッドとすべき石英層を堆積させ
ることを特徴とする埋め込み型石英先導波路の製造方法
を発明の要旨とするものである。
Furthermore, the present invention etches a round groove in the desired shape to be the core of a waveguide on a quartz substrate, and performs sputtering using quartz or quartz doped with a dopant as a target. When depositing a quartz layer with a high refractive index, fill the groove with the target material while applying RP power to the electrode on the substrate side, and deposit the target material until the surface becomes flat. The gist of the invention is a method for manufacturing a buried quartz guided waveguide, which is characterized by etching until the surface is exposed, and then depositing a quartz layer to be used as a cladding by sputtering again using quartz as a target.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲内で、種々の変更あるい社改良を行いうろことは
云うまでも次い。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the invention.

第3図は本発明による光導波路の作製手順を示す実施例
である。図において3は基板石英ガラス、4はスパッタ
リングにより堆積させたコアガラス、6は石英をドライ
エッチするためのマスクとして用いるT1蒸着膜、7は
フォトレジスト、8はスパッタリングによシ堆積させた
クラッドガラスである。(a)は基板3の上にコアガラ
ス4を堆積させ、T1膜6を蒸着した上にフォトレジス
トアをスピナによル塗布した状態である。(b)は導波
路パターンを残しレジストを除去した状態であ)、(c
)でそのルジストをマスクとしてT1をエツチングし、
(a)ではそのT1をマスクとしてコアガラス4をエッ
チンクスる。(e)では突起状に残ったコアガラス4の
上にクラッドとなる石英ガラス8をスパッタリングによ
ル堆積させる。通常のスパッタリングでは第2図のよう
に空隙が生じる。本実施例では基板側電極にもRF電力
を加えることにょシ空隙の発生を防ぎ、第3図(e)の
ようにコアを完全に埋め込みながらクラッドを堆積させ
ることを実現したものである。基板側にRF電力を加え
ることによル空隙の発生を防ぐプロセスの機構は次のよ
うに解釈できる。まず、通常のスパッタリングでは堆積
する石英微粒子の付着に方向性がないため、基板に段差
がある所では段差の上面を覆うようにオーバーハング状
に堆積して行く。第4図(a)にその様子を示した。オ
ーバーハングの下の部分は影となるので石英粒子が届か
ず、空隙となる。そのまま堆積を続けると(b)に示す
ように空隙5を残したまま堆積される。一方、基板側に
もRF電力を印加した場合、堆積とエツチングが同時に
進行する。堆積が当方内的であるのに対し、エツチング
は傾斜のついた面はど速く進行する(文献:S。
FIG. 3 is an example showing a procedure for manufacturing an optical waveguide according to the present invention. In the figure, 3 is a substrate of quartz glass, 4 is a core glass deposited by sputtering, 6 is a T1 vapor deposited film used as a mask for dry etching the quartz, 7 is a photoresist, and 8 is a clad glass deposited by sputtering. It is. (a) shows a state in which core glass 4 is deposited on substrate 3, T1 film 6 is deposited, and photoresist is applied using a spinner. (b) is the state in which the resist has been removed leaving the waveguide pattern), (c)
) to etch T1 using the Lujist as a mask,
In (a), the core glass 4 is etched using T1 as a mask. In (e), silica glass 8, which will become a cladding, is deposited by sputtering on the core glass 4 remaining in the shape of a protrusion. In normal sputtering, voids are created as shown in FIG. In this example, the generation of voids is prevented by applying RF power to the substrate-side electrode, and it is possible to deposit the cladding while completely embedding the core as shown in FIG. 3(e). The mechanism of the process of preventing the generation of voids by applying RF power to the substrate side can be interpreted as follows. First, in normal sputtering, there is no directionality in the adhesion of deposited quartz fine particles, so where there is a step on the substrate, the quartz particles are deposited in an overhang shape so as to cover the top surface of the step. The situation is shown in FIG. 4(a). The area below the overhang becomes a shadow, so the quartz particles cannot reach it, creating a void. If the deposition continues as it is, as shown in (b), the layers will be deposited with the voids 5 remaining. On the other hand, when RF power is also applied to the substrate side, deposition and etching proceed simultaneously. While deposition is internal, etching progresses faster on inclined surfaces (Reference: S.

Matuo、 JJAP、 vow、 15. No、
 7. p、 1253. (1976) )。
Matsuo, JJAP, vow, 15. No,
7. p, 1253. (1976)).

従って横方向の堆積は抑制され、逆に(c)に示すよう
に壁がけずられながら堆積するので台形状になる。従っ
てスパッタされた石英微粒子が溝の中に到達するのを妨
げる。ものが無くなるので、(、i)のように溝の埋め
こみが完全に行われる。なお、= (a)〜(d)の各
段階共、本発明者による実験結果を断面観察することに
よシ得られた。実験的にはターゲットに印加する単位面
積当シのRF電力の1/7〜1/1oのRFパワーを基
板にも印加すれば、溝の埋めこみを行うことができた。
Therefore, the deposition in the lateral direction is suppressed, and on the contrary, as shown in (c), the walls are piled up while being scraped, resulting in a trapezoidal shape. Therefore, sputtered quartz particles are prevented from reaching the grooves. Since there is nothing left, the groove is completely filled as shown in (, i). Note that each step of = (a) to (d) was obtained by cross-sectional observation of experimental results by the present inventor. Experimentally, it was possible to fill the trench by applying RF power of 1/7 to 1/1 of the RF power per unit area applied to the target to the substrate.

具体的にはターゲット側のパワーを”Vcm2*基板側
を帆3−意とした。
Specifically, the power on the target side was set to "Vcm2*" and the power on the board side was set to 3.

第5図に本実、施例で用いたRFスパッタ装置を示す。FIG. 5 shows the RF sputtering apparatus used in this example.

3は石英基板、9は基板側電極、10は基板側のRF電
源、11は石英又はドーグ材を含む石英のターゲット、
12はターゲット側電極、13はターゲット側RF電源
、14はシャッタ、  15はペルジャーで、14.1
5はアースされている。
3 is a quartz substrate, 9 is an electrode on the substrate side, 10 is an RF power source on the substrate side, 11 is a quartz target containing quartz or Dogue material,
12 is a target side electrode, 13 is a target side RF power source, 14 is a shutter, 15 is a Pelger, and 14.1
5 is grounded.

第6図は本発明の他の実施例を示す。前の実施例と異る
と仁ろは、第3図では(a)のようにコア部を突起状に
残したのに対し、本実施例ではコア部を溝の中に埋めこ
む点が異っている。即ち、(a)基板3の上にT1膜6
を蒸着した上に7オトレジスト7を塗布し、(b)4波
路パターンの部分のレジストを除去し、(C)そのパタ
ーンを71膜に転写する。
FIG. 6 shows another embodiment of the invention. The difference from the previous embodiment is that, in contrast to the core part left in a protruding shape as shown in (a) in Figure 3, in this embodiment the core part is buried in a groove. ing. That is, (a) the T1 film 6 is placed on the substrate 3;
7 photoresist 7 is applied on the evaporated film, (b) the resist in the 4-wave path pattern portion is removed, and (c) the pattern is transferred to the 71 film.

(a)Tt膜をマスクとして石英基板にコアとなる溝を
エツチングによシ設け、ついでフォトレジスト7を除去
する。(e)スパッタリング法によりコアとなる石英ガ
ラス4を溝に埋めこむ。このとき前の実施例と同様、タ
ーゲット側RF電力の程度のRF電力を基板側に印加す
る。コアガラスの堆積を十分行うと(e)のように上面
が平らになる。次に(f)に示すように元の基板3の面
゛までコアガラス4をエツチングする。その上にクラッ
ドガラス8をスパッタリングによシ堆積させ、(g)に
示すようにコアガラスを基板3の溝内に埋め−込む。
(a) Using the Tt film as a mask, a core groove is formed in the quartz substrate by etching, and then the photoresist 7 is removed. (e) Fill the groove with quartz glass 4 to serve as the core by sputtering. At this time, similar to the previous embodiment, RF power similar to the target side RF power is applied to the substrate side. When the core glass is deposited sufficiently, the top surface becomes flat as shown in (e). Next, as shown in (f), the core glass 4 is etched down to the surface of the original substrate 3. A clad glass 8 is deposited thereon by sputtering, and the core glass is embedded in the groove of the substrate 3 as shown in FIG. 3(g).

第7図は本発明をグレーティングの埋め込みに応用する
例を示す。16はコアガラスの上面に設けたグレーティ
ングを示す。(a>石英基板3の上にスパッタリングに
よシコアガラス4を堆積させる。
FIG. 7 shows an example of applying the present invention to grating embedding. Reference numeral 16 indicates a grating provided on the upper surface of the core glass. (a> Deposit thin core glass 4 on quartz substrate 3 by sputtering.

(b)コアガラスの上にグレーティングを形成する。(b) forming a grating on the core glass;

グレーティングの形成には干渉篇光法及び石英のドライ
エツチングが利用できる。(C)前出の実施例と同様に
、基板側にもRF電力を印加しながら、クラッドとなる
石英をスパッタリングにより堆積させる。実験的には1
μmのピッチ、深さ0.5μmのグレーティングの上に
石英ガラスをスパッタするとき、ターゲット側RF電力
を” 8”ffi” 1基板側を” 16”/Cm !
とした。その結果第6図(c)のように完全に埋めこま
れることを、断面の電子顕微鏡観察によシ確認した。
Interferometry and dry etching of quartz can be used to form the grating. (C) Similar to the previous example, quartz to be a cladding is deposited by sputtering while applying RF power to the substrate side. Experimentally 1
When sputtering silica glass on a grating with a pitch of μm and a depth of 0.5 μm, the RF power on the target side is “8”ffi” and the RF power on the substrate side is “16”/Cm!
And so. As a result, complete embedding as shown in FIG. 6(c) was confirmed by electron microscope observation of the cross section.

なお、本発明で用いるターゲットとしては、化学蒸着法
によシネ細物を添加したもの(文献:特願昭56−19
9490 )の他、石英と不純物の焼結体等も利用でき
るが、さらに純粋石英そのものを用いてもコアとクラッ
ドの屈折率差を設けることができる。これはスパッタリ
ングによシ堆積する石英の屈折率をターゲットの屈折率
よシわずかに高くできることによる。例えば、Ar圧力
lXl0−’Torr 、ターゲット側RF電力170
Wのとき、比屈折率差0.29%が得られた。これは導
波路に要求される比屈折率差として十分な大きさである
The target used in the present invention is one to which cine particles are added by chemical vapor deposition (Reference: Japanese Patent Application No. 56-19
9490), a sintered body of quartz and impurities can also be used, and a difference in refractive index between the core and the cladding can also be created by using pure quartz itself. This is because the refractive index of quartz deposited by sputtering can be slightly higher than that of the target. For example, Ar pressure lXl0-'Torr, target side RF power 170
When using W, a relative refractive index difference of 0.29% was obtained. This is sufficiently large as the relative refractive index difference required for the waveguide.

以上説明したように、本発明によれば石英のスパッタリ
ングのみを用いて複雑な構造の導波路のコア及びクラッ
ドを堆積させるため、全工程が低温ドライプロセスで統
一される。従って大量生産に向いて゛いるの曝ならず、
熱処理に伴う破損や変形がない。またスパッタリングに
よる膜は均一で散乱が少いので、よシ低損失で精度の高
い導波回路素子の作製が可能である等の利点を有する。
As described above, according to the present invention, the core and cladding of a waveguide having a complex structure are deposited using only quartz sputtering, so that all steps are unified to a low-temperature dry process. Therefore, it is suitable for mass production without exposing it.
No damage or deformation due to heat treatment. Furthermore, since the film formed by sputtering is uniform and has little scattering, it has the advantage that it is possible to manufacture a waveguide circuit element with low loss and high precision.

 □

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の化学蒸着法による石英光導波路製造装置
、第2図(a)〜(c)は通常の石英のスパッタリング
によシ生ずる空隙を示す導波路断面図、第3図(a1〜
(θ)は本発明による製造プロセスを説明する図、第4
図(a)〜(d)はスパッタリングによる空隙他の実施
例を示す説明図、第7図(a)〜(0)図は本発明をグ
レーティング付き導波路の製蚕に応用したときのプロセ
スを示す。 l・・マスフローコントローラ、2・・・高温炉、3・
・・石英基板、4・・・コアとなる石英ガラス、5・・
・空隙、6・・・T1蒸着膜、7・・・フォトレジスト
、8・・・クラッドとなる石英ガラス、9・・・基板側
電極、10・・・RF電源、11・・・ターゲット、1
2・・・ターゲット側電極、13・・・RF電源、14
・・シャッタ、15・・・ペルジャー、16・・・グレ
ーティング特許出願人 第2図 第3図 第6図 =43− 第7図 (a)
Figure 1 shows an apparatus for producing a quartz optical waveguide using a conventional chemical vapor deposition method, Figures 2 (a) to (c) are cross-sectional views of the waveguide showing voids created by ordinary quartz sputtering, and Figures 3 (a1 to
(θ) is a diagram explaining the manufacturing process according to the present invention, the fourth
Figures (a) to (d) are explanatory diagrams showing other examples of voids formed by sputtering, and Figures 7 (a) to (0) illustrate the process when the present invention is applied to the silk production of waveguides with gratings. show. l...mass flow controller, 2...high temperature furnace, 3...
...Quartz substrate, 4...Quartz glass serving as the core, 5...
・Gap, 6... T1 vapor deposition film, 7... Photoresist, 8... Quartz glass serving as cladding, 9... Substrate side electrode, 10... RF power source, 11... Target, 1
2...Target side electrode, 13...RF power supply, 14
...Shutter, 15...Pelger, 16...Grating Patent Applicant Figure 2 Figure 3 Figure 6 = 43- Figure 7 (a)

Claims (2)

【特許請求の範囲】[Claims] (1)石英又味石英にドーパントを添加し念ものをター
ゲットとするスパッタリングによシ石英基板上に基板よ
ル屈折率の高い石英層を堆積させ、該石英層を導波路の
コアとすべき所望の形状を残してエツチングしたものの
上に、再び石英をターゲットとするスパッタリングによ
シフラッドとすべき石英層を堆積させてコアを埋め込む
プロセスにおいて、第二回目のスパッタリングの際、R
F電力を基板側電極に印加することを特徴とする埋め込
み型石英光導波路の作製方法。
(1) A quartz layer with a high refractive index is deposited on a quartz substrate by adding a dopant to quartz and sputtering using a special target, and this quartz layer should be used as the core of the waveguide. In the process of embedding the core by depositing a quartz layer to be used as a shiflad again by sputtering using quartz as a target on the etched surface while leaving the desired shape, during the second sputtering, R
A method for manufacturing a buried quartz optical waveguide, the method comprising applying F power to a substrate-side electrode.
(2)石英基板上に導波路のコアとすべき所望の形状を
した溝をエツチングによジ設け、石英又は石英にドーパ
ント′fr:添加したものをターゲットとするスパッタ
リングによりi石英基板上に基板よシ屈折率の高い石英
層を堆積させるに際し、RF電力を基板側電極に印加し
ながらターゲツト材で前記の溝を埋め、かつ表面が平面
になるまで堆積させた後、石英基板の最初の表面が現れ
るまでエツチングし、再び石英をターゲットとするスパ
ッタリングによシフラッドとすべき石英層を堆積させる
ことを特徴とする坤め込み型石英光導波路の製造方法。
(2) A groove with the desired shape to be the core of the waveguide is formed on the quartz substrate by etching, and the substrate is formed on the quartz substrate by sputtering using quartz or quartz with dopant 'fr: added as a target. When depositing a quartz layer with a high refractive index, the grooves are filled with the target material while applying RF power to the substrate-side electrode, and the target material is deposited until the surface becomes flat, and then the first surface of the quartz substrate is deposited. 1. A method for manufacturing a embedded quartz optical waveguide, which comprises etching the quartz optical waveguide until it appears, and then depositing a quartz layer to be used as a shiflad by sputtering again using quartz as a target.
JP57109795A 1982-06-28 1982-06-28 Production of embedding type quartz optical waveguide Granted JPS592008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109795A JPS592008A (en) 1982-06-28 1982-06-28 Production of embedding type quartz optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109795A JPS592008A (en) 1982-06-28 1982-06-28 Production of embedding type quartz optical waveguide

Publications (2)

Publication Number Publication Date
JPS592008A true JPS592008A (en) 1984-01-07
JPH0145881B2 JPH0145881B2 (en) 1989-10-05

Family

ID=14519409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109795A Granted JPS592008A (en) 1982-06-28 1982-06-28 Production of embedding type quartz optical waveguide

Country Status (1)

Country Link
JP (1) JPS592008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2565701A1 (en) * 1984-06-11 1985-12-13 Gen Electric Co Plc METHOD FOR MANUFACTURING INTEGRATED OPTICAL WAVEGUIDES AND OPTICAL WAVEGUIDE PRODUCED BY ITS IMPLEMENTATION
EP0178579A2 (en) * 1984-10-19 1986-04-23 Hitachi, Ltd. Mechanical part mounting chassis
EP0205284A2 (en) * 1985-06-12 1986-12-17 THE GENERAL ELECTRIC COMPANY, p.l.c. Optical waveguides
JPS62121407A (en) * 1985-11-21 1987-06-02 Hitachi Ltd Optical filter and wavelength multiplex transmission device using the optical filter
EP0364214A2 (en) * 1988-10-11 1990-04-18 Sony Corporation Optical wavelength conversion devices
FR2769376A1 (en) * 1997-10-02 1999-04-09 Samsung Electronics Co Ltd METHOD FOR MANUFACTURING AN OPTICAL WAVEGUIDED DEVICE USING AN INDUCTIVELY TORQUE PLASMA SYSTEM

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2565701A1 (en) * 1984-06-11 1985-12-13 Gen Electric Co Plc METHOD FOR MANUFACTURING INTEGRATED OPTICAL WAVEGUIDES AND OPTICAL WAVEGUIDE PRODUCED BY ITS IMPLEMENTATION
EP0178579A2 (en) * 1984-10-19 1986-04-23 Hitachi, Ltd. Mechanical part mounting chassis
EP0205284A2 (en) * 1985-06-12 1986-12-17 THE GENERAL ELECTRIC COMPANY, p.l.c. Optical waveguides
EP0205284A3 (en) * 1985-06-12 1988-03-09 THE GENERAL ELECTRIC COMPANY, p.l.c. Optical waveguides
JPS62121407A (en) * 1985-11-21 1987-06-02 Hitachi Ltd Optical filter and wavelength multiplex transmission device using the optical filter
EP0364214A2 (en) * 1988-10-11 1990-04-18 Sony Corporation Optical wavelength conversion devices
FR2769376A1 (en) * 1997-10-02 1999-04-09 Samsung Electronics Co Ltd METHOD FOR MANUFACTURING AN OPTICAL WAVEGUIDED DEVICE USING AN INDUCTIVELY TORQUE PLASMA SYSTEM

Also Published As

Publication number Publication date
JPH0145881B2 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
CN1131444C (en) Mixed light wave guide and mfg. method therefor
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
CN108761637B (en) Three-dimensional multilayer waveguide mode multiplexing and demultiplexing device and preparation method thereof
US6775454B2 (en) Silica-based optical waveguide circuit and fabrication method thereof
JPS592008A (en) Production of embedding type quartz optical waveguide
US6732550B2 (en) Method for performing a deep trench etch for a planar lightwave circuit
JP2621519B2 (en) Optical waveguide and method of manufacturing the same
JPH0527132A (en) Production of waveguide type optical parts
KR100377186B1 (en) Fabrication method of polymeric arrayed waveguide grating wavelength multiplexer /demultiplexer
JPH0756032A (en) Glass waveguide and its production
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
JP4001416B2 (en) Method for manufacturing buried planar lightwave circuit element
JP2738121B2 (en) Method for manufacturing silica-based optical waveguide
JP3108212B2 (en) Manufacturing method of grating waveguide
JP2001159718A (en) Array waveguide type wavelength multiplexing/ demultiplexing circuit
JPS59218406A (en) Optical guide and its production
US20220179151A1 (en) Optical waveguide and manufacturing method thereof
US11740491B2 (en) Optical module and manufacturing method thereof
JP2006146127A (en) Manufacturing method of optical waveguide
JP2000066048A (en) Optical waveguide device and its production
JPH06331844A (en) Quartz optical waveguide and its production
JP2005345953A (en) Optical waveguide and manufacturing method thereof
JPS5924807A (en) Optical integrated circuit and its production
JP2004077859A (en) Method for manufacturing optical waveguide circuit
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element