JP2004077859A - Method for manufacturing optical waveguide circuit - Google Patents

Method for manufacturing optical waveguide circuit Download PDF

Info

Publication number
JP2004077859A
JP2004077859A JP2002238873A JP2002238873A JP2004077859A JP 2004077859 A JP2004077859 A JP 2004077859A JP 2002238873 A JP2002238873 A JP 2002238873A JP 2002238873 A JP2002238873 A JP 2002238873A JP 2004077859 A JP2004077859 A JP 2004077859A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
circuit
waveguide circuit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238873A
Other languages
Japanese (ja)
Inventor
Mikitaka Itou
井藤 幹隆
Yoshinori Hibino
日比野 善典
Tsutomu Kito
鬼頭 勤
Yasuyuki Inoue
井上 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002238873A priority Critical patent/JP2004077859A/en
Publication of JP2004077859A publication Critical patent/JP2004077859A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conduct etching working so that each optical circuit can exhibit the optimum function in working an optical waveguide circuit formed by integrating a plurality of optical circuits. <P>SOLUTION: One optical waveguide circuit is constituted by integrating asymmetric MZI (Mach-Zender Interferometer) at a region A with AWG (Arrayed Waveguide Grating) at a region B. Where, in conducting the etching working, working conditions making directional couplers 5a, 5b ideal coupling characteristics differ from working conditions making boundaries 1a, 1b low loss. Thus, in etching the region A, the directional couplers 5a, 5b are worked with the working conditions making the directional couplers 5a, 5b the ideal coupling characteristics by covering the region B with a mask; and in etching the region B, the boundaries 1a, 1b are worked with the working conditions making the boundaries 1a, 1b the low loss by covering the region A with the mask. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信,光信号処理、光計測の分野で利用される光導波回路の製造方法に関するものである。
【0002】
【従来の技術】
現在、飛躍的に増大する通信容量の拡大のため、多波長の光を多重させて高密度な信号伝送を可能にする光波長多重(WDM)通信システムの開発が盛んである。これに伴って、光通信システムを構成する光回路の研究開発にも拍車がかかっており、LSI微細加工技術を応用して平面基板上に光導波路を一括形成できる光導波回路は、集積性・量産性に優れていることから、高性能で複雑な光回路を実現できる手段として期待されている。
【0003】
光導波回路は光の干渉現象を機能的に利用することによって多種多様な光回路を実現できる。中でもアレイ導波路回折格子(AWG)型光波長合分波器や非対称マッハツェンダ干渉計(MZI)型光波長合分波器は、WDMシステムのキーデバイスとして重要である。
【0004】
さらに、光導波回路は、AWGや非対称MZIのような異なる種類の複数の回路を一つの基板上に集積化して、フィルタ特性の向上や新しい機能をもった光部品を容易に実現できるという利点を有する。たとえば、前記のAWG二つとチャネル数分の非対称MZI構成の熱光学スイッチを集積化すると、特定波長の光を選択可能なアド・ドロップフィルタが実現できる[Okamoto et al., 16−channel optical add/drop multiplexer using silica−based arrayed waveguide gratings, Electron. Lett., 31, pp.723−724(1995)]。
【0005】
【発明が解決しようとする課題】
このように複数の光回路を一つの基板上に集積化して光導波回路を製造した際に、光導波路の最適な加工条件が個別の光回路毎に異なっているにもかかわらず、同一の加工条件で複数の光回路の光導波路を加工してしまうと、各々の光回路の性能が単体の光回路の性能よりも劣化してしまうことがある。
【0006】
本発明の目的は、たとえ異なる種類の光回路を集積化した光部品(光導波回路)であっても、個々の光回路の性能が、単体の光回路の特性と同等な良好な性能を有している、光導波回路の製造方法を提供することである。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
【0007】
【課題を解決するための手段】
本願において開示される発明の特徴を簡単に説明すれば、下記の通りである。
1)平面基板上に下部クラッド層を形成する工程と、前記下部クラッド層上にコア層を形成する工程と、前記コア層上にフォトレジストを用いて回路パターンを形成するフォトリソグラフィー工程と、前記回路パターン形成後のコア層を光導波路の形状に加工するエッチング工程と、前記エッチング工程後のコア層を覆うように上部クラッド層を形成する工程とからなる光導波回路の製造方法であって、前記コア層を光導波路の形状に加工するエッチング工程で、少なくとも2種類の加工条件を用いて光導波路を形成する。
2)前記の少なくとも2種類の加工条件を、光導波回路の異なる部分に対して適用する。
3)前記の少なくとも2種類の加工条件を、光導波回路の異なる領域に対して適用し、しかも各加工条件は、その加工条件で加工する領域の特性が最適になるように設定されている。
4)前記のエッチング工程において、非加工領域がマスクで覆われている。
5)典型例として、光導波回路の材料が石英系ガラスで平面基板の材料がシリコンまたは石英ガラスである。
【0008】
本発明のポイントは、複数の回路要素が集積化された光導波回路を加工する際にそれぞれの回路要素に対して最適な条件で加工することにある。また本発明によれば、ある領域を加工する際に非加工領域をマスクで覆うことにより、加工条件の使い分けを簡便に行うことができる。
【0009】
【発明の実施の形態】
以下、本発明について、図面を参照して本発明の実施の形態(実施例)とともに詳細に説明する。
【0010】
[実施例1]
図1は、本発明による実施例1の光導波回路の概略構成を示す図である。この回路は、入力側スラブ導波路1,出力側スラブ導波路2,アレイ導波路3,出力導波路4からなるAWGの入力導波路の部分、入力側3dB方向性結合器5a,出力側3dB方向性結合器5b,2本のアーム導波路5c,2本の入力導波路5dからなる非対称MZIとを接続するため、出力側3dB方向性結合器5bを、入力側スラブ導波路1に接続して構成した変則的なAWGである(参考:特開平8−69021号公報)。
【0011】
本回路の場合、スラブ導波路1,2とアレイ導波路3の境界1a,2aを低損失に加工する条件と、方向性結合器5a,5bを理想的な結合特性に加工する条件が全く異なるため、これまで通りの方法で加工する限り、即ちAWGを構成する光導波路と非対称MZIを構成する光導波路を同一の加工条件で加工する限り、単体のAWGに匹敵する低損失な透過特性を得ることが困難である。
【0012】
よって本実施例1では、図1に示すように本回路を領域A,Bに分割し、後述する手順にしたがって、コア膜(光導波路のコア層)の加工を行う。
【0013】
なお、5eは導波路のパターンではなく位相調整用の薄膜ヒータである。位相調整が必要な場合には、上部クラッド形成後に2本のアーム導波路の片方または両方の上部に形成する。
【0014】
導波路の作製は以下の手順で行う。始めにSi基板上に、SiO2 を主成分とする下部クラッド層と、SiO2 を主成分としてGeO2 を主なドーパントとするコア層を火炎堆積法で堆積する。この場合、Si基板(平面基板)上に下部クラッド層を形成し、この下部クラッド層の上にコア層を形成する。
【0015】
次に、フォトリソグラフィーでレジストを図1の回路パターン状に形成するが、この時の露光は領域A,Bともに加工可能な条件で行っておく。
【0016】
そして、まず非対称MZI上部に、開口部W1を持つシャドウマスクM1をウエハから1mmほど上部に配置する(図2(a)参照)。この状態で、反応性イオンエッチングに用いるガスの種類、ガスの混合比、エッチング時のガス圧、エッチング時のプラズマ発生のための高周波電力を、非対称MZIの方向性結合器5a,5bに対して最適な加工条件に設定して、開口部W1のコア膜のエッチングを行う。この時AWG上面はシャドウマスクM1で覆われていることからAWG部分でのエッチングは進行しない。
【0017】
次にシャドウマスクM1を、AWGの上部に開口部W2を持つシャドウマスクM2に代える(図2(b)参照)。今度は、反応性イオンエッチングに用いるガスの種類、ガスの混合比、エッチング時のガス圧、エッチング時のプラズマ発生のための高周波電力を、AWGに最適な加工条件(AWGの境界1a,2aを低損失に加工する条件)に設定して、開口部W2のコア膜のエッチングを行う。この時MZI部はシャドウマスクM2で覆われているため、AWG部分のエッチングの影響を受けない。
【0018】
以上のように2つの領域A,Bを異なるエッチング条件で加工し、最後に上部クラッド層を形成する。なお、MZI部とAWG部のどちらの領域を最初にエッチングしても構わない。
【0019】
こうして形成した100GHz間隔32チャネルAWGの特性を図3に示す。図3に示すように、領域分割エッチングをすることによって、損失が1.5dB改善していることがわかる。
【0020】
なお、本領域分割エッチングを行うに際し、シャドウマスクの設置をより容易にするために、AWGの設計を変更して図4のような回路レイアウトにすると効果的である。即ち、アレイ導波路の境界1aが領域A,Bの境界線からなるべく離れて領域Bの内部に位置すると共に、方向性結合器5bが領域A,Bの境界線からなるべく離れて領域Aの内部に位置するように、入力側スラブ導波路1の向きを変更した回路レイアウトにすると、シャドウマスクの設置がより容易になる。ただし、図4に示すレイアウトはやや回路サイズが大きくなるため、実際にどのようなレイアウトを用いるかについては、装置,回路サイズ,ウエハサイズ等を考慮に入れて決定する必要がある。
【0021】
図5に第2の実施例を示す。この回路は、FSR100GHzの非対称MZIと2つの100GHz間隔AWGを集積化した50GHz間隔64チャネルの光波長合分波器である(特願平10−24221号公報)。この回路も領域CとDに分割してそれぞれを異なる加工条件でエッチングすることで、1.5dB程度の損失改善を実現することができる。
【0022】
なお、実施例1と実施例2の光波長合分波器は、コアの断面寸法6μm×6μm、コアとクラッドの比屈折率差は0.75%である。
【0023】
今回提案する方法は、導波膜の作製法(火炎堆積法,スパッタ法,各種のCVD法,スピンコート法),材質(石英系ガラス,ポリマー材料),組成(ドーパントの種類など)及び仕様(コアサイズ,屈折率,比屈折率差など)の異なる多様な光導波回路に対して広範囲に適用できる利点を持っている。
【0024】
また、本発明は、各種光波長合分波器,光共振器,非対称マッハツェンダ干渉計を用いた光減衰器や熱光学スイッチ,遅延線などを回路要素として集積化される様々な複合光回路に適用できる。
【0025】
以上、本発明者によってなされた発明を、前記実施形態に基づき具体的に説明したが、本発明は、前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
【0026】
【発明の効果】
本願において開示される発明によって得られる効果を簡単に説明すれば、下記の通りである。
(1)個別の回路要素の特性を劣化させることなく複合光回路を実現できる。
(2)作製法,材質,組成,仕様の異なる多様な複合光回路に対して広範囲に適用できる。
(3)各種光波長合分波器,光共振機,非対称マッハツェンダ干渉計を用いた光可変減衰器や熱光学スイッチ,遅延線などの様々な要素回路からなる複合光回路に適用できる。
【図面の簡単な説明】
【図1】本発明による実施例1の光導波回路の概略構成を示す構成図である。
【図2】本実施例1のコア加工工程におけるシャドウマスクの配置を示す説明図である。
【図3】本実施例1の方法で作製したアレイ導波路格子型光波長合分波器の光波長分波特性を従来の方法と比較して示す特性図である。
【図4】本実施例1による光導波路回路の別の回路レイアウトを示す構成図である。
【図5】本発明による本実施例2の光導波回路の概略構成を示す構成図である。
【符号の説明】
1 入力側スラブ導波路
1a 入力側スラブ導波路とアレイ導波路の境界
2 出力側スラブ導波路
2a 出力側スラブ導波路とアレイ導波路の境界
3 アレイ導波路
4 出力導波路
5a 入力側3dB方向性結合器
5b 出力側3dB方向性結合器
5c 2本のアーム導波路
5d 2本の入力導波路
5e 位相調整用薄膜ヒータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical waveguide circuit used in the fields of optical communication, optical signal processing, and optical measurement.
[0002]
[Prior art]
Currently, in order to dramatically increase communication capacity, an optical wavelength division multiplexing (WDM) communication system that multiplexes light of multiple wavelengths and enables high-density signal transmission is being actively developed. Accordingly, research and development of optical circuits that constitute optical communication systems have been spurred, and optical waveguide circuits that can collectively form optical waveguides on a flat substrate by applying LSI microfabrication technology are becoming more integrated. Because of its excellent mass productivity, it is expected as a means for realizing high-performance and complicated optical circuits.
[0003]
An optical waveguide circuit can realize various optical circuits by functionally utilizing the interference phenomenon of light. Among them, an arrayed waveguide grating (AWG) type optical wavelength multiplexer / demultiplexer and an asymmetric Mach-Zehnder interferometer (MZI) type optical wavelength multiplexer / demultiplexer are important as key devices of a WDM system.
[0004]
Further, the optical waveguide circuit has an advantage that a plurality of optical circuits of different types, such as AWG and asymmetric MZI, can be integrated on a single substrate to easily realize an optical component having improved filter characteristics and new functions. Having. For example, by integrating two AWGs and a thermo-optical switch having an asymmetric MZI configuration corresponding to the number of channels, an add / drop filter capable of selecting light of a specific wavelength can be realized [Okamoto et al. , 16-channel optical add / drop multiplexer using silica-based arrayed waveguide gratings, Electron. Lett. , 31, pp. 723-724 (1995)].
[0005]
[Problems to be solved by the invention]
When an optical waveguide circuit is manufactured by integrating a plurality of optical circuits on one substrate in this manner, the same processing is performed even though the optimum processing conditions of the optical waveguide are different for each individual optical circuit. If the optical waveguides of a plurality of optical circuits are processed under the conditions, the performance of each optical circuit may be lower than the performance of a single optical circuit.
[0006]
An object of the present invention is to provide an optical component (optical waveguide circuit) in which different types of optical circuits are integrated, and that the performance of each optical circuit is as good as that of a single optical circuit. And a method of manufacturing an optical waveguide circuit.
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0007]
[Means for Solving the Problems]
The features of the invention disclosed in the present application will be briefly described as follows.
1) a step of forming a lower cladding layer on a planar substrate, a step of forming a core layer on the lower cladding layer, a photolithography step of forming a circuit pattern on the core layer using a photoresist, An optical waveguide circuit manufacturing method, comprising: an etching step of processing a core layer after forming a circuit pattern into a shape of an optical waveguide, and a step of forming an upper clad layer so as to cover the core layer after the etching step. In the etching step of processing the core layer into the shape of the optical waveguide, the optical waveguide is formed using at least two types of processing conditions.
2) The at least two types of processing conditions are applied to different portions of the optical waveguide circuit.
3) The at least two types of processing conditions are applied to different regions of the optical waveguide circuit, and each processing condition is set so that the characteristics of the region processed under the processing conditions are optimized.
4) In the etching step, the non-processed area is covered with the mask.
5) As a typical example, the material of the optical waveguide circuit is quartz glass and the material of the flat substrate is silicon or quartz glass.
[0008]
The point of the present invention is that when processing an optical waveguide circuit in which a plurality of circuit elements are integrated, processing is performed under optimum conditions for each circuit element. Further, according to the present invention, when a certain region is processed, the non-processed region is covered with a mask, so that it is possible to easily use different processing conditions.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail together with embodiments (examples) of the present invention with reference to the drawings.
[0010]
[Example 1]
FIG. 1 is a diagram showing a schematic configuration of an optical waveguide circuit according to a first embodiment of the present invention. The circuit includes an input-side slab waveguide 1, the output-side slab waveguide 2, the array waveguide 3, an input waveguide portion of the AWG consisting output waveguide 4, input 3dB directional coupler 5a, the output-side 3dB In order to connect the directional coupler 5b, the two arm waveguides 5c, and the asymmetric MZI including the two input waveguides 5d, the output side 3dB directional coupler 5b is connected to the input side slab waveguide 1. (Reference: JP-A-8-69021).
[0011]
In the case of this circuit, the conditions for processing the boundaries 1a and 2a between the slab waveguides 1 and 2 and the arrayed waveguide 3 with low loss are completely different from the conditions for processing the directional couplers 5a and 5b to ideal coupling characteristics. Therefore, as long as processing is performed by the same method as before, that is, as long as the optical waveguide forming the AWG and the optical waveguide forming the asymmetric MZI are processed under the same processing conditions, a low-loss transmission characteristic comparable to a single AWG is obtained. It is difficult.
[0012]
Therefore, in the first embodiment, as shown in FIG. 1, the circuit is divided into regions A and B, and the core film (core layer of the optical waveguide) is processed according to a procedure described later.
[0013]
Reference numeral 5e denotes a thin-film heater for phase adjustment, not a waveguide pattern. If phase adjustment is necessary, the two arm waveguides are formed above one or both of the two arm waveguides after the upper cladding is formed.
[0014]
The fabrication of the waveguide is performed in the following procedure. On the Si substrate at the beginning, a lower clad layer mainly composed of SiO 2, a core layer of a GeO 2 as the main dopant SiO 2 as a main component is deposited by flame hydrolysis deposition. In this case, a lower clad layer is formed on a Si substrate (flat substrate), and a core layer is formed on the lower clad layer.
[0015]
Next, a resist is formed by photolithography in the circuit pattern shown in FIG. 1, and the exposure at this time is performed under conditions that allow processing of both the regions A and B.
[0016]
Then, first, a shadow mask M1 having an opening W1 is disposed about 1 mm above the asymmetric MZI from the wafer (see FIG. 2A). In this state, the type of gas used for reactive ion etching, the gas mixing ratio, the gas pressure during etching, and the high frequency power for generating plasma during etching are supplied to the directional couplers 5a and 5b of the asymmetric MZI. Under the optimum processing conditions, the core film in the opening W1 is etched. At this time, since the upper surface of the AWG is covered with the shadow mask M1, the etching in the AWG does not proceed.
[0017]
Next, the shadow mask M1 is replaced with a shadow mask M2 having an opening W2 above the AWG (see FIG. 2B). This time, the type of gas used for reactive ion etching, the mixing ratio of the gas, the gas pressure during etching, the high frequency power for generating plasma during etching, and the processing conditions (the boundaries 1a and 2a of AWG) Under the conditions set for low loss processing, the core film in the opening W2 is etched. At this time, since the MZI portion is covered with the shadow mask M2, it is not affected by the etching of the AWG portion.
[0018]
As described above, the two regions A and B are processed under different etching conditions, and finally the upper clad layer is formed. Either the MZI part or the AWG part may be etched first.
[0019]
FIG. 3 shows the characteristics of the thus formed 32-channel AWG with 100 GHz intervals. As shown in FIG. 3, it can be seen that the loss is improved by 1.5 dB by performing the region division etching.
[0020]
In performing the region division etching, it is effective to change the design of the AWG to a circuit layout as shown in FIG. 4 in order to more easily install the shadow mask. That is, the boundary 1a of the arrayed waveguide is located as far as possible from the boundary between the regions A and B inside the region B, and the directional coupler 5b is as far as possible from the boundary between the regions A and B inside the region A. If the circuit layout is changed so that the direction of the input side slab waveguide 1 is changed so as to be located at the position, the installation of the shadow mask becomes easier. However, since the layout shown in FIG. 4 has a slightly larger circuit size, it is necessary to determine the actual layout to be used in consideration of the apparatus, circuit size, wafer size, and the like.
[0021]
FIG. 5 shows a second embodiment. This circuit is an optical wavelength multiplexer / demultiplexer having 50 channels at 50 GHz intervals, in which an asymmetric MZI of 100 GHz FSR and two AWGs at 100 GHz intervals are integrated (Japanese Patent Application No. 10-24221). This circuit is also divided into regions C and D and each is etched under different processing conditions, so that a loss improvement of about 1.5 dB can be realized.
[0022]
In the optical wavelength multiplexer / demultiplexers of the first and second embodiments, the cross-sectional dimension of the core is 6 μm × 6 μm, and the relative refractive index difference between the core and the clad is 0.75%.
[0023]
The method proposed this time is a method of producing a waveguide film (flame deposition method, sputtering method, various CVD methods, spin coating method), material (quartz glass, polymer material), composition (type of dopant, etc.) and specifications ( It has the advantage that it can be widely applied to various optical waveguide circuits having different core sizes, refractive indexes, and relative refractive index differences.
[0024]
The present invention is also applicable to various composite optical circuits in which various optical wavelength multiplexer / demultiplexers, optical resonators, optical attenuators using asymmetric Mach-Zehnder interferometers, thermo-optical switches, delay lines, and the like are integrated as circuit elements. Applicable.
[0025]
As described above, the invention made by the inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and can be variously modified without departing from the gist thereof. Of course.
[0026]
【The invention's effect】
The effect obtained by the invention disclosed in the present application will be briefly described as follows.
(1) A composite optical circuit can be realized without deteriorating the characteristics of individual circuit elements.
(2) It can be widely applied to various composite optical circuits having different manufacturing methods, materials, compositions, and specifications.
(3) It can be applied to a composite optical circuit composed of various element circuits such as an optical variable attenuator, a thermo-optical switch, and a delay line using various optical wavelength multiplexer / demultiplexers, optical resonators, asymmetric Mach-Zehnder interferometers.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a schematic configuration of an optical waveguide circuit according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an arrangement of a shadow mask in a core processing step of the first embodiment.
FIG. 3 is a characteristic diagram showing optical wavelength demultiplexing characteristics of an arrayed waveguide grating type optical wavelength multiplexer / demultiplexer manufactured by the method of the first embodiment in comparison with a conventional method.
FIG. 4 is a configuration diagram showing another circuit layout of the optical waveguide circuit according to the first embodiment.
FIG. 5 is a configuration diagram illustrating a schematic configuration of an optical waveguide circuit according to a second embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 1 input-side slab waveguide 1a boundary between input-side slab waveguide and array waveguide 2 output-side slab waveguide 2a boundary between output-side slab waveguide and array waveguide 3 array waveguide 4 output waveguide 5a input side 3dB directionality Coupler 5b Output-side 3dB directional coupler 5c Two arm waveguides 5d Two input waveguides 5e Thin film heater for phase adjustment

Claims (6)

平面基板上に下部クラッド層を形成する工程と、前記下部クラッド層上にコア層を形成する工程と、前記コア層上にフォトレジストを用いて回路パターンを形成するフォトリソグラフィー工程と、前記回路パターン形成後のコア層を光導波路の形状に加工するエッチング工程と、前記エッチング工程後のコア層を覆うように上部クラッド層を形成する工程とからなる光導波回路の製造方法であって、
前記コア層を光導波路の形状に加工するエッチング工程で、少なくとも2種類の加工条件を用いて光導波路を形成することを特徴とする光導波回路の製造方法。
A step of forming a lower cladding layer on a planar substrate, a step of forming a core layer on the lower cladding layer, a photolithography step of forming a circuit pattern on the core layer using a photoresist, and the circuit pattern An etching step of processing the formed core layer into the shape of an optical waveguide, and a method of manufacturing an optical waveguide circuit, comprising the step of forming an upper clad layer so as to cover the core layer after the etching step,
A method of manufacturing an optical waveguide circuit, comprising: forming an optical waveguide using at least two kinds of processing conditions in an etching step of processing the core layer into an optical waveguide shape.
前記の少なくとも2種類の加工条件を、光導波回路の異なる領域に対して適用することを特徴とする請求項1に記載の光導波回路の製造方法。The method according to claim 1, wherein the at least two types of processing conditions are applied to different regions of the optical waveguide circuit. 前記の少なくとも2種類の加工条件を、光導波回路の異なる領域に対して適用し、しかも各加工条件は、その加工条件で加工する領域の特性が最適になるように設定されていることを特徴とする請求項1に記載の光導波回路の製造方法。The above-described at least two types of processing conditions are applied to different regions of the optical waveguide circuit, and each processing condition is set so that the characteristics of the region processed under the processing conditions are optimized. The method for manufacturing an optical waveguide circuit according to claim 1. 前記のエッチング工程において、非加工領域がマスクで覆われていることを特徴とする請求項2または請求項3にに記載の光導波回路の製造方法。4. The method according to claim 2, wherein the non-processed area is covered with a mask in the etching step. 前記光導波回路の材料が石英系ガラスであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の光導波回路の製造方法。The method for manufacturing an optical waveguide circuit according to claim 1, wherein a material of the optical waveguide circuit is quartz-based glass. 前記平面基板の材料がシリコンまたは石英ガラスであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の光導波回路の製造方法。The method of manufacturing an optical waveguide circuit according to claim 1, wherein a material of the planar substrate is silicon or quartz glass.
JP2002238873A 2002-08-20 2002-08-20 Method for manufacturing optical waveguide circuit Pending JP2004077859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238873A JP2004077859A (en) 2002-08-20 2002-08-20 Method for manufacturing optical waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238873A JP2004077859A (en) 2002-08-20 2002-08-20 Method for manufacturing optical waveguide circuit

Publications (1)

Publication Number Publication Date
JP2004077859A true JP2004077859A (en) 2004-03-11

Family

ID=32022131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238873A Pending JP2004077859A (en) 2002-08-20 2002-08-20 Method for manufacturing optical waveguide circuit

Country Status (1)

Country Link
JP (1) JP2004077859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118444A (en) * 2011-03-24 2011-06-16 Ntt Electornics Corp Optical circuit chip, and method of manufacturing the same
CN109682470A (en) * 2018-12-20 2019-04-26 中国电子科技集团公司信息科学研究院 Broad spectrum high resolution waveguide light-splitting chip structure
CN110829177A (en) * 2019-11-20 2020-02-21 中国科学院长春光学精密机械与物理研究所 Tunable narrow linewidth laser based on organic-inorganic hybrid waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118444A (en) * 2011-03-24 2011-06-16 Ntt Electornics Corp Optical circuit chip, and method of manufacturing the same
CN109682470A (en) * 2018-12-20 2019-04-26 中国电子科技集团公司信息科学研究院 Broad spectrum high resolution waveguide light-splitting chip structure
CN110829177A (en) * 2019-11-20 2020-02-21 中国科学院长春光学精密机械与物理研究所 Tunable narrow linewidth laser based on organic-inorganic hybrid waveguide
CN110829177B (en) * 2019-11-20 2021-05-04 中国科学院长春光学精密机械与物理研究所 Tunable narrow linewidth laser based on organic-inorganic hybrid waveguide

Similar Documents

Publication Publication Date Title
JP3784720B2 (en) Waveguide type optical interferometer
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
JP2005010805A6 (en) Waveguide type optical interferometer
US6304706B1 (en) Planar lightwave circuit
US20060222296A1 (en) Optical wavelength division multiplexer
US7577324B2 (en) Methods to reduce polarization dependent loss in planar lightwave circuits
US6732550B2 (en) Method for performing a deep trench etch for a planar lightwave circuit
US6625370B2 (en) Optical waveguide and fabricating method thereof, and optical waveguide circuit
JP2004029073A (en) Optical waveguide circuit and its manufacturing method
KR20020092209A (en) Optical waveguide apparatus and method of producing the same
JP2004077859A (en) Method for manufacturing optical waveguide circuit
JP3742030B2 (en) Planar optical waveguide circuit device manufacturing method
KR100722250B1 (en) Array waveguide lattice type optical multiplexer/demultiplexer circuit
KR100377186B1 (en) Fabrication method of polymeric arrayed waveguide grating wavelength multiplexer /demultiplexer
JP3149088B2 (en) Optical waveguide circuit
JP3309369B2 (en) Optical wavelength multiplexer / demultiplexer
EP2518547B1 (en) Planar lightwave circuit and production method for planar lightwave circuit
JPH1164657A (en) Branching waveguide and production therefor
JP2002071977A (en) Waveguide type optical multiplexer/demultiplexer
JP3857925B2 (en) Optical multiplexer / demultiplexer
JP2000147283A (en) Optical waveguide circuit
JPH10197737A (en) Production of optical waveguide circuit
JP3228233B2 (en) Optical waveguide device
JP3423297B2 (en) Optical waveguide, method of manufacturing the same, and optical waveguide circuit
JP2001159718A (en) Array waveguide type wavelength multiplexing/ demultiplexing circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219