JPS59188605A - Waveguide type light mode filter - Google Patents

Waveguide type light mode filter

Info

Publication number
JPS59188605A
JPS59188605A JP6224683A JP6224683A JPS59188605A JP S59188605 A JPS59188605 A JP S59188605A JP 6224683 A JP6224683 A JP 6224683A JP 6224683 A JP6224683 A JP 6224683A JP S59188605 A JPS59188605 A JP S59188605A
Authority
JP
Japan
Prior art keywords
medium
core
waveguide
refractive index
mode filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6224683A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tatsuta
立田 光廣
Nobuyuki Imoto
信之 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6224683A priority Critical patent/JPS59188605A/en
Publication of JPS59188605A publication Critical patent/JPS59188605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Abstract

PURPOSE:To enable fabrication of a waveguide type light mode filter irrespective of crystalline and amorphous media and to increase freedom of selection of materials and manufacturing methods by forming at least one of the core and clad of the waveguide path with a prescribed structural birefringence material. CONSTITUTION:A structural birefringence medium 7 is formed by the vapor deposition method or the like on a substrate of SiO2 or the like, and a core material 6 is formed by the vapor deposition method or the like on the medium 7. Then, a desired core material 6 is left and the other core material 6 is cut off. At that time, a part of the structural birefringence medium 7 is cut off, and said medium 7 is formed to complete a waveguide structure. A refractive index ne in the direction of an anisotropic axis is always smaller than the in- plane refractive index no intersecting said axis rectangularly, and isotropic media 9, 10 different in refractive index from each other (irrespective of crystalline or amorphous media) are alternately laminated to form an intended filter. Therefore, freedom of selection of materials and manufacturing methods is increased.

Description

【発明の詳細な説明】 (技術分野) 本発明(は2つの直交する偏波面に対し選択的透過特性
を有する導波形光モードフィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a waveguide optical mode filter having selective transmission characteristics for two orthogonal polarization planes.

(背景技術) 従来のモードフィルタはバルク形と導波形に大別される
。バルク形モードフィルタは第1図に示すように導波路
内の光を一度空中に放射させ、検光子2を通過させるこ
とによシ実現される。このとき検光子2の光軸方向によ
り透過偏波方向を選択することができる。この方法では
導波路中の光を一度空中に放射させるため、再び集光す
る必要があること、検光子は例えばLoim角程度の比
較的大形となるだめ、モードフィルタ全体の寸法が大形
となる等の欠点があった。
(Background Art) Conventional mode filters are broadly classified into bulk type and waveguide type. The bulk mode filter is realized by once emitting light within a waveguide into the air and passing it through an analyzer 2, as shown in FIG. At this time, the transmitted polarization direction can be selected depending on the optical axis direction of the analyzer 2. In this method, the light in the waveguide is radiated into the air once, so it needs to be focused again.The analyzer is relatively large, for example, at the Loim angle, and the overall size of the mode filter is large. There were drawbacks such as:

導波形TMモードフィルタとしては第2図に示す金属薄
膜クラッド導波路が公知である。すなわち、導波路のコ
ア1に接してアルミニウムの如き金属薄膜3を厚さ1μ
?n程度を光の進行方向4に数嗣にわたって付けること
によシ、基本導波モードの1つであるTEモードパワを
1/1000、あるいはそれ以下に減衰させる効果があ
る。このときもう1つの基本導波モードであるTEモー
ドはわずか数%程度の損失を受けるのみであるから、、
 TE。
As a waveguide type TM mode filter, a metal thin film clad waveguide shown in FIG. 2 is known. That is, a thin metal film 3 such as aluminum is placed in contact with the core 1 of the waveguide to a thickness of 1 μm.
? By attaching about n over several generations in the light traveling direction 4, there is an effect of attenuating the TE mode power, which is one of the fundamental waveguide modes, to 1/1000 or less. At this time, the TE mode, which is another fundamental waveguide mode, suffers only a few percent loss, so...
T.E.

TMモードの分離効果が得られる。しかしながらこの構
造では金属薄膜3が導波路のコア1に接していないと効
果が小さいこと、またTEモモ−ドのみを減衰させる構
造が得られないなどの欠点があった。他の導波形モード
フィルタとして、第3図に示す如く複屈折結晶をコア、
あるいはクラッドとした導波構造のものが知られている
。例えば第3図において、コア1′がZINbO5の如
き複屈折結晶、基板5、及び上層部5′が、等方性の媒
質で構成される。このとき’+ 5 、5’の屈折率を
n、1′の常光屈折率をn 、異常光屈折率をn とす
るとき、n (n(n −。
The separation effect of TM mode can be obtained. However, this structure has drawbacks such as the effect is small unless the metal thin film 3 is in contact with the core 1 of the waveguide, and a structure that only attenuates the TE mode cannot be obtained. As another waveguide mode filter, as shown in Fig. 3, a birefringent crystal is used as the core,
Alternatively, a waveguide structure with a cladding is known. For example, in FIG. 3, the core 1' is made of a birefringent crystal such as ZINbO5, and the substrate 5 and upper layer 5' are made of an isotropic medium. At this time, when the refractive index of '+5, 5' is n, the ordinary refractive index of 1' is n, and the extraordinary refractive index is n, then n (n(n -).

あるいはn)n)n  の条件を満たせば、この導波路
は複屈折結晶1′の軸方向に従ってTE、あるいはTM
モードフィルタとして動作する。以上の効果は1′が等
方性媒質、5,5′が複屈折性結晶で構成される場合に
も同様に得られる。しかしながらこれらの構成において
は5と1′、あるいは1′と5′の界面を光学的に接着
する必要があシ、面積度、接着剤の屈折率等の精密な制
御が必要であること、使用できる複屈折結晶の種類に限
りがあることから、導波路の構造設計条件にきびしい制
約が生じること、などの重大な欠点があった。
Alternatively, if the conditions n)n)n are satisfied, this waveguide will be TE or TM according to the axial direction of the birefringent crystal 1'.
Acts as a mode filter. The above effects can be similarly obtained when 1' is an isotropic medium and 5 and 5' are birefringent crystals. However, in these configurations, it is necessary to optically bond the interface between 5 and 1' or 1' and 5', and there is a need to precisely control the degree of area, the refractive index of the adhesive, etc. This method has serious drawbacks, such as the limited number of types of birefringent crystals that can be produced, which imposes severe constraints on the structural design conditions for the waveguide.

(発明の課題) 本発明はこれらの欠点を除去するだめ、複屈折媒質とし
て構造性複屈折媒質を用い、をつ、電磁界の閉じ込め効
果の高い三次元導波構造がとれるように工夫したものヤ
、以下図面について詳細に一説明する。
(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention uses a structured birefringent medium as the birefringent medium, and is devised to create a three-dimensional waveguide structure with a high electromagnetic field confinement effect. The drawings will be explained in detail below.

(発明の構成および作用) 第4図は本発明の一実施例であって、6は等方性コア、
7はクラッド部であって、異方性軸が基板面に直交した
構造性複屈折媒質が用いられ、8は基板である。後に詳
述する構造性複屈折媒質7では異方性軸方向の屈折率n
eはこれと直交する面内屈折率n。よシも常に小さい。
(Structure and operation of the invention) FIG. 4 shows an embodiment of the invention, in which 6 is an isotropic core;
7 is a cladding part, in which a structured birefringent medium whose anisotropy axis is perpendicular to the substrate surface is used, and 8 is a substrate. In the structured birefringent medium 7, which will be described in detail later, the refractive index n in the anisotropy axis direction is
e is the in-plane refractive index n perpendicular to this. Yoshi is also always small.

従って、等方性コア6の屈折率nがne<n<noとな
るようにコア媒質を選へば、異方性軸方向には導波構造
となるが、これと直交する面内(基板面内)では導”波
構造とならない。このだめ、TMモード(基板面に直交
する偏波モード)のみが伝搬可能であシ、TEモード(
基板面に平行な偏波モード)は放射される。
Therefore, if the core medium is selected so that the refractive index n of the isotropic core 6 satisfies ne<n<no, a waveguide structure will be formed in the anisotropic axis direction, but in the plane perpendicular to this (substrate In this case, only the TM mode (polarization mode perpendicular to the substrate plane) can propagate, and the TE mode (
The polarization mode (parallel to the substrate plane) is radiated.

ここで構造性複屈折媒質7は第5図に示す微細構造をも
つ。すなわち、屈折率の異なる等方性媒質9.10(こ
れらは結晶であっても、非晶質であってもよい)が交互
に層状に積み重ねられている。
Here, the structured birefringent medium 7 has a fine structure shown in FIG. That is, isotropic media 9 and 10 (which may be crystalline or amorphous) having different refractive indexes are stacked alternately in layers.

ここで各層の厚さは波長に比べて十分小さく(例えば波
長の1/10 )、又全層厚は波長程度以上の大きさが
あればよい。この様な媒質が層に垂直な異方性軸をもつ
複屈折性を示すことは、例えばM、Born 、 E、
Wolf共著「Pr1nciples of 0pti
cs J(Pergamon Press、0xfor
d、U、に、1975 )、あるいはその日本語訳「光
学の原理」(東海大学出版会)に記されておシ公知であ
る。等方性媒体9,1゜の具体例として例えばS ] 
02 (n 埃15 )及びT ] 02(n埃2.o
)等を用いることができる。
Here, it is sufficient that the thickness of each layer is sufficiently smaller than the wavelength (for example, 1/10 of the wavelength), and that the total layer thickness is approximately equal to or greater than the wavelength. The fact that such a medium exhibits birefringence with an anisotropy axis perpendicular to the layers has been shown, for example, by M, Born, E,
Co-authored by Wolf “Pr1nciples of 0pti
cs J (Pergamon Press, Oxfor
D, U., 1975), or its Japanese translation ``Principles of Optics'' (Tokai University Press), and is well known. As a specific example of the isotropic medium 9.1°, for example, S]
02 (n dust 15) and T ] 02 (n dust 2.o
) etc. can be used.

第4図に示ずTEモードフィルタの作成手順の1例を第
6図に示す。第6図(A)に示す基板8は例えば石英(
S ] 02 )を用いることができる。次に(B)に
示す如く、基板8の上に第5図に示す微細構造をもつ構
造複屈折媒質7を蒸着、ス・マツタリング法、あるいは
CVD法にょシ付着させ、続いてコア材6を蒸着、スパ
ッタリング法、あるいはCVD法で付着させる。次に第
6図(C)に示す如く、所望のコア部6を残して、他の
コア材を削シ取る。
An example of the procedure for creating a TE mode filter, which is not shown in FIG. 4, is shown in FIG. 6. The substrate 8 shown in FIG. 6(A) is made of, for example, quartz (
S ] 02 ) can be used. Next, as shown in (B), a structured birefringent medium 7 having the fine structure shown in FIG. It is deposited by vapor deposition, sputtering, or CVD. Next, as shown in FIG. 6(C), the other core material is removed, leaving the desired core portion 6.

このフ0ロセスにはスフ9ツタ、エツチング等の技術が
用いられる。これらのプロセスは例えば電子通信学会技
術報告OQE 80−135 (1980)、特願昭5
6−199490等に開示されている。このとき、一般
には第6図(C)に示すように構造複屈折媒質7の一部
(コア部6の最下以外の部分)が同時に削シとられる。
Techniques such as cross-cutting, etching, etc. are used for this process. These processes are described in, for example, Technical Report OQE 80-135 (1980) of the Institute of Electronics and Communication Engineers,
6-199490 etc. At this time, generally, a part of the structural birefringent medium 7 (other than the lowest part of the core part 6) is removed at the same time, as shown in FIG. 6(C).

最後に再び第5図に示す微細構造をもつ構造性複屈折媒
質7を蒸着、あるいはスパッタリング法等により付着さ
せることによシ、導波構造が完成する。第6図(D)に
は最終プロセスで付着した複屈折媒質7と、第6図(’
B)に示すプロセスで付着した複屈折媒質7の間に境界
線11を示しているが、実際にはこの境界は物理的意味
をもだない。すなわち、複屈折結晶を接着剤を用いて接
着する際の境界とは異なシ、境界線11は蒸着、あるい
はスパッタリングによる付着過程によるものであるから
、第5図に示す微細構造において生じる媒質9と10の
境界と同じく、良好な光学的密着が実現される。
Finally, the structured birefringent medium 7 having the fine structure shown in FIG. 5 is deposited again by vapor deposition or sputtering, thereby completing the waveguide structure. Figure 6(D) shows the birefringent medium 7 deposited in the final process, and Figure 6('
Although a boundary line 11 is shown between the birefringent media 7 deposited by the process shown in B), this boundary actually has no physical meaning. In other words, the boundary line 11, which is different from the boundary when bonding birefringent crystals using an adhesive, is due to the deposition process by vapor deposition or sputtering, so the medium 9 and the boundary line 11 generated in the microstructure shown in FIG. As with the 10 border, good optical adhesion is achieved.

第7図には他の作成手順を示す。すなわち、(A)基板
8の上に(B)構造複屈折媒質7を付着させた後、コア
部用の溝を工、チング法等にょシ掘る。
FIG. 7 shows another production procedure. That is, after depositing (B) the structural birefringent medium 7 on the (A) substrate 8, a groove for the core portion is dug using a drilling method, etc.

次に(C)コア材6を蒸着又はスパッタリング法などに
よシ付着させる。このとき(B)図で示す溝が完全に埋
まらない様にする。次に(D)再び構造複屈折媒質7を
付着さぜる。第7図(D)に示す構造では第4図と異な
シ、本来のコア6以外に6’ 、6//の部分にコア材
が残されているが、本来のコア部6を伝搬する電磁界に
対し6’ 、 6//の部分はほとんど影響を与えない
ことは公知であり、6と6’ 、 6//が連続しない
限シ良好なTEモードフィルタとして動作する。
Next, (C) the core material 6 is deposited by vapor deposition, sputtering, or the like. At this time, make sure that the groove shown in figure (B) is not completely filled. Next, (D) the structured birefringent medium 7 is deposited again. The structure shown in FIG. 7(D) differs from that in FIG. 4 in that core material is left in the parts 6' and 6// in addition to the original core 6, but the electromagnetic waves propagating through the original core 6 are It is known that the 6', 6// portion has almost no influence on the field, and it operates as a good TE mode filter as long as 6 and 6', 6// are not continuous.

以上に説明した構造で、コア部6に構造性複屈折媒質を
、クラ、ド部7に等方性媒質を用いればほとんど同様の
議論によl)、TMモードフィルタとして動作する。こ
のとき以上に述べたものと全く同じ製作プロセスが用い
られる。複屈折主軸が基板面内にある構造性複屈折媒質
をコア部6に用いて、第6図に示す作製プロセスにより
TEモードフィルタを作ることができる。ただし、この
場合は構造性複屈折媒質は第8図に示す手順で作製する
。すなわち、第8図(A)に示す如く、はじめに基板8
の上に等方性媒質を用いてクラッド7を作成し、更にそ
の上に構造性複屈折媒質の一方の材料9を付着させる。
With the structure described above, if a structured birefringent medium is used in the core part 6 and an isotropic medium is used in the club and dome parts 7, it will operate as a TM mode filter based on almost the same argument l). Exactly the same fabrication process as described above is then used. A TE mode filter can be manufactured by the manufacturing process shown in FIG. 6 using a structured birefringent medium whose principal axis of birefringence lies within the plane of the substrate for the core portion 6. However, in this case, the structured birefringent medium is manufactured by the procedure shown in FIG. That is, as shown in FIG. 8(A), first the substrate 8 is
A cladding 7 is created using an isotropic medium on top of the cladding 7, and one material 9 of the structural birefringent medium is further deposited on top of the cladding 7.

次に(B)図に示す如く、媒質9の部分に周期的溝を刻
む。この70ロセスではフォト・レジストの干渉露光、
リフト・オノ、プラズマ・エツチング等の加工技術が用
いられる。
Next, as shown in Figure (B), periodic grooves are carved in the medium 9. In this 70 process, photoresist interference exposure,
Processing techniques such as lift ax and plasma etching are used.

次いで(C)図に示す如く、構造複屈折媒質用のもう1
方の材料10を先の70ロセスで刻んだ溝の中に充填さ
せる。このプロセスでは例えば特願昭57−10975
に開示された技術を用いることができる。このとき一般
には材料10は溝の中を埋めるのみ々らず基板面全体を
おおうので、全体を一様に削シとることにより (D)
図に示す構造が得られる。これは材料9と10が混在す
る領域が第5図に示す構造性複屈折媒質と等価であるこ
とに着目すると、複屈折の軸方向の違いを除けば第6図
(B)と同じ構成とみることができる。従って、ひきつ
づき第6図(C) 、 (D)に示す手順によシ、コア
部に構造性複屈折材料を用いたTEモードフィルタを作
成することができる・ 以上の説明ではコア、あるいはクラ、ドのいずれか一方
が構造性複屈折媒質で構成される場合について説明しだ
が、コアとクラッドの両方とも構造性複屈折媒質で構成
される場合にも、複屈折の軸方向と複屈折の大きさによ
り、以上の説明と同様の効果を得ることができる。まだ
以上の説明では従来用いられた例のない非晶質媒質で構
成された構造性複屈折媒質を中心に述−・ているが構成
材料9,10として結晶を用いる−ことももちろん可能
である。従って、例えば光学的異方性の小さいGaAs
やInP結晶を用いた光導波路において大きな複屈折を
付与し、本発明によI)TE、あるいはTMモードフィ
ルタとしての機能を付与することができる。また以」二
の説明では一般の三次元導波路について動作説明を行な
ったが、よシ単純な構造をもつスラフ゛導波路(第3図
)においても全く同様の効果が得られる。
Next, as shown in Figure (C), another one for the structural birefringent medium.
The other material 10 is filled into the grooves cut in the previous 70 processes. In this process, for example, Japanese Patent Application No. 57-10975
The technique disclosed in can be used. At this time, generally the material 10 not only fills in the grooves but also covers the entire substrate surface, so by uniformly removing the entire surface (D)
The structure shown in the figure is obtained. Focusing on the fact that the region where materials 9 and 10 coexist is equivalent to the structured birefringent medium shown in Figure 5, this shows that the structure is the same as that in Figure 6 (B) except for the difference in the axial direction of birefringence. You can see it. Therefore, by following the steps shown in FIGS. 6(C) and 6(D), it is possible to create a TE mode filter using a structural birefringent material in the core. We have explained the case where either one of the core and the cladding is composed of a structural birefringent medium, but even when both the core and the cladding are composed of a structural birefringent medium, the axial direction of birefringence and the magnitude of birefringence are By doing so, effects similar to those described above can be obtained. Although the above explanation mainly focuses on a structured birefringent medium composed of an amorphous medium that has never been used before, it is of course possible to use crystals as the constituent materials 9 and 10. . Therefore, for example, GaAs with small optical anisotropy
By imparting large birefringence to an optical waveguide using an InP crystal or an InP crystal, it is possible to impart a function as an I) TE or TM mode filter according to the present invention. Furthermore, although the operation of a general three-dimensional waveguide has been explained in the following explanation, the same effect can be obtained even with a slough waveguide (FIG. 3) having a much simpler structure.

(発明の効果) 以上説明したように、導波路のコア、あるいはクラッド
の少なくとも1方を構造複屈折材料で構成することによ
シ、結晶、非晶質媒質の別なく、導波形光モードフィル
タを作成することができるので、材料、作製法の選択自
由度が飛躍的に増す。
(Effects of the Invention) As explained above, by configuring at least one of the core or cladding of the waveguide with a structurally birefringent material, a waveguide optical mode filter can be used regardless of whether it is a crystalline or amorphous medium. can be created, dramatically increasing the degree of freedom in selecting materials and manufacturing methods.

さらに複屈折の軸方向、あるいはコアとクラッドのいず
れを複屈折媒質とするか、などの選択によシ、TEモー
ド透過、あるいはTMモード透過となるモードフィルタ
を作ることが可能である。
Furthermore, by selecting the axial direction of birefringence or whether the core or cladding is used as a birefringent medium, it is possible to create a mode filter that transmits TE mode or TM mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバルク形モードフィルタの構成図、第2
図は従来の導波形TMモードフィルタの構成図、第3図
は複屈折結晶を用いた導波形モードフィルタの構造図、
第4図は本発明の一実施例、第5図は構造性複屈折媒質
の構成図、第6図は本発明装置の製造方法の一例を示す
図、第7図と第8図は本発明装置の他の製造方法を示す
図である。 ■ 導波路のコア、2:検光子、3:金属薄膜、4:光
の進行方向、5:基板、6:コア、7ニクラツド、8二
基板、9、構造性複屈折媒質用材料、10 構造性複屈
折媒質用材料、1に層境界。 特許出願人 日本電信電話公社 特許出願代理人 弁理士  山  本  恵  − 第7図 第8図 (A) (B) 29
Figure 1 is a configuration diagram of a conventional bulk mode filter;
The figure shows the configuration of a conventional waveguide TM mode filter, and Figure 3 shows the structure of a waveguide mode filter using a birefringent crystal.
FIG. 4 is an embodiment of the present invention, FIG. 5 is a block diagram of a structured birefringent medium, FIG. 6 is a diagram showing an example of the manufacturing method of the device of the present invention, and FIGS. 7 and 8 are diagrams of the present invention. It is a figure which shows another manufacturing method of a device. ■ Core of waveguide, 2: analyzer, 3: metal thin film, 4: direction of propagation of light, 5: substrate, 6: core, 7 Nikrad, 82 substrate, 9, material for structured birefringent medium, 10 structure Material for birefringent medium, layer boundary in 1. Patent applicant Nippon Telegraph and Telephone Public Corporation Patent application agent Megumi Yamamoto - Figure 7 Figure 8 (A) (B) 29

Claims (1)

【特許請求の範囲】[Claims] コア及びこれをかこむクラッドとからなる光導波路にお
いて、コア及びクラッドの少なくとも一方が屈折率の異
なる材質による多層構造を有する構造性複屈折媒質で構
成され、コアの屈折率とクラッドの屈折率との大小関係
が構造性複屈折媒質の異方性軸方向とこれと直交する方
向とで反転することを特徴とする、導波形光モードフィ
ルタ。
In an optical waveguide consisting of a core and a cladding surrounding the core, at least one of the core and the cladding is composed of a structural birefringent medium having a multilayer structure made of materials with different refractive indexes, and the refractive index of the core and the refractive index of the cladding are different from each other. A waveguide optical mode filter characterized in that the magnitude relationship is reversed between the anisotropy axis direction of a structured birefringent medium and a direction orthogonal thereto.
JP6224683A 1983-04-11 1983-04-11 Waveguide type light mode filter Pending JPS59188605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224683A JPS59188605A (en) 1983-04-11 1983-04-11 Waveguide type light mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224683A JPS59188605A (en) 1983-04-11 1983-04-11 Waveguide type light mode filter

Publications (1)

Publication Number Publication Date
JPS59188605A true JPS59188605A (en) 1984-10-26

Family

ID=13194588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224683A Pending JPS59188605A (en) 1983-04-11 1983-04-11 Waveguide type light mode filter

Country Status (1)

Country Link
JP (1) JPS59188605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121407A (en) * 1985-11-21 1987-06-02 Hitachi Ltd Optical filter and wavelength multiplex transmission device using the optical filter
FR2607800A1 (en) * 1986-12-03 1988-06-10 Schott Glaswerke METHOD FOR MANUFACTURING PLANAR OPTIC WAVEGUIDE
JPS63229336A (en) * 1987-03-18 1988-09-26 Nec Corp Wave guide type light/sound spectrum analyser
JPH03158802A (en) * 1989-11-17 1991-07-08 Hitachi Cable Ltd Optical waveguide and its manufacture
JPWO2015097869A1 (en) * 2013-12-27 2017-03-23 三菱電機株式会社 Planar waveguide laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121407A (en) * 1985-11-21 1987-06-02 Hitachi Ltd Optical filter and wavelength multiplex transmission device using the optical filter
FR2607800A1 (en) * 1986-12-03 1988-06-10 Schott Glaswerke METHOD FOR MANUFACTURING PLANAR OPTIC WAVEGUIDE
JPS63229336A (en) * 1987-03-18 1988-09-26 Nec Corp Wave guide type light/sound spectrum analyser
JPH03158802A (en) * 1989-11-17 1991-07-08 Hitachi Cable Ltd Optical waveguide and its manufacture
JPWO2015097869A1 (en) * 2013-12-27 2017-03-23 三菱電機株式会社 Planar waveguide laser device
US9780519B2 (en) 2013-12-27 2017-10-03 Mitsubishi Electric Corporation Flat waveguide-type laser device

Similar Documents

Publication Publication Date Title
JP3739328B2 (en) Photonic crystal element
US10627654B2 (en) Etchless acoustic waveguiding in integrated acousto-optic waveguides
WO2004113964A1 (en) Photonic crystal structure
JPS59188605A (en) Waveguide type light mode filter
WO2004113974A1 (en) Polarizer and polarization separation element
JP4078527B2 (en) Structure of antireflection film on one-dimensional photonic crystal and method for forming the same
US7305155B2 (en) Optical element and wavelength separator using the same
JP2001318247A (en) Three-dimensional photonic crystal material and method for manufacturing the same
JP4157634B2 (en) Optical isolator
TW200404406A (en) Piezoelectric tunable filter
JPWO2004046798A1 (en) Magneto-optical element, manufacturing method thereof, and optical isolator incorporating the magneto-optical element
US7061023B2 (en) Integrated optical devices and methods of making such devices
JP2641238B2 (en) Polarizer
JP2007292952A (en) Optical element and method for manufacturing the same
JPH0477881B2 (en)
JPH0549201B2 (en)
JP2001350040A (en) Optical fiber
JPH0727931A (en) Optical waveguide
JP4426353B2 (en) Light control element
JPH06214130A (en) Three-dimensional optical waveguide and its production
JP2004020653A (en) Dielectric multilayer film filter element and optical part using the same
WO2008041448A1 (en) Acoustooptical filter
JPH04125602A (en) Optical waveguide type polarizer
JP4162976B2 (en) Optical element using one-dimensional photonic crystal
CN116232269A (en) Resonant device and preparation method thereof