JPS62121032A - Biaxially oriented fluorine stretched film and its manufacture - Google Patents
Biaxially oriented fluorine stretched film and its manufactureInfo
- Publication number
- JPS62121032A JPS62121032A JP26224085A JP26224085A JPS62121032A JP S62121032 A JPS62121032 A JP S62121032A JP 26224085 A JP26224085 A JP 26224085A JP 26224085 A JP26224085 A JP 26224085A JP S62121032 A JPS62121032 A JP S62121032A
- Authority
- JP
- Japan
- Prior art keywords
- stretched film
- biaxially oriented
- fluorine
- ethylene
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は二軸配向フッ素系樹脂フィルムおよびその製造
方法に関するものである。さらに詳しくは、エチレン・
クロロトリフルオロエチレン共重合体より成る二軸延伸
フィルムおよびその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a biaxially oriented fluororesin film and a method for producing the same. For more information, see Ethylene
The present invention relates to a biaxially stretched film made of a chlorotrifluoroethylene copolymer and a method for producing the same.
(従来の技術)
フッ素系樹脂は、ポリテトラフルオロエチレンを代表に
、ポリフッ化ビニリデン、ポリフッ化ビニル、フッ素化
エチレン、プロピレン共重合体。(Prior art) Fluorine resins include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, fluorinated ethylene, and propylene copolymers.
パーフルオロアルキルエーテル等があり、フィルム状で
使用されているものがあるが、ポリフッ化ビニル等の例
外を除いて殆ど未延伸状態で使用されており1強度が弱
くしかも耐熱性も不十分なものが多かった。フッ素系樹
脂は、耐候性、耐薬品性、電気的特性、離型性等に秀れ
ており、用途も多岐に渡っているがフィルム状で使用す
る場合は強度や熱安定性が悪く、また薄膜状で使用でき
ないことが多く用途が限られていた。There are perfluoroalkyl ethers, etc., and some are used in film form, but with the exception of polyvinyl fluoride, most of them are used in an unstretched state, and their strength is weak and their heat resistance is insufficient. There were many. Fluorine resins have excellent weather resistance, chemical resistance, electrical properties, mold release properties, etc., and are used for a wide variety of purposes. However, when used in film form, they have poor strength and thermal stability, and In many cases, it cannot be used because it is in the form of a thin film, so its applications are limited.
(発明が解決しようとする問題点および手段)本発明者
は、かかる問題につき鋭意研究を重ねた結果1次のよう
なフッ素系延伸フィルムの製造方法を発明するに至った
。すなわち、エチレン・クロロトリフルオロエチレン共
重合体を80モル%以上含有する二軸配向フッ素系延伸
フィルムおよびその製造方法である。エチレン・クロロ
トリフルオロエチレン共重合体を80モル%以上含有す
る未延伸フィルムを段、横各々少なくとも2倍に延伸す
ると、未延伸フィル・ムでは4 Kg/ mm”位しが
なかった引張強度が+ 13Kg/ mm2以上にま
で向上する。また、引張弾性率も120 Kg/ m−
位であったものが180 Kg/ mm2以上にまで改
善される。(Problems and Means to be Solved by the Invention) As a result of extensive research into these problems, the present inventors came to invent the following method for producing a fluorine-based stretched film. That is, it is a biaxially oriented fluorine-based stretched film containing 80 mol% or more of an ethylene/chlorotrifluoroethylene copolymer, and a method for producing the same. When an unstretched film containing 80 mol% or more of ethylene/chlorotrifluoroethylene copolymer is stretched at least twice in each direction and horizontally, the tensile strength of the unstretched film increases to 4 Kg/mm", which was only about 4 kg/mm". +13Kg/mm2 or more. Also, the tensile modulus is 120Kg/m-
The average weight was improved to over 180 kg/mm2.
(作用)
本発明に通用されるエチレン・クロロトリフルオロエチ
レン共重合体樹脂は、エチレンとクロロトリフルオロエ
チレンのモル比が20:80〜80:20特に好ましく
は40:60〜60:40のものが成膜性。(Function) The ethylene/chlorotrifluoroethylene copolymer resin used in the present invention has a molar ratio of ethylene to chlorotrifluoroethylene of 20:80 to 80:20, preferably 40:60 to 60:40. is film formable.
延伸性等の点から好適である。また結晶性を抑えるため
にフッ素系の側鎖を設けると有効である。This is suitable from the viewpoint of stretchability and the like. Furthermore, it is effective to provide a fluorine-based side chain in order to suppress crystallinity.
またこの樹脂にさらに酸化チタン粉末、炭素粉末等の紫
外線遮蔽剤や、アントラキノン、アントラセン等の紫外
線吸収剤あるいはシリカ、カオリン等のスリップ性改良
剤を添加することも可能でアル。エチレン・クロロトリ
フルオロエチレン共重合体樹脂は結晶化速度が速く1通
常の成膜冷却速度では結晶化が進行しすぎて均一に延伸
することができない。Further, it is also possible to add to this resin an ultraviolet shielding agent such as titanium oxide powder or carbon powder, an ultraviolet absorber such as anthraquinone or anthracene, or a slip property improver such as silica or kaolin. Ethylene/chlorotrifluoroethylene copolymer resin has a fast crystallization rate, and crystallization progresses too much at a normal film forming cooling rate, making uniform stretching impossible.
結晶化速度の指標として融点と降温結晶化温度との差、
すなわち熔融してから再び結晶化するまでの温度差が一
般に使用されるがこの温度差が大きいほど結晶化速度が
遅く、結晶化が進行しにくい。融点からの降温速度が速
いほど結晶化温度が高くなり、融点と降温結晶化温度と
の差が小さくなる傾向にあるので、この指標を用いる場
合には降温速度を規定しなければならない。The difference between melting point and cooling crystallization temperature as an indicator of crystallization rate,
That is, the temperature difference between melting and crystallization is generally used, and the larger this temperature difference is, the slower the crystallization rate is and the more difficult it is for crystallization to proceed. The faster the temperature decrease rate from the melting point, the higher the crystallization temperature, and the difference between the melting point and the decrease crystallization temperature tends to become smaller, so when using this index, the temperature decrease rate must be specified.
本発明者等は溶融後の降温速度を80℃/分と規定して
、示差熱量分析計(DSC)により融点と降温結晶化温
度との差を求めながら実験を進めたところ、この温度差
が20℃以上好ましくは30゛C以上70℃以下好まし
くは55℃以下の場合に良好に延伸ができ、しかも均一
な延伸フィルムを作ることができることを見い出した。The inventors of the present invention determined the cooling rate after melting to be 80°C/min, and conducted experiments while determining the difference between the melting point and the cooling crystallization temperature using a differential calorimeter (DSC). It has been found that stretching can be performed satisfactorily at a temperature of 20° C. or higher, preferably 30° C. or higher, and 70° C. or lower, preferably 55° C. or lower, and that a uniform stretched film can be produced.
この温度差が20℃未満の場合は結晶化が進行しすぎて
均一な延伸が困難であり、均一な物性のフィルムを得る
ことが困難である。If this temperature difference is less than 20°C, crystallization progresses too much, making uniform stretching difficult and making it difficult to obtain a film with uniform physical properties.
また70℃を超える場合は結晶化度が低すぎて耐熱性が
不十分である。Moreover, when it exceeds 70°C, the degree of crystallinity is too low and the heat resistance is insufficient.
尚、融点はOSCにより20℃/分の昇温速度で昇温し
た時の熔融ピーク温度としく融点−ト20℃)に達した
後、直ちに80℃/分の降温速度で降温した時の結晶化
ピーク温度を降温結晶化温度とする。The melting point is the melting peak temperature when the temperature is raised at a temperature increase rate of 20 °C/min by OSC. The crystallization peak temperature is defined as the cooling crystallization temperature.
フィルムの成膜時の結晶化を抑えるには、ダイより押出
された樹脂を冷却させてやる必要がある。In order to suppress crystallization during film formation, it is necessary to cool the resin extruded from the die.
本発明者等は、成膜時の冷却速度について検討を重ねた
結果、(融点−10℃)〜(融点−100℃)の温度範
囲でかつ80℃/秒以上の冷却速度で成膜することによ
り結晶化を抑制することができ、均一な延伸が可能にな
ることを見い出した。As a result of repeated studies on the cooling rate during film formation, the inventors found that the film can be formed at a temperature range of (melting point -10°C) to (melting point -100°C) and at a cooling rate of 80°C/sec or more. It has been found that crystallization can be suppressed and uniform stretching becomes possible.
フィルムの二軸延伸方法には、予め一軸に延伸した後、
さらに直角方向に延伸を行う、所謂、逐次二軸延伸法と
同時に直角方向に延伸を行う同時二軸延伸法とがあるが
2エチレン・クロロトリフルオロエチレン共重合体の場
合、逐次二軸延伸法では高倍率の延伸が困難である。こ
れは−軸延伸により分子鎖が高度に一軸配向し、続く横
延伸で配向軸に沿って裂は易くなるためであると思われ
る。The method for biaxially stretching a film involves pre-stretching it uniaxially, and then
Furthermore, there is a so-called sequential biaxial stretching method in which stretching is performed in the perpendicular direction, and a simultaneous biaxial stretching method in which stretching is performed in the perpendicular direction at the same time. It is difficult to stretch at high magnification. This is thought to be because the molecular chains are highly uniaxially oriented by -axial stretching, and the subsequent lateral stretching makes it easier to tear along the orientation axis.
これに対して同時二軸延伸の場合は、縦横同時に延伸が
実行されるために縦横バランスのとれた配向を得ること
ができ、切断もなく高倍率の延伸が可能である。延伸倍
率は1強度向上等の延伸効果から判断して縦横各々2.
0倍以上、好ましくは2.5倍以上が必要である。同時
二軸延伸の方法は特に限定されるものではなく、テンタ
ー法、チューブラ−法いずれの方法でも良い。また延伸
温度は比較例にも述べる如く、適当な範囲を選ぶ必要が
あり、50℃以上160℃以下、好ましくは70℃以上
150℃以下が適当である。50℃未満の場合は延伸応
力が非常に大きく2倍以上の延伸倍率では切断しやすい
が、50℃を超えると延伸応力が急激に低下し無理なく
延伸することができる。延伸温度をさらに上げて180
℃を超えると結晶化が必要以上に進み、延伸時にネンキ
ング現象が発生して均一な延伸フィルムを得ることがで
きない。On the other hand, in the case of simultaneous biaxial stretching, since stretching is carried out simultaneously in the longitudinal and lateral directions, a well-balanced orientation in the longitudinal and lateral directions can be obtained, and high-magnification stretching is possible without cutting. The stretching ratio is 1. Judging from the stretching effect such as improved strength, the stretching ratio is 2.
0 times or more, preferably 2.5 times or more is required. The method of simultaneous biaxial stretching is not particularly limited, and either a tenter method or a tubular method may be used. Further, as described in the comparative examples, it is necessary to select an appropriate stretching temperature within a range of 50° C. or higher and 160° C. or lower, preferably 70° C. or higher and 150° C. or lower. When the temperature is less than 50°C, the stretching stress is very large and it is easy to break at a stretching ratio of 2 times or more, but when the temperature exceeds 50°C, the stretching stress decreases rapidly and it is possible to stretch without difficulty. Further increase the stretching temperature to 180
If the temperature exceeds .degree. C., crystallization will proceed more than necessary, and a stretching phenomenon will occur during stretching, making it impossible to obtain a uniform stretched film.
延伸されたフィルムは、そのままでは熱安定性が悪く、
高温での使用に耐えられないので高温で使用する場合は
熱固定してやる必要があり、160℃以上融点以下、好
ましくは190℃以上220℃以下の温度で熱固定して
やると良い結果を得ることができる。熱固定は20%以
内の制限収縮または伸長下もしくは定長下で実施するこ
とが好ましい。Stretched films have poor thermal stability as they are;
Since it cannot withstand use at high temperatures, it must be heat-set when used at high temperatures. Good results can be obtained by heat-setting at temperatures above 160°C and below the melting point, preferably above 190°C and below 220°C. . Heat setting is preferably carried out under limited shrinkage or elongation or constant length within 20%.
以下、比較例と実施例によりさらに詳しく述べる。The following will be described in more detail with reference to comparative examples and examples.
比較例1〜19および実施例1〜8
エチレンとクロロトリフルオロエチレンのモル比を種々
変えたエチレン・クロロトリフルオロエチレン共重合体
を車軸押出機で280“Cに溶融し。Comparative Examples 1 to 19 and Examples 1 to 8 Ethylene/chlorotrifluoroethylene copolymers with various molar ratios of ethylene and chlorotrifluoroethylene were melted at 280"C using an axle extruder.
Tダイより押出して(融点−10℃)〜(融点−100
℃)の冷却速度を変えながら、厚さ100μの未延伸フ
ィルムを作った。これらの未延伸フィルムを試験延伸機
により条件を変えなから二軸延伸した。Extruded from T-die (melting point -10℃) to (melting point -100℃)
An unstretched film with a thickness of 100 μm was prepared while changing the cooling rate (°C). These unstretched films were biaxially stretched using a test stretching machine under different conditions.
結果を表1に示したが、逐次二軸延伸の場合はいずれも
延伸が困難であり、また同時二軸延伸の場合でも樹脂の
結晶化特性値や冷却条件あるいは延伸条件によりネッキ
ングが発生し、均一な延伸が困難な場合があった。The results are shown in Table 1, but in the case of sequential biaxial stretching, stretching is difficult, and even in the case of simultaneous biaxial stretching, necking occurs depending on the crystallization property value of the resin, cooling conditions, or stretching conditions. Uniform stretching was sometimes difficult.
実施例9
実施例4〜8と同じ未延伸フィルムを、テンタ一式連続
同時二軸延伸機により、延伸温度1)0℃。Example 9 The same unstretched film as in Examples 4 to 8 was stretched at a stretching temperature of 1) 0°C using a tenter set of continuous and simultaneous biaxial stretching machine.
延伸速度500mm 7秒の条件下に縦横3.OX3.
0借問時二軸延伸し、引き続いて横方向に2%弛緩させ
ながら205℃で熱固定した。Under the conditions of stretching speed 500mm for 7 seconds, length and width 3. OX3.
Biaxial stretching was carried out at zero tension, followed by heat setting at 205° C. while relaxing 2% in the transverse direction.
延伸されたフィルムの性能を測定したところ。The performance of the stretched film was measured.
表2に示すように未延伸フィルムに較べて飛躍的に改善
されていた。As shown in Table 2, it was dramatically improved compared to the unstretched film.
(発明の効果)
本発明方法により作られた二軸配向フッ素系延伸フィル
ムは、未延伸フィルムの約3倍以上の強度を備えており
、しかも熱固定をすることにより秀れた耐熱性も具備し
ているので、従来使用の困難であった分野にも十分使用
することができる。(Effect of the invention) The biaxially oriented fluorine-based stretched film produced by the method of the present invention has a strength approximately three times or more that of an unstretched film, and also has excellent heat resistance by heat setting. Therefore, it can be used in fields where it was previously difficult to use.
二軸延伸することにより薄膜化を計ることができ。Biaxial stretching allows for thinning of the film.
新しい分野に用途を拡げることができる。またシュリン
クフィルムとして用いる場合は熱固定をせず、そのまま
使用することにより目的を達成することができる。Applications can be expanded to new fields. Further, when used as a shrink film, the purpose can be achieved by using it as it is without heat setting.
本発明方法により製造された延伸フィルムは。A stretched film produced by the method of the present invention.
従来の未延伸フィルムに較べて特に機械的特性が秀れて
おり、また厚さも500μから2μまで製造可能であり
、耐候性を生かした外装保護フィルム。This is an exterior protective film that has excellent mechanical properties compared to conventional unstretched films, can be manufactured in thicknesses from 500μ to 2μ, and takes advantage of its weather resistance.
ソーラーフィルム、太陽電池ベースおよび外装フィルム
、防音壁外装フィルム、電気的特性や耐熱性を生かした
電気絶縁フィルム、電気絶縁テープ。Solar films, solar cell base and exterior films, soundproof wall exterior films, electrical insulation films that take advantage of electrical properties and heat resistance, and electrical insulation tapes.
コンデンサ、耐薬品性や離型性を生かした内装保護フィ
ルム、離型用フィルム、防食テープ等に使用できる。ま
た熱固定をしない場合は、耐候性外装シュリンクフィル
ムとして有用である。It can be used for capacitors, interior protective films that take advantage of chemical resistance and mold release properties, mold release films, anticorrosion tapes, etc. Moreover, when heat setting is not performed, it is useful as a weather-resistant exterior shrink film.
Claims (7)
を80モル%以上含有する二軸配向フッ素系延伸フィル
ム。(1) A biaxially oriented fluorine-based stretched film containing 80 mol% or more of an ethylene/chlorotrifluoroethylene copolymer.
伸されていることを特徴とする特許請求の範囲第1項記
載の二軸配向フッ素系延伸フィルム。(2) The biaxially oriented fluorine-based stretched film according to claim 1, wherein the stretched film is stretched at least twice in both length and width.
弾性率が各々13Kg/mm^2以上、180Kg/m
m^2以上であることを特徴とする特許請求の範囲第1
項記載の二軸配向フッ素系延伸フィルム。(3) The tensile strength and tensile modulus of the stretched film in the longitudinal and transverse directions are 13 Kg/mm^2 or more and 180 Kg/m, respectively.
Claim 1 characterized in that it is m^2 or more
The biaxially oriented fluorine-based stretched film described in 2.
ンのモル比が20:80〜80:20であることを特徴
とする特許請求の範囲第1項記載の二軸配向フッ素系延
伸フィルム。(4) The biaxially oriented fluorinated stretched film according to claim 1, wherein the copolymer has a molar ratio of ethylene and chlorotrifluoroethylene of 20:80 to 80:20.
であることを特徴とする特許請求の範囲第1項記載の二
軸配向フッ素系延伸フィルム。 △T=Tm−Tc Tm(融点):示差熱量分析(DSC)により20℃/
分の昇温速度で昇温した時 の溶融ピーク温度(℃) Tc(降温結晶化温度):DSCにより(融点+20℃
)より80℃/分の降温速度 で降温した時の結晶化ピーク温 度(℃)(5) The biaxially oriented fluorine-based stretched film according to claim 1, characterized in that the following crystallization characteristic value ΔT is 20°C or more and 70°C or less. △T=Tm-Tc Tm (melting point): 20℃/ by differential calorimetry (DSC)
Melting peak temperature (°C) when temperature is increased at a heating rate of
) at a cooling rate of 80°C/min. Crystallization peak temperature (°C)
を80モル%以上含有する熱可塑性樹脂を加熱溶融して
ダイより押出し(融点−10℃)〜(融点−100℃)
の温度範囲でかつ80℃/秒以上の冷却速度で冷却して
成膜した後、50℃以上180℃以下の温度範囲で縦横
各々2倍以上同時二軸延伸することを特徴とする二軸配
向フッ素系延伸フィルムの製造方法。(6) A thermoplastic resin containing 80 mol% or more of ethylene/chlorotrifluoroethylene copolymer is heated and melted and extruded through a die (melting point -10°C) to (melting point -100°C)
Biaxial orientation characterized by forming a film by cooling at a temperature range of 80° C./sec or more, and then simultaneously biaxially stretching the length and width by at least twice as much in a temperature range of 50° C. or more and 180° C. or less. A method for producing a fluorine-based stretched film.
0%以内の制限収縮または伸長下もしくは定長下で熱固
定することを特徴とする特許請求の範囲第5項記載の二
軸配向フッ素系延伸フィルムの製造方法。(7) After biaxial stretching, 2
6. The method for producing a biaxially oriented fluorine-based stretched film according to claim 5, characterized in that the film is heat-set under limited shrinkage of 0% or less, elongation, or constant length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26224085A JPS62121032A (en) | 1985-11-20 | 1985-11-20 | Biaxially oriented fluorine stretched film and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26224085A JPS62121032A (en) | 1985-11-20 | 1985-11-20 | Biaxially oriented fluorine stretched film and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62121032A true JPS62121032A (en) | 1987-06-02 |
JPH0564090B2 JPH0564090B2 (en) | 1993-09-13 |
Family
ID=17373023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26224085A Granted JPS62121032A (en) | 1985-11-20 | 1985-11-20 | Biaxially oriented fluorine stretched film and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62121032A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141224A (en) * | 1988-11-22 | 1990-05-30 | Shin Etsu Chem Co Ltd | Surface protective film |
JP2002219750A (en) * | 2000-11-10 | 2002-08-06 | Asahi Glass Co Ltd | Fluororesin film of high mechanical strength |
WO2012049193A1 (en) * | 2010-10-15 | 2012-04-19 | Solvay Specialty Polymers Italy S.P.A. | Multilayer assembly |
JP2013543027A (en) * | 2010-10-15 | 2013-11-28 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | Fluoropolymer composition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219025A (en) * | 1982-06-01 | 1983-12-20 | イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− | Fluorcarbon copolymer film |
JPS6096626A (en) * | 1983-10-06 | 1985-05-30 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | Oriented film of chlorotrifluoroethylene polymer |
-
1985
- 1985-11-20 JP JP26224085A patent/JPS62121032A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219025A (en) * | 1982-06-01 | 1983-12-20 | イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− | Fluorcarbon copolymer film |
JPS6096626A (en) * | 1983-10-06 | 1985-05-30 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | Oriented film of chlorotrifluoroethylene polymer |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141224A (en) * | 1988-11-22 | 1990-05-30 | Shin Etsu Chem Co Ltd | Surface protective film |
JP2002219750A (en) * | 2000-11-10 | 2002-08-06 | Asahi Glass Co Ltd | Fluororesin film of high mechanical strength |
WO2012049193A1 (en) * | 2010-10-15 | 2012-04-19 | Solvay Specialty Polymers Italy S.P.A. | Multilayer assembly |
JP2013543027A (en) * | 2010-10-15 | 2013-11-28 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | Fluoropolymer composition |
US11338558B2 (en) | 2010-10-15 | 2022-05-24 | Solvay Specialty Polymers Italy S.P.A. | Multilayer assembly |
Also Published As
Publication number | Publication date |
---|---|
JPH0564090B2 (en) | 1993-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3257489A (en) | Process for improving gauge of organic, thermoplastic, crystallizable polymeric film by stretching during heat treating | |
US4298719A (en) | Doubly oriented film of polyvinylidene fluoride | |
US4519969A (en) | Stretched fluorine type film and method for manufacture thereof | |
JPH0134528B2 (en) | ||
EP0410792A2 (en) | Double bubble process for making strong, thin films | |
JPS6147234A (en) | Manufacturing method of heat shrinkable polypropylene film | |
US4335069A (en) | Flat sheet process for production of polyolefin shrink film | |
KR910001573B1 (en) | Process for the production of a poly-epsilon caproamid film | |
JPS62121032A (en) | Biaxially oriented fluorine stretched film and its manufacture | |
JPH0733048B2 (en) | Method for producing polybutylene terephthalate resin film | |
US4385022A (en) | Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers | |
JPH0334457B2 (en) | ||
EP0158488B1 (en) | Vinylidene fluoride resin film, process for production thereof and metallized film thereof | |
US3383445A (en) | Process for the manufacture of biaxially stretched polyethylene films | |
JPH0480815B2 (en) | ||
JPH0314840A (en) | Biaxially cold-stretched vinylidene fluoride polymer film and its preparation | |
JPS59215833A (en) | Manufacture of super-high molecule weight polyethylene porous film | |
US4551514A (en) | Biaxially oriented films of butene-1 homopolymer and copolymers | |
JPS61167527A (en) | Fluorine series polymer oriented film and its manufacture | |
JPH054276A (en) | Manufacture of polyethylene biaxially oriented film | |
JPH0334458B2 (en) | ||
JP2000190387A (en) | Manufacture of biaxially oriented polyamide film | |
Tanigami et al. | Structural studies on ethylene‐tetrafluoroethylene copolymer: III. Deformation mechanism of row‐crystallized film | |
JP4507031B2 (en) | High-molecular-weight polyolefin film having highly transparent portion and method for producing the same | |
JP2023554369A (en) | Composition for producing polyvinylidene chloride single-layer film with improved shrinkage rate and food packaging package containing the same |