JPH0334457B2 - - Google Patents

Info

Publication number
JPH0334457B2
JPH0334457B2 JP18602084A JP18602084A JPH0334457B2 JP H0334457 B2 JPH0334457 B2 JP H0334457B2 JP 18602084 A JP18602084 A JP 18602084A JP 18602084 A JP18602084 A JP 18602084A JP H0334457 B2 JPH0334457 B2 JP H0334457B2
Authority
JP
Japan
Prior art keywords
temperature
stretching
melting point
film
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18602084A
Other languages
Japanese (ja)
Other versions
JPS6163433A (en
Inventor
Kunio Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP18602084A priority Critical patent/JPS6163433A/en
Publication of JPS6163433A publication Critical patent/JPS6163433A/en
Publication of JPH0334457B2 publication Critical patent/JPH0334457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はフツ素系樹脂フイルム及びその延伸方
法に関するものである。さらに詳しくは、エチレ
ン・テトラフルオロエチレン共重合体より成る二
軸延伸フイルム及びその製造方法に関するもので
ある。 (従来の技術) フツ素系樹脂は、ポリテトラフルオロエチレン
を代表に、ポリフツ化ビニデリン、ポリフツ化ビ
ニル、フツ素化エチレン、プロピレン共重合体、
パーフルオロアルキルエーテル等があり、フイル
ム状で使用されているものもあるが、ポリフツ化
ビニル等の例外を除いて殆ど未延伸状態で使用さ
れており、強度が弱くしかも耐熱性が不十分なも
のが多かつた。フツ素系樹脂は、耐候性、耐薬品
性、電気的特性、離型性等に秀れており、用途も
多岐に渡つているがフイルム状で使用する場合は
強度や熱安定性が悪く、また薄膜状で使用できな
いことが多く用途が限られていた。 (本発明が解決しようとする問題点) 本発明者は、かかる問題につき鋭意研究を重ね
た結果、特願昭58−166937号においてエチレン・
テトラフルオロエチレン共重合体よりなる実質的
に無配向のフイルムを90℃以上160℃以下の温度
範囲で縦横各々2.0倍以上に同時二軸延伸するこ
とを特徴とするフツ素系延伸フイルムの製造方法
を提案した。 (問題点を解決するための手段) 本発明者は、エチレン・テトラフルオロエチレ
ン共重合体の延伸性についてさらに研究を重ねた
結果、本発明に至つたものである。すなわちエチ
レン・テトラフルオロエチレン共重合体を90モル
%以上含有し、下記の結晶化特性値ΔTが15℃以
上6℃以下であることを特徴とする二軸配向フイ
ルムである。 ΔT=Tm−Tc Tm(融点):示差熱量分析(DSC)により20℃/
分の昇温速度で昇温した時の溶融ピーク温度
(℃) Tc(降温結晶化温度):DSCにより(融点+20℃)
より80℃/分の降温速度で降温した時の結晶化
ピーク温度(℃) 通常のエチレン・テトラフルオロエチレン共重
合体樹脂では結晶化速度が速く、通常の成膜冷却
速度では結晶化が逆行しすぎて均一に延伸するこ
とができないが、本発明者は、特定の結晶化特性
を備えたものが延伸性及び耐熱性に秀れているこ
とを見い出したものである。 (作用) 結晶化速度の指標として融点と降温結晶化温度
との差、すなわち溶融してから再び結晶化するま
での温度差が一般に使用されるがその温度差が大
きいほど結晶化速度が遅く、結晶化が進行しにく
い。融点からの降温速度が速いほど結晶化温度が
高くなり、融点と降温結晶化温度との差が小さく
なる傾向にあるので、この指標を用いる場合には
降温速度を規定しなければならない。 本発明者等は溶融後の降温速度を80℃/分と規
定して、示差熱量分析計(DSC)により融点と
降温結晶化温度との差を求めながら実験を進めた
ところ、この温度差が15℃以上好ましくは20℃以
上60℃以下好ましくは55℃以下の場合に良好に延
伸ができ、しかも均一な延伸フイルムを作ること
ができることを見い出した。この温度差が15℃未
満の場合は結晶化が進行しすぎて均一な延伸が困
難であり、均一な物性のフイルムを得ることが困
難である。また60℃を超える場合は結晶化度が低
すぎて耐熱性が不十分である。 尚、融点はDSCにより20℃/分の昇温速度で
昇温した時の溶融ピーク温度とし(融点+20℃)
に達した後、直ちに80℃/分の降温速度で降温し
た時の結晶化ピーク温度を降温結晶化温度とす
る。 上記の結晶化特性値を備えたエチレン・テトラ
フルオロエチレン共重合体樹脂は、通常の冷却方
法でもかなり良好な延伸性を備えたフイルムが成
膜できるが、さらに冷却条件を限定することによ
り均一な延伸が可能となる。すなわち本発明者等
は、成膜時の冷却速度について検討を重ねた結
果、(融点−10℃)〜(融点−100℃)の温度範囲
を70℃/秒以上の冷却速度で成膜することにより
結晶化を抑制することができ、均一な延伸が可能
になることを見い出した。 上記の結晶化特性値と冷却速度の適性な範囲を
守ることにより、従来延伸不可能であつた低温で
の延伸が可能となり、また高温での延伸もさらに
均一に行うことができる。 フイルムの二軸延伸方法には、予め一軸延伸し
た後、さらに直角方向に延伸を行う、所謂遂次二
軸延伸法と同時に直角方向に延伸を行う同時二軸
延伸法とがあるが、エチレン・テトラフルオロエ
チレン共重合体の場合、遂次二軸延伸法では高倍
率の延伸が困難である。これは一軸延伸により分
子鎖が高度に一軸配向し、続く横延伸で配向軸に
沿つて裂け易くなるためであると思われる。 これに対して同時二軸延伸の場合は、縦横同時
に延伸が実行されるために縦横バランスのとれた
配向を得ることができ、切断もなく高倍率の延伸
が可能である。延伸倍率は、強度向上等の延伸効
果から判断して縦横各々2.0倍以上、好ましくは
2.5倍以上が必要である。同時二軸延伸の方法は
特に限定されるものではなく、テンター法、チユ
ーブラー法いずれの方法でも良い。また延伸温度
は比較例にも述べる如く、適当な範囲を選ぶ必要
があり、50℃以上160℃以下、好ましくは70℃以
上150℃以下が適当である。50℃未満の場合は延
伸応力が非常に大きく2倍以上の延伸倍率では切
断しやすいが、50℃を超えると延伸応力が急激に
低下し無理なく延伸することができる。延伸温度
をさらに上げて160℃を超えると結晶化が必要以
上に進み、延伸時にネツキング現象が発生して均
一な延伸フイルムを得ることができない。 延伸されたフイルムは、そのままでは熱安定性
が悪く、高温での使用に耐えられないので高温で
使用する場合は熱固定してやる必要があり、160
℃以上融点以下、好ましくは180℃以上240℃以下
の温度で熱固定してやると良い結果を得ることが
できる。熱固定は20%以内の制限収縮もしくは伸
長下または定長下で実施することが好ましい。ま
たシユリンクフイルムとして用いる場合は熱固定
をせず、そのまま使用することにより目的を達成
することができる。 本発明に適用されるエチレン・テトラフルオロ
エチレン共重合体樹脂は、エチレンとテトラフル
オロエチレンのモル比が40:60〜70:30特に好ま
しくは45:55〜60:40のものが成膜性、延伸性等
の点から好適である。さらに結晶性を抑えるため
に第3成分を添加して共重合させると、延伸性が
一段と改善される。第3成分としてテトラフルオ
ロエチレン以外のフルオロオレフインが有効であ
る。たとえばフツ化ビニル、フツ化ビニデリン、
クロロトリフルオロエチレン、6フツ化プロピレ
ン、トリフルオロエチレン、ジフルオロエチレ
ン、ジクロロジフルオロエチレン、クロロフルオ
ロエチレン、ジクロロジフルオロプロピレン、ト
リクロロトリフルオロプロピレン、テトラフルオ
ロジクロロプロピレン、クロロペンタフルオロプ
ロピレン、ジクロロトリフルオロプロピレン、ク
ロロテトラフルオロプロピレン、ペンタフルオロ
プロピレン、テトラフルオロプロピレン、トリフ
ルオロプロピレン等があり、これらのフルオロオ
レフインは生成共重合体のフツ素含有量が40〜75
重量%になるように添加されるのが好ましい。ま
たテトラフルオロエチレンとフルオロオレフイン
のモル比は1:0.1〜2が好ましい。 (実施例) 以下、比較例と実施例によりさらに詳しく述べ
る。 比較例1〜19及び実施例1〜8 エチレンとテトラフルオロエチレンのモル比を
種々変えたエチレン・テトラフルオロエチレン共
重合体を単軸押出機で340℃に溶融し、Tダイよ
り押出して(融点−10℃)〜(融点−100℃)の
冷却速度を変えながら、厚さ100μの未延伸フイ
ルムを作つた。これらの未延伸フイルムを試験延
伸機により条件を変えながら二軸延伸した。結果
を表1に示したが、遂次二軸延伸の場合はいずれ
も延伸が困難であり、また同時二軸延伸の場合で
も樹脂の結晶化特性値や冷却条件あるいは延伸条
件によりネツキングが発生し、均一な延伸が困難
な場合があつた。
(Industrial Application Field) The present invention relates to a fluororesin film and a method for stretching the same. More specifically, the present invention relates to a biaxially stretched film made of an ethylene/tetrafluoroethylene copolymer and a method for producing the same. (Prior art) Fluorine resins include polytetrafluoroethylene, polyvinideline fluoride, vinyl fluoride, fluorinated ethylene, propylene copolymer,
There are perfluoroalkyl ethers, etc., and some are used in film form, but with the exception of polyvinyl fluoride, most of them are used in an unstretched state, which has weak strength and insufficient heat resistance. There were many. Fluorocarbon resins have excellent weather resistance, chemical resistance, electrical properties, mold release properties, etc., and are used in a wide variety of applications, but when used in film form, they have poor strength and thermal stability. Moreover, it is often unusable because it is in the form of a thin film, and its applications are limited. (Problems to be Solved by the Present Invention) As a result of extensive research into this problem, the present inventors have discovered that ethylene
A method for producing a fluorine-based stretched film, which comprises simultaneously biaxially stretching a substantially non-oriented film made of a tetrafluoroethylene copolymer by a factor of 2.0 times or more in both length and width at a temperature range of 90°C or higher and 160°C or lower. proposed. (Means for Solving the Problems) The present inventor has conducted further research on the stretchability of ethylene/tetrafluoroethylene copolymers, and as a result, has arrived at the present invention. That is, it is a biaxially oriented film containing 90 mol% or more of an ethylene/tetrafluoroethylene copolymer and having the following crystallization characteristic value ΔT of 15°C or more and 6°C or less. ΔT=Tm−Tc Tm (melting point): 20℃/ by differential calorimetry (DSC)
Melting peak temperature (°C) when the temperature is increased at a heating rate of 100 min Tc (cooling crystallization temperature): According to DSC (melting point + 20°C)
Crystallization peak temperature (°C) when the temperature is lowered at a cooling rate of 80°C/minute However, the present inventors have discovered that those with specific crystallization characteristics have excellent drawability and heat resistance. (Function) The difference between the melting point and the cooling crystallization temperature, that is, the temperature difference from melting to crystallization again, is generally used as an index of crystallization rate. The larger the temperature difference, the slower the crystallization rate. Crystallization is difficult to progress. The faster the temperature decrease rate from the melting point, the higher the crystallization temperature, and the difference between the melting point and the decrease crystallization temperature tends to become smaller, so when using this index, the temperature decrease rate must be specified. The present inventors determined the cooling rate after melting to be 80°C/min, and conducted experiments while determining the difference between the melting point and the cooling crystallization temperature using a differential calorimeter (DSC). It has been found that stretching can be performed satisfactorily at a temperature of 15°C or higher, preferably 20°C or higher and 60°C or lower, preferably 55°C or lower, and that a uniform stretched film can be produced. If this temperature difference is less than 15°C, crystallization progresses too much, making uniform stretching difficult and making it difficult to obtain a film with uniform physical properties. Further, if the temperature exceeds 60°C, the degree of crystallinity is too low and the heat resistance is insufficient. The melting point is the melting peak temperature when the temperature is increased at a rate of 20°C/min by DSC (melting point + 20°C).
The crystallization peak temperature when the temperature is immediately lowered at a cooling rate of 80°C/min after reaching the temperature is defined as the cooling crystallization temperature. Ethylene-tetrafluoroethylene copolymer resins with the above crystallization properties can be used to form films with fairly good stretchability even with normal cooling methods, but by further limiting the cooling conditions, uniform films can be formed. Stretching becomes possible. In other words, as a result of repeated studies on the cooling rate during film formation, the inventors found that the film can be formed at a cooling rate of 70°C/second or higher in the temperature range of (melting point -10°C) to (melting point -100°C). It has been found that crystallization can be suppressed and uniform stretching becomes possible. By keeping the above-mentioned crystallization property values and cooling rate within the appropriate ranges, it becomes possible to perform stretching at low temperatures, which was previously impossible, and it is also possible to perform stretching at high temperatures more uniformly. Biaxial stretching methods for films include the so-called sequential biaxial stretching method, in which uniaxial stretching is performed in advance and then further stretching in the perpendicular direction, and the simultaneous biaxial stretching method, in which stretching is performed in the perpendicular direction at the same time. In the case of a tetrafluoroethylene copolymer, it is difficult to stretch at a high magnification using the sequential biaxial stretching method. This is thought to be because the molecular chains are highly uniaxially oriented by uniaxial stretching, and the subsequent lateral stretching makes them easy to tear along the orientation axis. On the other hand, in the case of simultaneous biaxial stretching, since stretching is carried out simultaneously in the longitudinal and lateral directions, a well-balanced orientation in the longitudinal and lateral directions can be obtained, and high-magnification stretching is possible without cutting. The stretching ratio is preferably 2.0 times or more in each direction, judging from the stretching effect such as improving strength.
2.5 times or more is required. The method of simultaneous biaxial stretching is not particularly limited, and either a tenter method or a tubular method may be used. Further, as described in the comparative examples, the stretching temperature needs to be selected within an appropriate range, and is suitably 50°C or more and 160°C or less, preferably 70°C or more and 150°C or less. When the temperature is less than 50°C, the stretching stress is very large and it is easy to break at a stretching ratio of 2 times or more, but when the temperature exceeds 50°C, the stretching stress decreases rapidly and it can be stretched without difficulty. If the stretching temperature is further increased to exceed 160°C, crystallization will proceed more than necessary, and a netting phenomenon will occur during stretching, making it impossible to obtain a uniform stretched film. Stretched films have poor thermal stability and cannot withstand use at high temperatures, so they must be heat-set when used at high temperatures.
Good results can be obtained by heat setting at a temperature of 180°C or higher and below the melting point, preferably 180°C or higher and 240°C or lower. Heat setting is preferably carried out under limited shrinkage or elongation of up to 20% or under constant length. Furthermore, when used as a shrink film, the purpose can be achieved by using it as it is without heat setting. The ethylene/tetrafluoroethylene copolymer resin applied to the present invention has a molar ratio of ethylene to tetrafluoroethylene of 40:60 to 70:30, preferably 45:55 to 60:40, which has good film-forming properties. This is suitable from the viewpoint of stretchability and the like. Furthermore, when a third component is added and copolymerized in order to suppress crystallinity, the stretchability is further improved. Fluoroolefins other than tetrafluoroethylene are effective as the third component. For example, vinyl fluoride, vinylideline fluoride,
Chlorotrifluoroethylene, hexafluoropropylene, trifluoroethylene, difluoroethylene, dichlorodifluoroethylene, chlorofluoroethylene, dichlorodifluoropropylene, trichlorotrifluoropropylene, tetrafluorodichloropropylene, chloropentafluoropropylene, dichlorotrifluoropropylene, chloro There are tetrafluoropropylene, pentafluoropropylene, tetrafluoropropylene, trifluoropropylene, etc., and these fluoroolefins have a fluorine content of 40 to 75 in the resulting copolymer.
It is preferable that it is added in an amount of % by weight. Moreover, the molar ratio of tetrafluoroethylene and fluoroolefin is preferably 1:0.1 to 2. (Example) The following will be described in more detail using comparative examples and examples. Comparative Examples 1 to 19 and Examples 1 to 8 Ethylene/tetrafluoroethylene copolymers with various molar ratios of ethylene and tetrafluoroethylene were melted at 340°C in a single-screw extruder and extruded through a T-die (melting point An unstretched film with a thickness of 100μ was produced while changing the cooling rate from -10°C to (melting point -100°C). These unstretched films were biaxially stretched using a test stretching machine under varying conditions. The results are shown in Table 1, but in the case of sequential biaxial stretching, stretching is difficult, and even in the case of simultaneous biaxial stretching, netting may occur depending on the crystallization properties of the resin, cooling conditions, or stretching conditions. In some cases, uniform stretching was difficult.

【表】【table】

【表】 実施例 9 実施例4〜8と同じ未延伸フイルムを、テンタ
ー式連続同時二軸延伸機により、延伸温度130℃、
延伸速度500mm/秒の条件下に縦横3.0×3.0倍同
時二軸延伸し、引き続いて横方向に2%弛緩させ
ながら200℃で熱固定した。 延伸されたフイルムの性能を測定したところ、
表2に示すように未延伸フイルムに較べて飛躍的
に改善されていた。
[Table] Example 9 The same unstretched film as in Examples 4 to 8 was stretched at a stretching temperature of 130°C using a tenter-type continuous simultaneous biaxial stretching machine.
It was simultaneously biaxially stretched 3.0 x 3.0 times in the longitudinal and transverse directions at a stretching speed of 500 mm/sec, and then heat-set at 200°C while relaxing 2% in the transverse direction. When the performance of the stretched film was measured,
As shown in Table 2, it was dramatically improved compared to the unstretched film.

【表】 (発明の効果) 本発明方法により作られた二軸延伸フイルム
は、未延伸フイルムの約3倍以上の強度を備えて
おり、しかも熱固定をすることにより秀れた耐熱
性も具備しているので、従来使用の困難であつた
分野にも十分使用することができる。二軸延伸す
ることにより薄膜化を計ることができ、新しい分
野に用途を拡げることができる。エチレン・テト
ラフルオロエチレン共重合体を90モル%以上含有
する未延伸フイルムを縦、横各々2倍以上延伸す
ると、未延伸フイルムでは4Kg/mm2位しかなかつ
た引張強度が、13Kg/mm2以上にまで向上する。ま
た引張弾性率も60Kg/mm2位であつたものが100
Kg/mm2以上にまで改善される。 また本発明方法により製造された延伸フイルム
は、従来の未延伸フイルムに較べて特に機械的特
性が秀れており、また厚さも500μから2μまで製
造可能であり、対候性を生かした外装保護フイル
ム、ソーラーフイルム、太陽電池ベース及び外装
フイルム、防音壁外装フイルム、電気的特性や耐
熱性を生かした電気絶縁フイルム、電気絶縁テー
プ、コンデンサ、耐薬品性や離型性を生かした内
装保護フイルム、離型用フイルム、防食テープ等
に使用できる。また熱固定をしない場合は、耐候
性外装シユリンクフイルムとして有用である。
[Table] (Effects of the invention) The biaxially stretched film produced by the method of the present invention has a strength approximately three times or more that of an unstretched film, and also has excellent heat resistance by heat setting. Therefore, it can be fully used in fields where it was previously difficult to use. By biaxially stretching, it is possible to make the film thinner, and it can be used in new fields. When an unstretched film containing 90 mol% or more of ethylene/tetrafluoroethylene copolymer is stretched by more than twice the length and width, the tensile strength of the unstretched film, which was only 4 Kg/mm 2 or more, increases to 13 Kg/mm 2 or more. Improve to. Also, the tensile modulus was 60Kg/mm, and the second place was 100
Improved to Kg/mm 2 or more. In addition, the stretched film produced by the method of the present invention has particularly excellent mechanical properties compared to conventional unstretched films, and can be produced in thicknesses from 500μ to 2μ, providing exterior protection that takes advantage of its weather resistance. Films, solar films, solar cell base and exterior films, soundproof wall exterior films, electrical insulation films that take advantage of their electrical properties and heat resistance, electrical insulation tapes, capacitors, interior protection films that take advantage of their chemical resistance and mold releasability, Can be used for release films, anti-corrosion tapes, etc. In addition, when heat setting is not performed, it is useful as a weather-resistant exterior shrink film.

Claims (1)

【特許請求の範囲】 1 エチレン・テトラフルオロエチレン共重合体
を90モル%以上含有し、下記の結晶化特性値ΔT
が15℃以上60℃以下であることを特徴とする二軸
配向フイルム。 ΔT=Tm−Tc Tm(融点):示差熱量分析(DSC)により20℃/
分の昇温速度で昇温した時の溶融ピーク温度
(℃) Tc(降温結晶化温度):DSCにより(融点+20℃)
より80℃/分の降温速度で降温した時の結晶化
ピーク温度(℃) 2 エチレン・テトラフルオロエチレン共重合体
を90モル%以上含有し、かつテトラフルオロエチ
レン以外のフルオロオレフインを全フツ素含有量
が40〜75重量%になるように共重合させたことを
特徴とする特許請求の範囲第1項記載の二軸配向
フイルム。 3 エチレン・テトラフルオロエチレン共重合体
を90モル%以上含有する熱可塑性樹脂を加熱溶融
してダイより押出し(融点−10℃)〜(融点−
100℃)の温度範囲を70℃/秒以上の冷却速度で
冷却して成膜した後、50℃以上160℃以下の温度
範囲で縦横各々2倍以上同時二軸延伸することを
特徴とするフツ素系延伸フイルムの製造方法。
[Scope of Claims] 1 Contains 90 mol% or more of ethylene/tetrafluoroethylene copolymer and has the following crystallization characteristic value ΔT
A biaxially oriented film characterized in that the temperature is 15°C or more and 60°C or less. ΔT=Tm−Tc Tm (melting point): 20℃/ by differential calorimetry (DSC)
Melting peak temperature (°C) when the temperature is increased at a heating rate of 100 min Tc (cooling crystallization temperature): According to DSC (melting point + 20°C)
Crystallization peak temperature (℃) when the temperature is lowered at a cooling rate of 80℃/min from 2. The biaxially oriented film according to claim 1, wherein the biaxially oriented film is copolymerized in an amount of 40 to 75% by weight. 3 A thermoplastic resin containing 90 mol% or more of ethylene/tetrafluoroethylene copolymer is heated and melted and extruded through a die (melting point -10°C) to (melting point -
100°C) at a cooling rate of 70°C/sec or more to form a film, and then simultaneously biaxially stretched by at least twice in the length and width at a temperature range of 50°C or more and 160°C or less. A method for producing a bare stretched film.
JP18602084A 1984-09-05 1984-09-05 Fluorine series oriented film and its manufacture Granted JPS6163433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18602084A JPS6163433A (en) 1984-09-05 1984-09-05 Fluorine series oriented film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18602084A JPS6163433A (en) 1984-09-05 1984-09-05 Fluorine series oriented film and its manufacture

Publications (2)

Publication Number Publication Date
JPS6163433A JPS6163433A (en) 1986-04-01
JPH0334457B2 true JPH0334457B2 (en) 1991-05-22

Family

ID=16180985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18602084A Granted JPS6163433A (en) 1984-09-05 1984-09-05 Fluorine series oriented film and its manufacture

Country Status (1)

Country Link
JP (1) JPS6163433A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613207B2 (en) * 1987-04-10 1997-05-21 旭硝子株式会社 Flame retardant resin composition
JP2613210B2 (en) * 1987-05-12 1997-05-21 旭硝子株式会社 Flame-retardant resin film
JP2002219750A (en) * 2000-11-10 2002-08-06 Asahi Glass Co Ltd Fluororesin film of high mechanical strength
JP2002226611A (en) * 2000-11-28 2002-08-14 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene and tetrafluoroethylene- hexafluoropropylene copolymer films which have excellent light transmissivity
WO2016031930A1 (en) * 2014-08-29 2016-03-03 旭硝子株式会社 Ethylene-tetrafluoroethylene copolymer sheet and method for producing same

Also Published As

Publication number Publication date
JPS6163433A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
US4298719A (en) Doubly oriented film of polyvinylidene fluoride
Doll et al. The polymorphism of poly (vinylidene fluoride). II. The effect of hydrostatic pressure
JP6488703B2 (en) Biaxially stretched polypropylene film
EP0140546B1 (en) Stretchend fluorine type film and method for manufacture thereof
JPS6147234A (en) Manufacturing method of heat shrinkable polypropylene film
JPH0315932B2 (en)
JPH0334457B2 (en)
JPH0564090B2 (en)
US4385022A (en) Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers
JPS61167527A (en) Fluorine series polymer oriented film and its manufacture
EP0158488B1 (en) Vinylidene fluoride resin film, process for production thereof and metallized film thereof
JPH0480815B2 (en)
JPH0314840A (en) Biaxially cold-stretched vinylidene fluoride polymer film and its preparation
US4551514A (en) Biaxially oriented films of butene-1 homopolymer and copolymers
US20240052118A1 (en) Composition for Production of Polyvinylidene Chloride Monolayer Film with Improved Shrinkage and Food Wrapping Package Including Same
Tanigami et al. Structural studies on ethylene‐tetrafluoroethylene copolymer: III. Deformation mechanism of row‐crystallized film
KR0135914B1 (en) Method for the production of polypropylene film
JPH02253924A (en) Biaxially oriented film of heat-resistant fluorine polymer and its manufacture
JP4507031B2 (en) High-molecular-weight polyolefin film having highly transparent portion and method for producing the same
JPH08300470A (en) Biaxially stretched polypropylene film
JPH0292518A (en) Biaxially-oriented film of fluorine base polymer
JPH054276A (en) Manufacture of polyethylene biaxially oriented film
JP2000313751A (en) High-strength high-molecular weight polyolefin film excellent in transparency and its production
JP2001198937A (en) Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency
JPS59230208A (en) Polymer dielectric material