JPH0314840A - Biaxially cold-stretched vinylidene fluoride polymer film and its preparation - Google Patents

Biaxially cold-stretched vinylidene fluoride polymer film and its preparation

Info

Publication number
JPH0314840A
JPH0314840A JP33513189A JP33513189A JPH0314840A JP H0314840 A JPH0314840 A JP H0314840A JP 33513189 A JP33513189 A JP 33513189A JP 33513189 A JP33513189 A JP 33513189A JP H0314840 A JPH0314840 A JP H0314840A
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
film
polymer
ratio
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33513189A
Other languages
Japanese (ja)
Inventor
Shozo Kakizaki
昭三 柿崎
Mitsuru Ota
満 太田
Shuji Terasaki
寺崎 収二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP33513189A priority Critical patent/JPH0314840A/en
Publication of JPH0314840A publication Critical patent/JPH0314840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To prepare a biaxially cold-stretched vinylidene fluoride polymer film excellent in the mechanical strengths at a low cost by biaxially cold- stretching a specific vinylidene fluoride polymer by the inflation process. CONSTITUTION:A vinylidene fluoride polymer having an inherent viscosity of 0.8-1.6dl/g and a ratio of the wt.-average mol.wt. to the number-average mol.wt. of 10-20, or a polymer mixture comprising at least 30wt.% above- mentioned vinylidene fluoride polymer and 70wt.% or lower vinylidene fluoride polymer having a ratio of the wt.-average mol.wt. to the number-average mol.wt. of 10 or lower is biaxially cold-stretched pref. in a stretching ratio of at lest 1.5 in both the longitudinal and transverse directions by the inflation process.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、弗化ビニリデン系ポリマーよりなる二軸延伸
フィルムおよびその製造方法に関する. [従来技術] 弗化ビニリデン系ポリマーは、耐候性、耐薬品性、圧電
性、焦電性,誘電性、難燃性等Cおいて優れている一方
、分解温度が溶融軟化温度よりもはるかに高いため、ポ
リテトラフルオロエチレンやボリフッ化ビニル等と違っ
て押出成形加工が容易である事をも重要な特徴とする. 他方、弗化ビニリデン系ポリマーは、極めて結晶性が強
い事もあって、たとえばシート状の物を延伸して分子配
向操作を施す際、その強い結晶性のために延伸には困難
がつきまとう.ことにインフレーション法による2軸冷
延伸フィルムは得られていなかった. このため、弗化ビニリデン系ポリマーに関しては、結晶
化抑止剤としてポリアクリレートをブレンドして延伸し
たり(特開昭60−67133号公報)、他の易延伸性
フィルムとの積層により、弗化ビニリデン系ポリマーフ
ィルム内に散在する結晶部分に過度の応力集中を避けて
延伸する方法も提案されている(特開昭57−1562
24号).シかしながら、前者の方法では、弗化ビニリ
デン系ポリマー単独でないため、使用ざれる用途によっ
ては、例えばコンデンサ用フィルムとした場合、誘電率
の低下を招く等、不都合な場合がある。また後者の場合
には、コストの増加が無視できない. [発明が解決しようとする課題] 上述した事情に鑑み、本発明の主要な目的は、機械的強
度の優れた弗化ビニリデン系ポリマーの二軸冷延伸フィ
ルムを、特に生産効率の優れたインフレーション法によ
り製造する技術を撞案することにある.更に本発明は、
このようなインフレーション法の条件の設定及び、原料
弗化ビニリデン系ポリマーの組成の選択により、平滑な
フィルムばかりでなく、併せて粗面化された弗化ビニリ
デン系ポリマー二軸冷延伸フィルムを提供することを目
的とする. [課題を解決するための手段] 本発明者等は特開昭62−286720号公報で示され
たダイレクトブロ一方式のインフレーション法フィルム
の製造によって tanδ(誘電損失角の正接)の低下
したフィルムを得たが、その後、原料樹脂を選択し、ダ
イレクトブロー後冷却したフィルムをさらに冷延伸する
事により、厚みむらが少なく且つ強度の向上した弗化ビ
ニリデン系ポリマーフィルムが得られることを発見した
.此処で冷延伸とは原料樹脂の結晶融解温度以下の温度
で延伸する事を表す.更に、フィルム成形原料としてス
トランドの溶融張力が高い弗化ビニリデン系ポリマーを
選び、条件を設定することにより、インフレーション時
に微細な凹凸が生じ、続く冷延伸によっても凹凸は維持
され、実質上三軸延伸された粗面化フィルムを得るに至
った.すなわち、本発明の弗化ビニリデン系ポリマーフ
ィルムは、濃度0.4g/dj2および温度30℃のジ
メチルホルムア主ド溶液として測定したインヒヤレント
ビスコシティ(以下単に『インヒヤレントビスコシティ
」という)が0.8〜1.6d IL/gの範囲にある
弗化ビニリデン系ポリマーからなり、インフレーション
法により二軸冷延伸されてなることを特徴とするもので
ある.また別の観点に従えば、本発明のインフレーショ
ン法による弗化ビニリデン系ポリマー二軸冷延伸フィル
ムの製造方法は、インヒヤレントビスコシティが全体と
して0.8〜t.6du/gの範囲にあり、M W /
 M n比が10〜2oの範囲にある弗化ビニリデン系
ポリマー単独または該ポリマーを301i量%以上含む
該ポリマーとM w / M n比が10未満である弗
化ビニリデン系ポリマーとの混合物を、環状ダイから溶
融押出して該溶融パリソンを得、該パリソンを膨張後冷
却して原反チューブを得、該原反チューブを再度加熱し
、該チューブ内にエアーを吹き付け、上下の対ニップロ
ール周速比を調節して同時二軸冷延伸を行うことを特徴
とするものである. 更に、本発明の好ましい一つの態様によれば、弗化ビニ
リデン系ポリマーの二軸冷延伸フィルムは、縦・横二軸
方向にそれぞれ1.5倍以上冷延伸されており、片面に
深さ0.2〜1.0μmの横方向に延在する溝が、縦方
向に10mm以内の間隔で連続的に形成された状態の粗
面化フィルムとして得ることもできる. 以下、本発明の弗化ビニリデン系ポリマー二軸冷延伸フ
ィルムならびにその製造方法の詳細を逐次説明する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a biaxially stretched film made of a vinylidene fluoride polymer and a method for producing the same. [Prior art] Vinylidene fluoride polymers have excellent weather resistance, chemical resistance, piezoelectricity, pyroelectricity, dielectricity, flame retardancy, etc., but their decomposition temperature is much higher than their melting and softening temperature. Another important feature is that it is easy to extrude, unlike polytetrafluoroethylene and polyvinyl fluoride, which are expensive. On the other hand, vinylidene fluoride-based polymers have extremely strong crystallinity, which makes it difficult to stretch a sheet-like material for molecular orientation due to its strong crystallinity. In particular, biaxial cold-stretched films had not been obtained by the inflation method. For this reason, vinylidene fluoride polymers can be stretched by blending polyacrylate as a crystallization inhibitor (Japanese Unexamined Patent Publication No. 60-67133), or by laminating them with other easily stretchable films. A method has also been proposed in which the film is stretched while avoiding excessive stress concentration on the crystal parts scattered within the polymer film (Japanese Patent Laid-Open No. 57-1562).
No. 24). However, in the former method, since the vinylidene fluoride polymer is not used alone, depending on the intended use, for example, when used as a film for a capacitor, there may be disadvantages such as a decrease in dielectric constant. In the latter case, the increase in costs cannot be ignored. [Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the main object of the present invention is to produce a biaxial cold-stretched film of vinylidene fluoride polymer with excellent mechanical strength using an inflation method with particularly high production efficiency. The goal is to develop manufacturing technology based on Furthermore, the present invention
By setting the conditions of the inflation method and selecting the composition of the raw vinylidene fluoride polymer, it is possible to provide not only a smooth film but also a roughened vinylidene fluoride polymer biaxially cold-stretched film. The purpose is to [Means for Solving the Problems] The present inventors have produced a film with a reduced tan δ (tangent of dielectric loss angle) by manufacturing a film using the direct blow one-type inflation method disclosed in Japanese Patent Application Laid-open No. 62-286720. However, they discovered that by selecting a raw material resin and further cold-stretching the film that had been cooled after direct blowing, it was possible to obtain a vinylidene fluoride polymer film with less uneven thickness and improved strength. Here, cold stretching refers to stretching at a temperature below the crystal melting temperature of the raw resin. Furthermore, by selecting a vinylidene fluoride polymer with high strand melt tension as a film forming raw material and setting the conditions, fine irregularities are created during inflation, and the irregularities are maintained even during subsequent cold stretching, making it virtually triaxially stretched. A roughened film was obtained. That is, the vinylidene fluoride polymer film of the present invention has an independent viscosity (hereinafter simply referred to as "inherent viscosity") measured as a dimethylforma-based solution at a concentration of 0.4 g/dj2 and a temperature of 30°C. It is made of a vinylidene fluoride polymer with an IL/g range of 0.8 to 1.6 d IL/g, and is characterized by being biaxially cold stretched by an inflation method. According to another aspect, the method for producing a vinylidene fluoride polymer biaxially cold-stretched film by the inflation method of the present invention has an overall independent viscocity of 0.8 to t. It is in the range of 6du/g, and M W /
A vinylidene fluoride polymer having an Mn ratio of 10 to 2o alone or a mixture of the polymer containing the polymer in an amount of 301i% or more and a vinylidene fluoride polymer having an Mw/Mn ratio of less than 10, The molten parison is obtained by melt extrusion from an annular die, the parison is expanded and then cooled to obtain a raw fabric tube, the raw fabric tube is heated again, air is blown into the tube, and the circumferential speed ratio of the upper and lower nip rolls is adjusted. This method is characterized by simultaneous biaxial cold stretching by controlling the Furthermore, according to a preferred embodiment of the present invention, the biaxial cold-stretched film of vinylidene fluoride-based polymer is cold-stretched by 1.5 times or more in each of the vertical and horizontal biaxial directions, and has a zero depth on one side. It can also be obtained as a roughened film in which grooves extending in the horizontal direction of .2 to 1.0 μm are continuously formed at intervals of 10 mm or less in the vertical direction. The details of the vinylidene fluoride polymer biaxially cold stretched film of the present invention and the method for producing the same will be explained below.

本発明のフィルムを構成する弗化ビニリデン系ポリマー
としては、弗化ビニリデンホモポリマーはもちろん、弗
化ビニリデンを50モル%以上、好ましくは75モル%
以上、含有する共重合体、望ましくは弗素含有モノマー
との共重合体も用いられる。弗化ビニリデンと共重合可
能なコモノマーとしては、四弗化エチレン、六弗化プロ
ピレン、三弗化エチレン、三弗化塩化エチレン、弗化ビ
ニル等があげられる. 本発明で用いる弗化ビニリデン系ポリマーは、インヒヤ
レントビスコシティが0.8〜1.6d It/gであ
ること、好ましくは0.9〜1.3d党/g,より一層
好ましくは0.9〜1.15dぶ/gのものが用いられ
る. インヒヤレントビスコシティが0.8dJ2/g未満の
ポリマーを用いると、溶融粘度の低下が著しく、溶融イ
ンフレーション工程においてバブルを安定に形成し維持
できないので好ましくない。
The vinylidene fluoride-based polymer constituting the film of the present invention includes not only vinylidene fluoride homopolymer but also vinylidene fluoride in an amount of 50 mol% or more, preferably 75 mol%.
A copolymer containing the above, preferably a copolymer with a fluorine-containing monomer, may also be used. Examples of comonomers that can be copolymerized with vinylidene fluoride include ethylene tetrafluoride, propylene hexafluoride, ethylene trifluoride, ethylene chloride trifluoride, and vinyl fluoride. The vinylidene fluoride polymer used in the present invention has an independent viscosity of 0.8 to 1.6 d It/g, preferably 0.9 to 1.3 d It/g, and even more preferably 0. 9 to 1.15 dbu/g is used. If a polymer with an independent viscosity of less than 0.8 dJ2/g is used, the melt viscosity decreases significantly and bubbles cannot be stably formed and maintained in the melt inflation process, which is not preferable.

また、1.6du/gを超えるポリマーを用いると、溶
融粘度が高すぎ、実買上、押出機による可塑化樹脂の安
定した押出しは不可能となったり、冷延伸が出来なくな
ったりして好ましくない。
Furthermore, if a polymer exceeding 1.6 du/g is used, the melt viscosity will be too high, making it impossible to stably extrude the plasticized resin using an extruder during actual purchase, or making cold stretching impossible. .

インフレーション法による二軸冷延伸を可能とするため
に、原料弗化ビニリデン系ポリマーの分子量分布を示す
Mw/Mn(Il量平均分子量/数平均分子量)比の制
御が重要である.すなわち、本発明に従い、原料弗化ビ
ニリデン系ポリマーとしては、M w / M n比が
10〜2oの範囲、好ましくは12〜l6の範囲、にあ
る弗化ビニリデン系ポリマー(以下r高分散ポリマー」
と呼ぶことがある)を単独で用いるか、このようなポリ
マーを30瓜量%以上含む該ポリマーとM w / M
 n比が10未満である弗化ビニリデン系ポリマー(以
下「低分散ポリマー」と呼ぶことがある)の70重量%
以下との混合物が用いられる。
In order to enable biaxial cold stretching by the inflation method, it is important to control the Mw/Mn (Il weight average molecular weight/number average molecular weight) ratio, which indicates the molecular weight distribution of the raw vinylidene fluoride polymer. That is, according to the present invention, the raw material vinylidene fluoride polymer is a vinylidene fluoride polymer (hereinafter referred to as "highly dispersed polymer") having a Mw/Mn ratio in the range of 10 to 2o, preferably in the range of 12 to 16.
) is used alone, or a polymer containing such a polymer in an amount of 30% or more and M w / M
70% by weight of vinylidene fluoride polymer with an n ratio of less than 10 (hereinafter sometimes referred to as "low dispersion polymer")
Mixtures with:

M w / M n比は、7.8mmφx30cm混合
ゲルカラム(東ソー(株)製TSK  geILGMH
XL)2本および7.5mmφ×7.5cmのガードカ
ラム(同TSK  guardcolumn  Ha)
を用い、示差屈折計(東ソー(株)製Rl−8012型
)を検出器とするGPC(ゲル・パーよエイションカラ
ムクロマトグラフィー)測定による分子量分布カーブか
ら求めることができる.測定は、DMF (N.N’−
ジメチルホルムアミド)溶媒中の0.2重量%試料ポリ
マー溶液を用い、温度40℃、流速0.8mj2/分、
注入量0.5mILの条件で行うことができる. 上記した弗化ビニリデン系ポリマーにおいて、M W 
/ M n比を10〜20の範囲に規制することは、冷
延伸に先立つ溶融押出からインフレーションによる原反
チューブの製造工程において、弗化ビニリデン系ポリマ
ーの高結晶性を分子鎖の絡み合いによって規制する効果
をもたらす。その結果結晶化度がおさえられ、同時に結
晶配向性もおさえられる事によって、次の冷延伸工程(
すなわち、ポリマーの結晶溶解温度(例えばMetll
er3000 Systaa+ DSCにて10℃/分
の昇温速度の下で測定される吸熱カーブにおいてピーク
またはショルダーを与える温度)以下の温度、即ち吸熱
反応を起さない状態の延伸工程)において、大きな変形
エネルギーを有せず延伸が行なわれるため、フィルムの
破断は回避される. 他方、M w / M n比が10未満の低分散ポリマ
ーのみを用いると、分子娘のカラ主合いの減少にともな
って、分子鎖単独での結晶化、すなわち分子内結晶化が
進む様になり、結晶サイズの増大、結晶化の増加、結晶
配向の強化等によって、続く冷延伸時には延伸困難な状
況を呈する様になる.またM W / M nが20を
超える弗化ビニリデン系ポリマーは上記インヒアレント
ビスコシティの範囲内にあっては高分子量成分が溶融流
れの大きな抵抗となり、ほぼ押出し成形は不可能となる
ので好ましくない。
The M w / M n ratio was determined using a 7.8 mmφ x 30 cm mixed gel column (TSK geILGMH manufactured by Tosoh Corporation).
XL) 2 pieces and 7.5mmφ x 7.5cm guard column (TSK guardcolumn Ha)
It can be determined from the molecular weight distribution curve measured by GPC (gel perfusion column chromatography) using a differential refractometer (Model Rl-8012 manufactured by Tosoh Corporation) as a detector. The measurement was carried out using DMF (N.N'-
Using a 0.2% by weight sample polymer solution in (dimethylformamide) solvent, temperature 40°C, flow rate 0.8 mj2/min,
It can be performed with an injection volume of 0.5 mIL. In the above vinylidene fluoride polymer, M W
/Mn ratio in the range of 10 to 20 is to control the high crystallinity of the vinylidene fluoride polymer by the entanglement of molecular chains in the manufacturing process of the raw tube from melt extrusion to inflation prior to cold stretching. bring about an effect. As a result, the degree of crystallinity is suppressed, and the crystal orientation is also suppressed at the same time, allowing the next cold drawing process (
That is, the crystalline melting temperature of the polymer (e.g. Metll
er3000 Systaa+ At a temperature below the temperature that gives a peak or shoulder in the endothermic curve measured at a heating rate of 10°C/min with DSC (in other words, in a stretching process in which no endothermic reaction occurs), large deformation energy is generated. Since the film is stretched without the need for film breakage, film breakage is avoided. On the other hand, if only a low-dispersion polymer with a Mw/Mn ratio of less than 10 is used, the crystallization of the molecular chain alone, that is, intramolecular crystallization, will proceed as the molecular weight decreases. Due to the increase in crystal size, increased crystallization, and strengthened crystal orientation, it becomes difficult to stretch during subsequent cold stretching. In addition, vinylidene fluoride polymers with M W / M n exceeding 20 are not preferable because the high molecular weight components create a large resistance to melt flow within the above range of inherent viscosity, making extrusion almost impossible. .

一方、本来結晶性ポリマーが安定的になろうとする姿、
すなわち結晶ラメラの形態を阻止すべく、上述の様な高
分散ポリマーの使用により不安定な形態を強制的に創り
出した場合、得られる物性は特に熱的にも機械的にも弱
いもの、すなわちその不自然な状態から絶えず本来の姿
に戻ろうとする分子間力のために、大きな変化を示すの
が普通である.従って冷延伸後のフィルムに安定的な結
晶を設ける上で必要とあれば、上記ポリマーにM w 
/ M nが10以下である低分散ポリマー(インヒヤ
レントビスコシティは、同様に0.8〜1.6dIL/
gの範囲が好ましい)を70重量%内でブレンドしても
さしつかえない.ただしブレンド比が70重量%より多
くなると高結晶性となり、再び安定な冷延伸が困難にな
る.好ましい低分散ポリマーの含有量は、50重量%以
下である. 次に、上記したような弗化ビニリデン系ポリマー(以下
、特に記載しない限り高分散ポリマー単独および低分散
ポリマーとの混合系を包含する趣旨で用いる)を用いて
行う本発明方法を、その好ましい装置の一例の模式図で
ある第1図を参照しつつ説明する。
On the other hand, the state in which crystalline polymers originally try to become stable,
In other words, when an unstable morphology is forcibly created by using a highly dispersed polymer as described above in order to prevent the crystalline lamellar morphology, the resulting physical properties are those that are particularly weak both thermally and mechanically. They usually exhibit large changes due to intermolecular forces that constantly try to return to their original state from an unnatural state. Therefore, if necessary to provide stable crystals in the film after cold stretching, M w
/Mn is 10 or less (inherent viscosity is similarly 0.8 to 1.6 dIL/
(preferably in the range of g) may be blended within 70% by weight. However, if the blend ratio exceeds 70% by weight, it becomes highly crystalline and stable cold stretching becomes difficult again. The content of the low dispersion polymer is preferably 50% by weight or less. Next, the method of the present invention using the vinylidene fluoride polymer as described above (hereinafter, unless otherwise specified, the term is used to include a high dispersion polymer alone and a mixed system with a low dispersion polymer) is carried out using a preferred apparatus. This will be explained with reference to FIG. 1, which is a schematic diagram of an example.

(A)溶融押出工程 上記弗化ビニリデン系ポリマーを、押出機1において、
その分解温度以下(一般には300t:以下)の温度で
可塑化し、環状ダイ2を通して、溶融押出し、厚肉の溶
融パリソン5aを形成する. (B)一次原反チューブ形成工程 押出サれた厚内溶融パリソン5aに、エアー・リング3
から冷却エアーを吹き付けつつバブルサポート4に送り
、ここからチューブ状にブローして中肉のバブル5bを
形成し、冷却エアーで結晶化させつつ、このバブル状原
反チューブ5bを、一対のニツプロール6で引き取る. この際、ブロー比(チューブ最終径/ダイ口径)が3倍
以下、特に2.5倍以下で且つドローダウン比(チュー
ブ引取速度/ダイ出口速度)が100以下、更に60以
下、特に40以下、の条件が採用されることが好ましい
(A) Melt extrusion process The above vinylidene fluoride polymer is heated in an extruder 1,
It is plasticized at a temperature below its decomposition temperature (generally below 300 t) and is melt-extruded through an annular die 2 to form a thick-walled molten parison 5a. (B) Primary fabric tube forming process Air ring 3 is attached to the extruded thick inner melted parison 5a.
Cooling air is blown from the air to the bubble support 4, from where it is blown into a tube shape to form medium-sized bubbles 5b, and while being crystallized by the cooling air, this bubble-shaped raw fabric tube 5b is transferred to a pair of nip rolls 6. Pick it up. At this time, the blow ratio (tube final diameter/die diameter) is 3 times or less, especially 2.5 times or less, and the drawdown ratio (tube withdrawal speed/die exit speed) is 100 or less, further 60 or less, especially 40 or less, It is preferable that the following conditions are adopted.

この原反チェーブ形成工程において、特にそのバブルサ
ポート4近傍においては、第2図に示すようC%膨張開
始(1)後、バブル(チューブ)5bには、絶えず三軸
方向、すなわちチューブ流れ方向(MD(または縦)方
向)、チューブ周方向(TD(横)方向)およびチュー
ブ厚み方向(HD方向)で速度を変化しながら(第2図
の( I1 )、(m)にそれぞれ点(2)および(3
)における各方向速度ベクトルを示す)、外部エアリン
グ3からの冷却エアーで固化され、第2図(3)の位置
でその変化率は零となる.すなわち、このポイントが結
晶化ラインとみなせる.本発明の原反チューブ形戒工程
においては、このチューブ引取(MD)方向の速度の変
化率(歪速度)が、膨張開始後、最大歪速度に達するま
での過程で一旦減少(M和)を起すことが好ましく、一
つの特徴となっている(例えば第4図参照)。
In this raw fabric tube forming process, especially in the vicinity of the bubble support 4, after the start of C% expansion (1) as shown in FIG. While changing the speed in the tube circumferential direction (TD (horizontal) direction) and tube thickness direction (HD direction) (point (2) at (I1) and (m) in Figure 2), and (3
) is solidified by the cooling air from the external air ring 3, and its rate of change becomes zero at the position shown in Figure 2 (3). In other words, this point can be considered the crystallization line. In the raw tube forming process of the present invention, the rate of change (strain rate) in the tube withdrawal (MD) direction once decreases (M sum) in the process from the start of expansion until reaching the maximum strain rate. It is preferable that this occurs, and it is one of its characteristics (see, for example, Figure 4).

このようなMD方向での歪速度の緩和を起すためには、
上記した原料ポリマーの選定ならびにブロー比およびド
ローダウン比の設定が重要に肥響しているものと解され
る.より詳しくはMD方向歪速度の緩和現象は、本発明
で使用する原料ポリマーの溶融弾性と密接に関係し、原
料ポリマー中の豊富な分子鎖のカラミ合いによって必要
な溶融弾性が達成されるものと考えられる。この過程で
の歪速度の緩和は、一度配向した分子鎖を緩和させるこ
とにもつながり、続く冷延伸工程での延伸の容易化にも
寄与しているものと考えられる.事実、上記のようにし
て得られた原反チューブの広角X線写真(例えば′s5
図)は、デパイ環状散乱を示し、ほぼランダムな徴結晶
の集合体であって、結晶配同性に乏しいことを示してい
る。
In order to cause such relaxation of strain rate in the MD direction,
It is understood that the selection of the raw material polymer and the settings of the blow ratio and drawdown ratio mentioned above have important effects. More specifically, the relaxation phenomenon of the strain rate in the MD direction is closely related to the melt elasticity of the raw material polymer used in the present invention, and the necessary melt elasticity is achieved by the combination of abundant molecular chains in the raw material polymer. Conceivable. It is thought that the relaxation of the strain rate during this process also leads to the relaxation of the molecular chains that have been oriented once, and also contributes to the ease of stretching in the subsequent cold stretching process. In fact, a wide-angle X-ray photograph of the original tube obtained as described above (e.g. 's5
Figure) shows Depay annular scattering and is an almost random collection of characteristic crystals, indicating poor crystal conformity.

また、ブロー比が3倍を超える場合は、基本的にバブル
め安定性に欠け、均一な一次原反チューブが形成しえな
い.ドローダウン比が100を超える場合はチューブの
破断を生ずる。又同じくドローダウン比が60を超える
と歪速度の緩和が微少となる. 更に、本発明の好ましい一つの態様である粗面化フィル
ムを得るためには、ブロー 比(横径方向)およびドロ
ーダウン比(縦引取方向)を、円形ダイス2周辺の拡大
図である第3図(a)に示すように、中合(芯型)2a
および外側リング2bからなる円形ダイス2の、該中金
2aの出口円周先端に、押出された溶融パリソンが適度
に接触するように選択する.すなわち、出口円周先端部
ではダイスの空間が溶融ポリマーで完全には充填されて
おらず出口先端では空間が出来、中合2aの外面にわず
かに接触する状態で運転する.より具体的には、溶融パ
リソン5aのしぼみ角(ネックイン角度)θが、第3図
(a)に示すように01〜100 より好ましくは4〜
9°の範囲となるように選択する.溶融パリソン5aと
中合2aが絶えず非接触となり、θが負となるような第
3図(b)の状R(通常インフレーション法における普
通の状7!I)では粗面化効果が得られず、また溶融パ
リソン5aと中合2aとが常時接触し、θが過大な第3
図(c)の状態では、良好な原反チューブは得られない
. このような溶融パリソン5aのしぼみ角θが0〜10゜
の条件下で、エアリング3から吹きつけられるエアーの
出口開度および風量によって任意に制御しつる冷却風の
微細風圧変動とポリマーの大きな溶融弾性とによって該
チューブ5bの結晶化ラインが上下動する.この結果チ
ューブ5b内圧及び膨張前パリソン5a径がわずかなが
ら変動するため、チューブ内、外面の固化の度合が異な
りドラフト張力にも周期性が発生し、パリソン内側に環
状の縞模様を発生する.このパリソン5aの内側、従っ
て、チューブ5bの内側に生じた環状の縞模様が、引き
続く冷延伸工程あるいはアニーリング工程後も微細凹凸
として維持されて、最・終的に粗面化した弗化ビニリデ
ン系ポリマーフィルムが得られる.この粗面化フィルム
を得るためには、高分散ポリマーが70ii量%以上で
ある弗化ビニリデン系ポリマーを用いることが特に好ま
しい。
Furthermore, if the blowing ratio exceeds 3 times, bubble stability is basically lacking and a uniform primary fabric tube cannot be formed. If the drawdown ratio exceeds 100, tube breakage will occur. Similarly, when the drawdown ratio exceeds 60, the relaxation of strain rate becomes slight. Furthermore, in order to obtain a roughened film, which is a preferred embodiment of the present invention, the blow ratio (lateral radial direction) and drawdown ratio (vertical take-up direction) are adjusted according to the third As shown in figure (a), the middle part (core type) 2a
The extruded molten parison is selected so that the extruded molten parison appropriately contacts the circumferential tip of the exit circumference of the inner ring 2a of the circular die 2 consisting of the inner ring 2a and the outer ring 2b. That is, the space in the die is not completely filled with molten polymer at the circumferential tip of the outlet, but a space is created at the tip of the outlet, and the die is operated in a state in which it slightly contacts the outer surface of the intermediate 2a. More specifically, the constriction angle (neck-in angle) θ of the molten parison 5a is 01 to 100, more preferably 4 to 100, as shown in FIG. 3(a).
Select a range of 9°. The surface roughening effect cannot be obtained in the shape R of FIG. 3(b) (ordinary shape 7!I in the normal inflation method) in which the molten parison 5a and the intermediate 2a are constantly out of contact and θ is negative. , and a third case in which the molten parison 5a and the intermediate 2a are in constant contact and θ is excessively large.
In the state shown in Figure (c), a good raw material tube cannot be obtained. Under such a condition that the constriction angle θ of the molten parison 5a is 0 to 10 degrees, fine wind pressure fluctuations of the cooling air and large fluctuations of the polymer, which can be arbitrarily controlled by the outlet opening and air volume of the air blown from the air ring 3, occur. The crystallization line of the tube 5b moves up and down due to the melt elasticity. As a result, the internal pressure of the tube 5b and the diameter of the parison 5a before inflation vary slightly, so the degree of solidification on the inside and outside of the tube differs, and periodicity occurs in the draft tension, causing an annular striped pattern on the inside of the parison. The annular striped pattern generated on the inside of the parison 5a, and thus on the inside of the tube 5b, is maintained as fine irregularities even after the subsequent cold drawing process or annealing process, and the vinylidene fluoride surface is finally roughened. A polymer film is obtained. In order to obtain this roughened film, it is particularly preferable to use a vinylidene fluoride-based polymer containing a highly dispersed polymer of 70ii% or more.

また、弗化ビニリデン系ポリマーの結晶性を抑えて、イ
ンフレーション法による冷延伸フィルムを得る事、とく
に、上記したパリソン内側への環状Mm様の付与のため
には、溶融パリソン5aが強い弾性体であることが必要
である。このような条件を与えるために弗化ビニリデン
系ポリマーとしては、長さ15mm、径4mmのノズル
を備えたキャビラリー・レオメータ(例えば東洋精機(
株)製キャビログラフ)により剪断速度が20sec−
’で、見掛け溶融粘度が2X10’ポイズとなる温度(
上記した範囲のインヒヤレントビスコシティを有する弗
化ビニリデン系ポリマーについては、通常240〜27
0℃)での溶融ストランドにかかる力(溶融張力)が3
00〜800g/ c m ’  より好ましくは40
0〜700g/cm2 特に好ましくは500〜a o
 O g/cm”となるものが用いられる.このように
、絶対的な温度というよりは、使用した弗化ビニリデン
系ポリマー毎の樹脂可盟化温度での溶融張力を制御する
ことが本発明のインフレーション法の特徴の一つである
.ここで言う溶融張力とは、上記のキャピラリーレオメ
ーターを用いてノズルから下向に押出された溶融したス
トランドを室温20〜25℃、湿度50〜60%、無風
化の状態で引取った際の張力であり、用いられたストラ
ンドノズルの単位断面積当りの張力の値である。
In addition, in order to suppress the crystallinity of the vinylidene fluoride polymer and obtain a cold-stretched film by the inflation method, and in particular to impart the above-mentioned annular Mm shape to the inside of the parison, it is necessary to make the molten parison 5a a strong elastic body. It is necessary that there be. In order to provide such conditions, vinylidene fluoride polymers are used using a cavillary rheometer (for example, Toyo Seiki Co., Ltd.) equipped with a nozzle of 15 mm in length and 4 mm in diameter.
The shear rate was 20 sec-
', the temperature at which the apparent melt viscosity becomes 2X10' poise (
Vinylidene fluoride polymers having an inherent viscocity within the above range are usually 240 to 27
The force (melt tension) on the molten strand at 0℃) is 3
00-800g/cm', more preferably 40
0 to 700 g/cm2, particularly preferably 500 to ao
0 g/cm" is used. In this way, rather than the absolute temperature, the present invention focuses on controlling the melt tension at the resin mobilization temperature for each vinylidene fluoride polymer used. This is one of the characteristics of the inflation method.The melt tension referred to here refers to the molten strand extruded downward from the nozzle using the above-mentioned capillary rheometer at a room temperature of 20 to 25°C and a humidity of 50 to 60%. This is the tension when taken in an unweathered state, and is the value of tension per unit cross-sectional area of the strand nozzle used.

もし溶融張力が上記数値より低い弗化ビニリデン系ポリ
マーを用いると、上記工程(B)においてバブル(チュ
ーブ状フィルム)の形成が不安定になり、続く再冷延伸
時に良好なバブルを形成せず、フィルム強度不足あるい
は厚み斑が出来、実用に耐えないフィルムとなる。また
、最悪の場合、バブルの破裂さえも生じる。また、溶融
張力が8 0 0 K g / c m ’より高い場
合は、溶融樹脂の曳糸性が不足し溶融時延伸がすみやか
に行なわれないため、安定した原反製膜が不可能となる
. このような溶融張力条件を達成するため、原料弗化ビニ
リデン系ポリマーとして、M W / M nが10〜
20の範囲にある高分散ポリマーを30重量%以上、好
ましくは50Jli量%以上、さらに好ましくは70重
量%以上、特に85重量%以上含むものが用いられる.
概ね高分散ポリマーが70重量%以下になると弾性が不
足し、周期的な縞模様の発生は得られなくなり、M w
 / M nが10〜20の範囲の高分散ポリマーが3
0〜70重量%の場合には表面が平滑なバブルが得られ
る。
If a vinylidene fluoride-based polymer with a melt tension lower than the above value is used, the formation of bubbles (tubular film) in the above step (B) will become unstable, and good bubbles will not be formed during the subsequent re-cooling stretching. This results in insufficient film strength or uneven thickness, resulting in a film that cannot be used for practical purposes. In the worst case scenario, the bubble may even burst. In addition, if the melt tension is higher than 800 Kg/cm', the stringiness of the molten resin is insufficient and stretching during melting cannot be carried out promptly, making stable film formation of the original fabric impossible. .. In order to achieve such melt tension conditions, as the raw material vinylidene fluoride polymer, M w / M n is 10 to 10.
The amount of highly dispersed polymer in the range of 20% by weight or more is 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more, especially 85% by weight or more.
When the content of the highly dispersed polymer is less than 70% by weight, the elasticity is insufficient and periodic striped patterns cannot be produced, resulting in M w
/Mn is 3 highly dispersed polymers in the range of 10 to 20
When the content is 0 to 70% by weight, bubbles with smooth surfaces can be obtained.

(c)冷延伸工程 次いで、一対のニップロール6に引取られた中肉チュー
ブ状フィルム5bは、更に熱風ヒーター8よりの熱風の
供給のもとに結晶融解温度以下の温度で、再度空気を供
給することによりバブル5Cを膨張させ、同時に引取り
方向にも送りニップロール1と引取りニップロール9の
周速比を制御して延伸を縦、横同時に行い、薄肉チュー
ブ状フィルム5cとしてニップロール9で引き取る。こ
こでの縦横の延伸比は、いずれも1.5倍以上で行なう
。延伸比が1.5倍未満になると、延伸むらができるこ
とがあるので好ましくない.(D)熱緩和処理工程 こうして得られた薄肉チューブ状フィルム5Cに、再度
、熱風ヒータ10、ニップロール!1、12の作用によ
って前記(C)工程での延伸温度以下の温度で)1!I
和熱処理を施したのち、製品フィルム5dは、巻取ロー
ル13に巻取られる.もちろん、例えば熱収縮性フィル
ム等の使用用途によっては、緩和熱処理を施さずに巻取
ロール13へ巻取ることもできる, (E)後処理工程 ロール13に巻取られた製品フイルムは、必要に応じて
両端をスリットしながらボビン(図示せず)に巻取られ
る. 上記したように、本発明においては、弗化ビニリデン系
ポリマーのみを原料として好適な二軸延伸フィルムが製
造されるが、インフレーション法に影響しない範囲内で
、必要に応じて無機、有機の化合物を混合する事も許容
される. [実施例] 大@  1−1 インヒヤレントビスコシティが1.0でMw/Mnが1
6、径4mmノズルを備えたキャピログラフで270℃
における溶融張力が550g/cm”の値を示した弗化
ビニリデンホモポリマー(商品名:カイナー#460,
ペンウォルト社製、結晶融点=168℃)を270℃に
加熱された直径50mmφ、リップクリアランス1.0
mmの環状ダイを通してチューブ状に溶融押出(200
g/分)を行い、しぼみ角6゜になるように引取り、ブ
ロー比2.0、ドローダウン比22の条件でインフレー
ション成形を行い最終厚20μmの原反チューブ状フィ
ルム(第1図5b相当)を得た. 原反チューブ成形工程(前記工程(B))における歪速
度は、第4図に示すようにチューブ(バブル)の膨張開
始後、一旦大きな緩和を示した.(なお、歪速度の測定
は[ (SENI GAκκAISHI.I/ol.4
1 P74.No.1 (1985) ] 3藤等の方
法にしたがって次のように行った.すなわち、成形中の
バブルに油性細ペンでマーキングし、これをバブル全体
像と共に8 m / mビデオにとらえ、1/30秒コ
マ送りでバブル流れ方向移動速度と共にバブル径を測定
して歪速度を算出した。) この原反フィルムの広角X線散乱写真は第5図に示す通
りであり、−環状散乱を示し、結晶配同性に乏しいもの
であった. 次いで、上記原反フィルムは、再度エアーを吹き込み横
延伸倍率(延伸バブル径/原反バブル径)2.7倍、縦
延伸倍率1.7倍、延伸温度145℃にて、13m/分
の巻取り速度で容易に二軸冷延伸が可能であった.引続
き135℃熱風下で緩和処理を行い、12.9m/分の
巻取り速度で厚さ5、4μmの二軸延伸フィルムを得た
(c) Cold stretching process Next, the medium-thickness tubular film 5b taken up by a pair of nip rolls 6 is further supplied with hot air from a hot air heater 8 at a temperature below the crystal melting temperature, and air is again supplied thereto. By doing so, the bubble 5C is expanded, and at the same time, the circumferential speed ratio of the feed nip roll 1 and the take-up nip roll 9 is controlled in the take-off direction to simultaneously perform longitudinal and lateral stretching, and the thin-walled tubular film 5c is taken off by the nip roll 9. The stretching ratio in the longitudinal and lateral directions is 1.5 times or more. If the stretching ratio is less than 1.5 times, it is not preferable because it may cause uneven stretching. (D) Thermal relaxation treatment process The thin tubular film 5C obtained in this way is again heated with a hot air heater 10 and a nip roll! 1 and 12) at a temperature lower than the stretching temperature in step (C) above) 1! I
After the heat treatment, the product film 5d is wound onto a winding roll 13. Of course, depending on the intended use of the heat-shrinkable film, for example, it may be possible to wind it onto the take-up roll 13 without applying the relaxing heat treatment. (E) Post-processing process The product film wound onto the roll 13 may be It is wound onto a bobbin (not shown) while slitting both ends accordingly. As mentioned above, in the present invention, a suitable biaxially oriented film is produced using only vinylidene fluoride polymer as a raw material, but inorganic and organic compounds may be added as necessary to the extent that they do not affect the inflation method. Mixing is also allowed. [Example] Large @ 1-1 Inherent viscocity is 1.0 and Mw/Mn is 1
6. 270℃ using a capillograph equipped with a 4mm diameter nozzle.
Vinylidene fluoride homopolymer (trade name: Kynar #460,
Made by Pennwalt, heated to 270°C (crystal melting point = 168°C), diameter 50mmφ, lip clearance 1.0
Melt extrusion into a tube through an annular die of 200 mm
g/min), then taken off with a constriction angle of 6°, and inflation molded under the conditions of a blow ratio of 2.0 and a drawdown ratio of 22 to form a raw tubular film with a final thickness of 20 μm (corresponding to Fig. ) was obtained. As shown in FIG. 4, the strain rate in the raw tube forming process (step (B) above) once showed a large relaxation after the tube (bubble) started expanding. (In addition, the measurement of strain rate is [ (SENI GAκκAISHI.I/ol.4
1 P74. No. 1 (1985)] The following procedure was performed according to the method of Fuji et al. That is, we marked the bubble during molding with a fine oil pen, captured the entire bubble image on an 8 m/m video, and measured the bubble diameter as well as the bubble flow direction speed at 1/30 second frame rate to calculate the strain rate. Calculated. ) A wide-angle X-ray scattering photograph of this original film is shown in Figure 5, and it showed -circular scattering and poor crystal conformation. Next, the raw film was rolled at 13 m/min by blowing air again at a transverse stretching ratio (stretching bubble diameter/raw fabric bubble diameter) of 2.7 times, a longitudinal stretching ratio of 1.7 times, and a stretching temperature of 145°C. Biaxial cold stretching was easily possible at the drawing speed. Subsequently, a relaxation treatment was performed under hot air at 135° C., and a biaxially stretched film with a thickness of 5.4 μm was obtained at a winding speed of 12.9 m/min.

得られたフィルムは、後記表2に示すように優れた厚み
均一性および破断強度を示した。またこのフィルムは、
第6図(日本ポラロイド社製MH32X0.30偏光板
を使用して得た偏光写真)に示すように、3mm間隔で
深さ0.2〜0.  4μmの連続して形成された溝模
様を呈していた.原料組成の差による物性値の変化を以
下の実施例、比較例とともにまとめて後記表−1に示す
. 虫1コ生1 インヒヤレントビスコシティが1.0でMw/Mnが2
であり、なお且つ溶融張力が220g/cm2の弗化ビ
ニリデンホモポリマーを用いて溶融押出し、実施例1の
場合と同様の条件で延伸前原反フィルムを作威した.こ
の時の成形時歪速度は第7図に示すようにチューブ膨張
開始点の直後で、緩和を示さなかった.また、原反フィ
ルムは、第8図(広角X線散乱写真)に示すように結晶
配向が進み、散乱強度も大きかった.その結果、続く冷
延伸時においては、実施例1と同じ条件ならびに各種条
件を変更しても、フィルムの破断を呈するのみで、延伸
は実質上不可能であった. 太』L鮭ユニニュ 実施例1−1で使用した弗化ビニリデンポリマーと比較
例1で使用した弗化ビニリデンポリマーを重量分率で夫
々7 0/3 0に調合ブレンドした。(溶融張力は4
 6 0 g / c m ”であった。)実施例1−
1と同様に溶融押出を行い、厚さ20μmの原反フィル
ムを得た.引き続き、実施例l−1と同様な条件で、二
軸冷延伸及び熱緩和処理を行い、厚さ5.4μmの溝模
様を持った粗面化フィルムを得た. 五1二』− 実施例1−1で使用した弗化ビニリデンポリマーと比較
例1で使用した弗化ビニリデンポリマーの重量分率を夫
々3 0/7 0とした以外は実施例1−2と同様に行
い、厚さ5.4μmの二軸冷延伸フィルムを得たが、両
面共平滑で7111模様は観察されなかった. 坦』0生1 実施例1−1で使用した弗化ビニリデンポリマーと、比
較例lで使用した弗化ビニリデンポリマーを、重量分率
で夫々20/80(%)に調合ブレンドし、実施例1−
1と同じ装置により、260℃、t50g/分の条件で
溶融押出しを行ない、ブロー比2.01 ドローダウン
比22の条件で厚み20μmの原反チューブを作成し、
引続き、冷延伸を試みたが、フイルムの破断が多発し、
安定した延伸製膜は不可能であった。
The obtained film exhibited excellent thickness uniformity and breaking strength as shown in Table 2 below. Also, this film
As shown in Figure 6 (a polarized photograph taken using a MH32 It exhibited a continuous groove pattern of 4 μm. Changes in physical properties due to differences in raw material composition are summarized in Table 1 below, along with the following Examples and Comparative Examples. 1 insect, 1 raw, Inherent viscocity is 1.0, Mw/Mn is 2
A vinylidene fluoride homopolymer having a melt tension of 220 g/cm2 was melt-extruded under the same conditions as in Example 1 to produce an unstretched raw film. As shown in Figure 7, the strain rate during molding at this time was immediately after the tube expansion start point and did not show any relaxation. In addition, as shown in Figure 8 (wide-angle X-ray scattering photograph), the original film had advanced crystal orientation and a large scattering intensity. As a result, during the subsequent cold stretching, even if the same conditions as in Example 1 and various conditions were changed, the film only broke, and stretching was virtually impossible. The vinylidene fluoride polymer used in Example 1-1 and the vinylidene fluoride polymer used in Comparative Example 1 were blended at a weight fraction of 70/30, respectively. (The melt tension is 4
60 g/cm”) Example 1-
Melt extrusion was performed in the same manner as in 1 to obtain a raw film with a thickness of 20 μm. Subsequently, biaxial cold stretching and thermal relaxation treatment were performed under the same conditions as in Example 1-1 to obtain a roughened film with a groove pattern having a thickness of 5.4 μm. - Same as Example 1-2 except that the weight fractions of the vinylidene fluoride polymer used in Example 1-1 and the vinylidene fluoride polymer used in Comparative Example 1 were 30/70, respectively. A biaxial cold-stretched film with a thickness of 5.4 μm was obtained, but both sides were smooth and no 7111 pattern was observed. Example 1 The vinylidene fluoride polymer used in Example 1-1 and the vinylidene fluoride polymer used in Comparative Example 1 were blended at a weight fraction of 20/80 (%), respectively. −
Using the same equipment as in 1, melt extrusion was performed at 260 ° C. and t50 g/min to create a 20 μm thick raw tube under the conditions of blow ratio 2.01 and drawdown ratio 22.
Subsequently, cold stretching was attempted, but the film frequently broke.
Stable stretching film formation was not possible.

上記実施例1−1〜1−3および比較例1、2の原料組
成の差異による結果、フイルム物性の差異をまとめて、
以下の表−1に示す. 上記表1の結果を見ると、安定したフィルム化の不可能
であった比較例1、2を除く、実施例l一1〜1−3で
得られたフィルムにおいては、表面が粗面化される度合
が大きい程ハンドリング性は向上しており,低分散ポリ
マーが増加すると粗面化され難しくなってはくるが機械
的物性はよくなる傾向にある.熱緩和処理中では実施例
1−1〜1−3の間で多少の差は認められたが、緩和処
理後、100℃、5分加熱後の寸法安定性で比較すると
全て1%以下で差は認められなかった.え扱亘ユ 実施例1−1で使用した弗化ビニリデンポリマーと比較
例1で使用した弗化ビニリデンポリマーを重量分率で夫
々30/To(%)に調合ブレンドし、溶融張力が35
0g/cm’の混合物を得た.これを実施例!−1と同
じ装置により、260℃、150g/分の条件で溶融押
出しを行い、ブロー比2.0、ドローダウン比68の条
件で厚さ6.5μmの原反フィルムを得た。
Summarizing the differences in film physical properties as a result of the differences in raw material composition of Examples 1-1 to 1-3 and Comparative Examples 1 and 2,
It is shown in Table 1 below. Looking at the results in Table 1 above, the films obtained in Examples 1-1 to 1-3, excluding Comparative Examples 1 and 2 in which it was impossible to form stable films, had roughened surfaces. The greater the degree of dispersion, the better the handling properties are, and as the amount of low-dispersion polymer increases, the surface becomes rougher and becomes more difficult, but the mechanical properties tend to improve. During the thermal relaxation treatment, some differences were observed between Examples 1-1 to 1-3, but when comparing the dimensional stability after heating at 100°C for 5 minutes after the relaxation treatment, all differences were less than 1%. was not recognized. The vinylidene fluoride polymer used in Example 1-1 and the vinylidene fluoride polymer used in Comparative Example 1 were blended at a weight fraction of 30/To (%), and the melt tension was 35.
A mixture of 0g/cm' was obtained. This is an example! Melt extrusion was performed using the same equipment as in -1 at 260° C. and 150 g/min to obtain a raw film with a thickness of 6.5 μm at a blow ratio of 2.0 and a drawdown ratio of 68.

このとき、戒形時引取方向歪速度は、第9図に示すよう
に膨張開始後、比較的小さいが明瞭な緩和を示した.ま
た、この原反フィルムは、第10図(広角X線敗写真)
に示すように結晶配向性の乏しいものもあった. その結果、実施例1−1と同様に延伸温度160℃、延
伸倍率縦方向1.5倍、横方向3.1倍、巻取り速度2
0m/分の条件下での引き続く冷延伸工程では、容易に
二軸冷延伸が達成された. 引き続き、120′cpIAffl下で緩和処理を行い
、厚さ1.6μmの二軸延伸フィルムを得た.得られた
フィルムの厚み均一性、および破断強伸度データを実施
例1−1および1−3の結果とともに、以下の表−2に
示す.強伸度データにおいては、実施例1−1のフィル
ムよりも優れた結果が得られていることがわかる。但し
、第11図(偏光写真)に示すように、実施例1−1の
フィルムに見られたような規則的な溝は形成ざれなかっ
た. 表−2 x1:厚み測定は171000mm針状ダイヤルゲージ
でフィルム10枚重ねとして10mm間隔に32個測定
し、10で除した値を用いた. x2:破断強伸度は試長/試巾=100/20 (mm
)で、引張速度300mm/分条件下での25℃雰囲気
中での値である.莱10生1 ポリ弗化ビニリデン(商品名:カイナー#4601ペン
ウォルト社製:インヒヤレントビスコシティ: 1.O
dl/g,Mw/Mn−1 6、ストランド溶融張力:
550g/cm”  結晶融点168℃)を、270℃
に加熱された直径50mmφ、リップクリアランス1.
0mmの環状ダイから溶融状態でチューブ状に押出し、
ダイ孔を通して外部からチューブ内部に空気を導入して
バブルを形威した. この時押出量は200g/分とし、得られるフィルム厚
みがそれぞれ約20μmとなる様にブロー比及び引取速
度(ドローダウン比)を下表3のように変えて、冷延伸
前の原反フィルム(第1図5b相当)を得た. 表3 各条件で得られた原反フィルムのチューブ引取方向にお
ける厚さ分布を第12図(a)(b)、(C)に示す.
(なお厚さ分布は、小野測器(株)製静電容量型連続厚
み計CL−230により、フィルム送り速度10m/分
、測定感度AV=0.3の条件で得たものである.)そ
の結果、第12図(b)に示す通り、例3−2の条件に
おいて顕著な周期性のある溝が認められた. 次に例3−2の原反フィルムに再度エアーを吹き込み、
横延伸倍率(延伸バブル径/原反バブル径)2.7倍、
縦延伸倍率1.7倍、延伸温度145℃にて13.0m
/分の巻取り速度で二軸延伸を施した.引続き135℃
熱風下で緩和処理を12.9m/分の巻取り速度で行な
った.得られたフィルム(第1図、13巻取り状態相当
)について第12図と同様な条件で測定した引取方向厚
さ分布を第13図に、また日本ポラロイド社製HM32
X0.30{li光板を使用して得た偏光写真(xt/
3)を第14図に示す。
At this time, as shown in Figure 9, the strain rate in the take-off direction at the time of formation showed a relatively small but clear relaxation after the start of expansion. In addition, this original film is shown in Figure 10 (wide-angle X-ray photograph).
As shown in Figure 2, some had poor crystal orientation. As a result, as in Example 1-1, the stretching temperature was 160°C, the stretching ratio was 1.5 times in the longitudinal direction, 3.1 times in the transverse direction, and the winding speed was 2.
In the subsequent cold stretching step under the condition of 0 m/min, biaxial cold stretching was easily achieved. Subsequently, a relaxation treatment was performed under 120' cpIAffl to obtain a biaxially stretched film with a thickness of 1.6 μm. The thickness uniformity and breaking strength/elongation data of the obtained film are shown in Table 2 below, along with the results of Examples 1-1 and 1-3. It can be seen that in terms of strength and elongation data, superior results were obtained compared to the film of Example 1-1. However, as shown in FIG. 11 (polarized light photograph), regular grooves as seen in the film of Example 1-1 were not formed. Table 2 x1: Thickness was measured using a 171,000 mm needle dial gauge, with 10 films stacked, and 32 pieces measured at 10 mm intervals, and the value divided by 10 was used. x2: Breaking strength and elongation are sample length/trial width = 100/20 (mm
) in an atmosphere of 25°C at a tensile speed of 300 mm/min. Lai 10 Raw 1 Polyvinylidene fluoride (Product name: Kynar #4601 manufactured by Pennwalt Co., Ltd.: Inherent Viscocity: 1.O
dl/g, Mw/Mn-1 6, Strand melt tension:
550g/cm" crystal melting point 168℃), 270℃
Heated to diameter 50mmφ, lip clearance 1.
Extruded into a tube shape from a 0 mm annular die in a molten state,
Air was introduced into the tube from the outside through the die hole to form a bubble. At this time, the extrusion rate was 200 g/min, and the blow ratio and take-up speed (drawdown ratio) were changed as shown in Table 3 below so that the obtained film thickness was approximately 20 μm. (corresponding to Fig. 1 5b) was obtained. Table 3 Figures 12(a), (b), and (C) show the thickness distribution of the raw film obtained under each condition in the tube drawing direction.
(The thickness distribution was obtained using a capacitive continuous thickness meter CL-230 manufactured by Ono Sokki Co., Ltd. under the conditions of a film feed speed of 10 m/min and a measurement sensitivity of AV = 0.3.) As a result, as shown in FIG. 12(b), grooves with remarkable periodicity were observed under the conditions of Example 3-2. Next, air was blown into the original film of Example 3-2 again,
Lateral stretching ratio (stretching bubble diameter/original bubble diameter) 2.7 times,
13.0 m at a longitudinal stretching ratio of 1.7 times and a stretching temperature of 145°C.
Biaxial stretching was performed at a winding speed of /min. Continued to 135℃
Relaxation treatment was performed under hot air at a winding speed of 12.9 m/min. Figure 13 shows the thickness distribution in the take-up direction of the obtained film (corresponding to the 13 rolled state in Figure 1) under the same conditions as in Figure 12.
X0.30 {Polarized photograph obtained using a li light plate (xt/
3) is shown in FIG.

すなわち上記のようにして得られたフィルムの平均厚み
は5.9μmで5J13図および第14図に見られる通
り明らかに周期性のある凸凹が見られた。
That is, the average thickness of the film obtained as described above was 5.9 μm, and clearly periodic irregularities were observed as seen in Figures 5J13 and 14.

また、東洋ボールドウィン(株)製テンシロンにて試長
100mm,試巾20mmのフィルムを引張り速度30
0mm/分の条件で測定した機械的強伸度特性は第15
図に示す通り充分な値を保有していた. [発明の効果] 上述したように、本発明によれば、従来は得られなかっ
た弗化ビニリデン系ポリマーのインフレーション法によ
る二軸冷延伸フィルムが得られる。かくして得られた本
発明の二軸延伸フィルムは、弗化ビニリデン系ポリマー
のみからなること、冷延伸(結晶融点以下延伸)操作に
より機械的強度の高い事、薄膜フィルムも容易に製膜加
工できること、コスト的に安いフィルムが得られること
、インフレーション特有の大きな厚み斑が極度に少ない
事に特徴を有しており、高価な弗化ビニリデン系二軸延
伸フィルムを安く市場へ供給でき、その産業的意味は非
常に大きいものである. また、好ましい態様によれば、一面を粗面化した弗化ビ
ニリデン系ポリマーの二軸延伸フィルムが、インフレー
ション法の改良により、ほとんど強度低下を伴うことな
く達成される.しかして得られた粗面化フィルムは、弗
化ビニリデン系ポリマーの優れた誘電特性と粗面化によ
り改善された特性とを兼ね備えた油浸コンデンサフィル
ムとなるだけでなく、複合フィルム材料としての一層の
機能向上も期待され、更にロールへの密着によるハンド
リングが改善されたハンドリング性をも備えたものとな
る. またメタライズドコンデンサー等の用途に用いる為には
、一面(一方の面を粗面化した場合には、通常粗面側の
逆側の一面)にたとえば200〜500大の金属蒸着膜
を設けておく事が好ましい.粗面化された面は油との親
和性が向上するので、コンデンサーの長期信頼性が確保
できる.
In addition, a film with a trial length of 100 mm and a trial width of 20 mm was pulled at a speed of 30 mm using a Tensilon manufactured by Toyo Baldwin Co., Ltd.
The mechanical strength and elongation properties measured at 0 mm/min are the 15th
As shown in the figure, it had sufficient values. [Effects of the Invention] As described above, according to the present invention, a biaxial cold-stretched film of a vinylidene fluoride polymer, which has not been obtained conventionally, can be obtained by the inflation method. The thus obtained biaxially stretched film of the present invention is composed only of vinylidene fluoride polymer, has high mechanical strength by cold stretching (stretching below the crystal melting point), and can be easily formed into a thin film. It is characterized by being able to obtain a film at a low cost and having extremely few large thickness irregularities that are characteristic of inflation, allowing the expensive vinylidene fluoride biaxially stretched film to be supplied to the market at a low price, and its industrial significance. is very large. Further, according to a preferred embodiment, a biaxially stretched film of vinylidene fluoride polymer having one surface roughened can be achieved with almost no decrease in strength by improving the inflation method. The roughened film thus obtained not only becomes an oil-immersed capacitor film that combines the excellent dielectric properties of vinylidene fluoride-based polymers with properties improved by roughening, but also serves as an oil-immersed capacitor film that is even more effective as a composite film material. It is expected to improve the functionality of the product, and it will also have improved handling due to its close contact with the roll. In addition, in order to use it for applications such as metallized capacitors, a metal vapor deposited film of, for example, 200 to 500 sizes is provided on one surface (if one surface is roughened, usually the surface opposite to the rough surface). Things are good. The roughened surface improves affinity with oil, ensuring long-term reliability of the capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフイルムを製直するに適したインフレ
ーション装置の概略フローチャート、第2図は溶融パリ
ソンの膨張点(1)付近での3方向の速度変化を示すた
めの拡大図、また第3図(a)、(b)、(C)は円型
ダイ付近の各種条件下での拡大図である.第4図、第7
図および第9図は、それぞれ実施例1−1、比較例1お
よび実施例2により得られた溶融インフレーシBン工程
における引取方向での歪速度変化を示す歪速度線図;第
5図、第8図および第10図は、それぞれ実施例1−1
、比較例1および実施例2による溶融インフレーション
工程により得られた冷延伸前フィルムの広角X線散乱写
真;第6図および第11図はそれぞれ実施例1−1およ
び2により得られた二軸冷延伸フィルムの偏光写真(縮
尺はcm単位の副尺を写真に併せて示す通り)であり、
これらフィルムの表面に形威された微細且つ規則的な凹
凸構造の有無を透過光位相差の検出により視認可能とし
たものである。また第12図(a)、(b)、(c)は
、各種条件下でのインフレーションによる冷延伸前にお
ける原反フィルムに生じたチューブ引取方向での厚み変
化の測定チャートである.第13図は、冷延伸後のフィ
ルムに生じた引取方向の厚み変化の測定チャート、第1
4図は同フィルムの偏光写真(縮尺はcm単位の副尺を
写真に併せて示す通り)である.第15図は該冷延伸後
のフィルムの強伸度特性を示すグラフである. 1・・・押出機、2・・・円型ダイ(2a・・・中合)
、5・・・インフレーション中のポリマーフィルム(5
a・・・溶融押出状態、5b・・・インフレーシBン後
、5C、5 d ・・・冷延伸中)、6、7、9、11
、12・・・ニップロール、8、1o・・・熱fflヒ
ーター13・・・製品フィルム巻取ロール. 第7図 ダイリンプからtr>lm (a) 第3図 (k)) −425− 第2図 (C) 第6図 拡角X緩散笥+V真) 第6図 (偏先写幻 「一・→M[) 第9図 第13図 引取方向 第8図 G虜X縁おΔI、写妻:
FIG. 1 is a schematic flowchart of an inflation device suitable for remanufacturing the film of the present invention, FIG. 2 is an enlarged view showing the velocity changes in three directions near the expansion point (1) of the molten parison, and Figures 3 (a), (b), and (C) are enlarged views of the vicinity of the circular die under various conditions. Figures 4 and 7
9 and 9 are strain rate diagrams showing strain rate changes in the take-off direction in the melt inflation process obtained in Example 1-1, Comparative Example 1, and Example 2, respectively; Figures 8 and 10 show Example 1-1, respectively.
, wide-angle X-ray scattering photographs of films before cold stretching obtained by the melt inflation process according to Comparative Example 1 and Example 2; This is a polarized photograph of the stretched film (the scale is as shown with the vernier scale in cm in the photograph),
The presence or absence of a fine and regular uneven structure formed on the surface of these films can be visually recognized by detecting the phase difference of transmitted light. Moreover, FIGS. 12(a), (b), and (c) are measurement charts of thickness changes in the tube take-off direction that occurred in the original film before cold stretching due to inflation under various conditions. Figure 13 is a measurement chart of the thickness change in the take-off direction that occurred in the film after cold stretching.
Figure 4 is a polarized photograph of the same film (the scale is in centimeters as shown in the photograph). FIG. 15 is a graph showing the strength and elongation characteristics of the film after cold stretching. 1... Extruder, 2... Circular die (2a... Middle part)
, 5...Polymer film during inflation (5
a... Melt extrusion state, 5b... After inflation B, 5C, 5 d... During cold stretching), 6, 7, 9, 11
, 12... Nip roll, 8, 1o... Heat ffl heater 13... Product film winding roll. Fig. 7 tr > lm (a) Fig. 3 (k)) -425- Fig. 2 (C) Fig. 6 Expanded angle →M [) Figure 9 Figure 13 Pick-up direction Figure 8 G prisoner

Claims (1)

【特許請求の範囲】 1、インヒヤレントビスコシティが0.8〜1.6dl
/gの範囲にある弗化ビニリデン系ポリマーからなり、
インフレーション法により二軸冷延伸されてなる弗化ビ
ニリデン系ポリマーフィルム。 2、縦・横二軸方向に、それぞれ1.5倍以上延伸され
てなる請求項1に記載のフィルム。 3、前記弗化ビニリデン系ポリマーが、Mw/Mn(重
量平均分子量/数平均分子量)比が10〜20の範囲に
ある弗化ビニリデン系ポリマー単独または該ポリマーを
30重量%以上含む該ポリマーとMw/Mn比が10未
満である弗化ビニリデン系ポリマーとの混合物からなる
請求項1または2に記載のフィルム。 4、Mw/Mn比が10〜20の範囲にある弗化ビニリ
デン系ポリマーを70重量%以上含む請求項3に記載の
フィルム。 5、長さ15mm、径4mmのノズルを備えたキャピラ
リー・レオメータにより剪断速度が20sec^−^1
で、見掛け溶融粘度が2×10^5ポイズとなる温度で
のストランドの溶融張力が300〜800g/cm^2
である弗化ビニリデン系ポリマーからなる請求項1〜4
のいずれかに記載のフィルム。 6、縦・横二軸方向にそれぞれ1.5倍以上延伸されて
おり、片面に深さ0.2〜1.0μmの横方向に延在す
る溝が、縦方向に10mm以内の間隔で連続的に設けら
れている請求項1〜5のいずれかに記載のフィルム。 7、インヒヤレントビスコシティが全体として0.8〜
1.6d、/gの範囲にあり、Mw/Mn比が10〜2
0の範囲にある弗化ビニリデン系ポリマー単独または該
ポリマーを30重量%以上含む該ポリマーとMw/Mn
比が10未満である弗化ビニリデン某ポリマーとの混合
物を、環状ダイから溶融押出して溶融パリソンを得、該
パリソンを膨張後冷却して原反チューブを得、該原反チ
ューブを再度加熱し、該チューブ内にエアーを吹き付け
、上下の対ニップロール周速比を調節して同時二軸冷延
伸を行う、インフレーション法による弗化ビニリデン系
ポリマー二軸冷延伸フィルムの製造方法。 8、環状ダイで溶融押出により形成された溶融パリソン
の膨張による歪速度が膨張開始後一旦緩和する請求項7
に記載の方法。 9、原反チューブ製造工程における、ブロー比(チュー
ブ最終径/環状ダイ口径)が3以下、ドローダウン比(
チューブ引取速度/ダイ出口速度)が100以下である
請求項7または8に記載の方法。 10、環状ダイを通じて押出す溶融パリソンのしぼみ角
を0〜10゜とし、冷延伸後に横方向に延在する溝が、
縦方向(機械方向)に連続して設けられた粗面化フィル
ムを得る請求項7〜9のいずれかに記載の方法。 11、溶融押出原料中の、Mw/Mnが10〜20の範
囲にある弗化ビニリデン系ポリマーの割合が70重量%
以上である請求項10に記載の方法。 12、原反チューブ製造工程において、外側から溶融パ
リソンに吹き付けられる冷却エアーを調節することによ
り、チューブの結晶化ラインを上下動させて、チューブ
内面に凹凸を付与する請求項10または11に記載の方
法。 13、冷延伸工程で、縦・横二軸方向にそれぞれ1.5
倍以上延伸し、片面に深さ0.2〜1.0μmの横方向
に延在する溝が、縦方向に10mm以内の間隔で連続し
て設けられたフィルムを得る請求項10〜12のいずれ
かに記載の方法。 14、二軸冷延伸後、緩和熱処理する工程を含む請求項
7〜13のいずれかに記載の方法。
[Claims] 1. Inherent viscocity is 0.8 to 1.6 dl
/g of vinylidene fluoride-based polymer,
A vinylidene fluoride polymer film that is biaxially cold-stretched using the inflation method. 2. The film according to claim 1, which is stretched by 1.5 times or more in each of the vertical and horizontal biaxial directions. 3. The vinylidene fluoride polymer has an Mw/Mn (weight average molecular weight/number average molecular weight) ratio in the range of 10 to 20, or a vinylidene fluoride polymer alone or a polymer containing 30% by weight or more of the polymer and Mw The film according to claim 1 or 2, comprising a mixture with a vinylidene fluoride polymer having a /Mn ratio of less than 10. 4. The film according to claim 3, which contains 70% by weight or more of a vinylidene fluoride polymer having an Mw/Mn ratio in the range of 10 to 20. 5. The shear rate is 20 sec^-^1 by a capillary rheometer with a nozzle of length 15 mm and diameter 4 mm.
The melt tension of the strand at the temperature where the apparent melt viscosity is 2 x 10^5 poise is 300 to 800 g/cm^2.
Claims 1 to 4 are made of a vinylidene fluoride polymer.
The film described in any of the above. 6. Stretched by 1.5 times or more in both vertical and horizontal biaxial directions, and grooves extending in the horizontal direction with a depth of 0.2 to 1.0 μm on one side are continuous at intervals of 10 mm or less in the vertical direction. 6. The film according to claim 1, wherein the film is provided with: 7. Inherent viscocity as a whole is 0.8~
1.6d,/g, and the Mw/Mn ratio is 10 to 2.
0 vinylidene fluoride polymer alone or the polymer containing 30% by weight or more of the polymer and Mw/Mn
A mixture of vinylidene fluoride and a certain polymer having a ratio of less than 10 is melt-extruded through an annular die to obtain a molten parison, the parison is expanded and then cooled to obtain a raw tube, and the raw tube is heated again. A method for producing a vinylidene fluoride-based polymer biaxially cold-stretched film using an inflation method, in which simultaneous biaxial cold-stretching is performed by blowing air into the tube and adjusting the circumferential speed ratio of upper and lower nip rolls. 8. Claim 7: The strain rate due to expansion of the molten parison formed by melt extrusion in an annular die is temporarily relaxed after the expansion starts.
The method described in. 9. In the raw tube manufacturing process, the blow ratio (final tube diameter/annular die diameter) is 3 or less, the drawdown ratio (
9. The method according to claim 7, wherein the tube withdrawal speed/die exit speed) is 100 or less. 10. The concave angle of the molten parison extruded through an annular die is 0 to 10 degrees, and the grooves extending in the transverse direction after cold stretching are
10. The method according to claim 7, wherein a roughened film is obtained that is continuous in the machine direction. 11. The proportion of vinylidene fluoride polymer with Mw/Mn in the range of 10 to 20 in the melt extrusion raw material is 70% by weight
The method according to claim 10, which is the above. 12. In the raw tube manufacturing process, the crystallization line of the tube is moved up and down by adjusting the cooling air blown onto the molten parison from the outside, thereby imparting irregularities to the inner surface of the tube. Method. 13. In the cold stretching process, 1.5 in each of the vertical and horizontal biaxial directions
13. Any one of claims 10 to 12, wherein the film is stretched at least twice as long to obtain a film in which grooves extending in the horizontal direction and having a depth of 0.2 to 1.0 μm are continuously provided on one side at intervals of 10 mm or less in the vertical direction. Method described in Crab. 14. The method according to any one of claims 7 to 13, further comprising the step of performing relaxation heat treatment after biaxial cold stretching.
JP33513189A 1988-12-28 1989-12-26 Biaxially cold-stretched vinylidene fluoride polymer film and its preparation Pending JPH0314840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33513189A JPH0314840A (en) 1988-12-28 1989-12-26 Biaxially cold-stretched vinylidene fluoride polymer film and its preparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-335024 1988-12-28
JP33502488 1988-12-28
JP1-52762 1989-03-07
JP33513189A JPH0314840A (en) 1988-12-28 1989-12-26 Biaxially cold-stretched vinylidene fluoride polymer film and its preparation

Publications (1)

Publication Number Publication Date
JPH0314840A true JPH0314840A (en) 1991-01-23

Family

ID=26575038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33513189A Pending JPH0314840A (en) 1988-12-28 1989-12-26 Biaxially cold-stretched vinylidene fluoride polymer film and its preparation

Country Status (1)

Country Link
JP (1) JPH0314840A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877823A (en) * 1981-08-04 1983-05-11 ザ リージエンツ オブ ザ ユニヴアーシテイ オブ カリフオルニア Synthesization of human viral antigen by yeast
JPH10204189A (en) * 1997-01-17 1998-08-04 Mitsubishi Plastics Ind Ltd Fluoro resin sheet and laminated glass
US6281280B1 (en) 1995-02-03 2001-08-28 Ausimont Usa, Inc. Low-gloss paints including polyvinylidene fluoride having a high melt viscosity
WO2004081109A1 (en) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited Porous membrane of vinylidene fluoride resin and process for producing the same
CN102675777A (en) * 2011-03-03 2012-09-19 黄莲华 Manufacture method for biaxially oriented PVDF thin film
WO2019093175A1 (en) * 2017-11-08 2019-05-16 ダイキン工業株式会社 Film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877823A (en) * 1981-08-04 1983-05-11 ザ リージエンツ オブ ザ ユニヴアーシテイ オブ カリフオルニア Synthesization of human viral antigen by yeast
JPH0526798B2 (en) * 1981-08-04 1993-04-19 Yunibaashitei Obu Karifuorunia
US6281280B1 (en) 1995-02-03 2001-08-28 Ausimont Usa, Inc. Low-gloss paints including polyvinylidene fluoride having a high melt viscosity
JPH10204189A (en) * 1997-01-17 1998-08-04 Mitsubishi Plastics Ind Ltd Fluoro resin sheet and laminated glass
WO2004081109A1 (en) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited Porous membrane of vinylidene fluoride resin and process for producing the same
US7351338B2 (en) 2003-03-13 2008-04-01 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same
AU2004220187B2 (en) * 2003-03-13 2009-09-24 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same
CN102675777A (en) * 2011-03-03 2012-09-19 黄莲华 Manufacture method for biaxially oriented PVDF thin film
WO2019093175A1 (en) * 2017-11-08 2019-05-16 ダイキン工業株式会社 Film

Similar Documents

Publication Publication Date Title
EP0210059A1 (en) Process for preparing microporous polyethylene film
US7211620B2 (en) Foldable polyolefin films
CN110303748B (en) Thinner polyolefin shrink film and production process thereof
US5082616A (en) Film blowing process
JP2018095863A (en) Biaxially stretched polyamide resin film and laminate using the same
JPH0314840A (en) Biaxially cold-stretched vinylidene fluoride polymer film and its preparation
JP2008162044A (en) Heat treatment method for biaxially stretched vinylidene chloride-methyl acrylate copolymer film
JPH0733048B2 (en) Method for producing polybutylene terephthalate resin film
US4385022A (en) Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers
JPH0637081B2 (en) Method for producing biaxially stretched nylon 6-66 copolymer film
JPH10237201A (en) Manufacture of porous high molecular weight polyolefin film
JPH0289619A (en) Manufacture of film
JPS62121032A (en) Biaxially oriented fluorine stretched film and its manufacture
JP4507031B2 (en) High-molecular-weight polyolefin film having highly transparent portion and method for producing the same
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPS6141732B2 (en)
JPS6067133A (en) Biaxially oriented film of polyvinylidene fluoride and preparation thereof
JPH054276A (en) Manufacture of polyethylene biaxially oriented film
JP4345901B2 (en) High molecular weight polyolefin transparent film having high elongation and method for producing the same
JPS6226298B2 (en)
JPS62286720A (en) Manufacture of capacitor film composed of vinylidene fluoride resin
JP2004106534A (en) Manufacturing method for inflation film
JPS6367460B2 (en)
JPH0462529B2 (en)
JPH03128225A (en) Production of biaxially oriented nylon 66 film