JPH0334458B2 - - Google Patents

Info

Publication number
JPH0334458B2
JPH0334458B2 JP59073554A JP7355484A JPH0334458B2 JP H0334458 B2 JPH0334458 B2 JP H0334458B2 JP 59073554 A JP59073554 A JP 59073554A JP 7355484 A JP7355484 A JP 7355484A JP H0334458 B2 JPH0334458 B2 JP H0334458B2
Authority
JP
Japan
Prior art keywords
film
stretching
polyether
ether
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073554A
Other languages
Japanese (ja)
Other versions
JPS60217134A (en
Inventor
Kazuo Kondo
Kakushi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Industrial Co Ltd
Original Assignee
Okura Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Industrial Co Ltd filed Critical Okura Industrial Co Ltd
Priority to JP59073554A priority Critical patent/JPS60217134A/en
Publication of JPS60217134A publication Critical patent/JPS60217134A/en
Publication of JPH0334458B2 publication Critical patent/JPH0334458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチユーブ状同時2軸延伸ポリエーテ
ル・エーテル・ケトンフイルムの製造方法に関す
るものである。 近年プラスチツクフイルムの使用用途は広が
り、それと共にプラスチツクフイルムに要望され
る性能も高くなつている。中でも耐熱性を要望す
るニーズは強く、宇宙航空機素材や高級電気絶縁
素材では特に望まれている。現在これらを満足す
るものとしてはポリイミドフイルムがあるのみと
いつても過言ではない。しかしながらポリイミド
フイルムは溶液法によりフイルム化されている為
工業的生産を行うには装置が大がかりとなり、又
複雑化し生産性も非常に悪く、結果としてフイル
ム価格が高くなるという欠点が生じている。 本発明者らはこれらの情況に鑑み、安価で耐熱
性のあるしかも光学的性質の良好な縦横の機械的
性質のバランスしたポリエーテル・エーテル・ケ
トンフイルムを押出法(チユーブ状同時2軸延伸
法)により効率よく生産する方法を提供しようと
するものである。 一般に熱可塑性樹脂は2軸延伸することによつ
て機械的性質、光学的性質、耐熱性の改良された
フイルムが得られることは良く知られており、そ
のための2軸延伸方法としてはテンター方式とチ
ユーブ方式とが知られている。テンター方式は未
延伸フラツト状フイルムを延伸適温に加熱した後
ロールにより縦方向に延伸し、次いで横方向にチ
ヤツク保持により延伸する逐次二段延伸方式が一
般的であり、装置は大型複雑化し、又チヤツクに
より保持された部分は確実にロスとなる為フイル
ムの生産効率の低下及び得られるフイルムの縦横
のフイルム物性に差が生じるのは避けられないも
のである。一方チユーブ方式は送り出しと引き取
りロール間に未延伸フイルムを導入し、この間で
フイルムを周方向より延伸適温に再加熱し、内圧
により膨張延伸させるものであり装置は簡単、小
型であり、さらにテンター方式のチヤツクに保持
されたようなロス部分がなく、フイルムの生産効
率は非常に良く、又縦横同時に2軸延伸する為得
られるフイルムの物性も縦横バランスの取れたも
のであることが特徴である。 ところで、ポリエーテル・エーテル・ケトン樹
脂は結晶性樹脂であり、結晶化が進み結晶化度が
大きくなりすぎると固くもろくなり、又灰色不透
明となり、未延伸フイルムの状態では使用不可能
であり、又延伸加工による物性改良も実施できな
い。この為ポリエーテル・エーテル・ケトンフイ
ルムはフイルムの結晶化度を低く押え、2軸延伸
加工を行うことによりフイルム強度、光学的性質
等の物性を改良する必要がある。しかしながら現
在チユーブ方式において一般に用いられている環
状ダイスより押出した溶融樹脂を空気等の気体を
利用して冷却する製造方式では、フイルムは固く
もろく、送り出しロールに導入した場合割れてし
まい、その後の延伸加工が不可能となる。そのた
め、チユーブ方式による同時2軸延伸ポリエーテ
ル・エーテル・ケトンフイルムの工業的な生産例
は皆無といつても過言ではない。 これらの事情に鑑み、本発明者らはテンター方
式に比較して比較的装置が小型であり、しかも作
業効率、生産効率が良いチユーブ方式でもつて同
時2軸延伸することにより耐熱性が高く、光学的
性質がすぐれ縦横バランスした高強度のポリエー
テル・エーテル・ケトンフイルムが得られるよう
にすることを技術的課題とし、ポリエーテル・エ
ーテル・ケトン樹脂に対してそのようなチユーブ
状同時2軸延伸を可能ならしめるための条件を鋭
意研究した結果本発明の方法を見出したのであ
る。 したがつて、本発明の目的はチユーブ方式でも
つて同時2軸延伸されるポリエーテル・エーテ
ル・ケトンフイルムの製造方法を提供することで
ある。 即ち本発明は環状ダイスより溶融押出し、急冷
したチユーブ状未延伸ポリエーテル・エーテル・
ケトンフイルムを送り出しと引き取りニツプロー
ル間に連続的に導入し、この間に円周方向よりフ
イルムを再加熱し、内圧によつて膨張させ同時に
2軸延伸する方法において、結晶化度を10%以下
に保持したチユーブ状未延伸フイルムを60〜140
℃の温度に再加熱した後、面積倍率を4〜36倍に
なるように延伸することを特徴とするチユーブ状
同時2軸延伸ポリエーテル・エーテル・ケトンフ
イルムの製造方法である。 結晶性フイルムは溶融押出し後の冷却速度によ
り、フイルム結晶化の程度は著しく異なるもので
あり、結晶化度は冷却速度が速いほど低くなるこ
とがわかつている。ポリエーテル・エーテル・ケ
トンフイルムの場合、結晶化が進むほど灰色不透
明となり、固くもろくなる特徴があるが、チユー
ブ状延伸は前述の如く一般に送り出しロール引き
取りロールの2組のロール間で再加熱し、内圧に
より延伸する為結晶化が著しく進み固くもろくな
つたフイルムは送り出しロール部に導入した時に
フイルムは割れ、引き続き延伸加工を行うことが
不可能となる。 ポリエーテル・エーテル・ケトン樹脂について
冷却速度と得られるフイルムの結晶化度及び延伸
加工性及び得られたフイルムの外観との関係につ
いて試験した結果を第1表に示した。本発明で用
いた結晶化度は密度勾配管を使用する方法によつ
て密度を測定し、比較計算により求めたものであ
る。ポリエーテル・エーテル・ケトンの無定形部
分の比重は1.265で、結晶部分の比重は1.320であ
る。本発明の結晶化度を求めるために使用された
密度勾配管は流動パラフイン/四塩化炭素からな
る25℃溶液中で密度を測定するものである。
The present invention relates to a method for producing a tubular simultaneously biaxially stretched polyether/ether/ketone film. In recent years, the uses of plastic film have expanded, and the performance required of plastic film has also increased accordingly. Above all, there is a strong need for heat resistance, especially for aerospace materials and high-grade electrical insulation materials. It is no exaggeration to say that polyimide film is currently the only film that satisfies these requirements. However, since polyimide film is made into a film by a solution method, industrial production requires large-scale and complicated equipment, resulting in very poor productivity, resulting in a high film price. In view of these circumstances, the present inventors developed a polyether/ether/ketone film that is inexpensive, heat resistant, has good optical properties, and has well-balanced longitudinal and horizontal mechanical properties using an extrusion method (tube-shaped simultaneous biaxial stretching method). ) to provide a more efficient production method. It is generally well known that a film with improved mechanical properties, optical properties, and heat resistance can be obtained by biaxially stretching thermoplastic resins, and the tenter method is the biaxially stretching method for this purpose. The tube method is known. The tenter method is generally a sequential two-stage stretching method in which an unstretched flat film is heated to the appropriate temperature for stretching, then stretched in the longitudinal direction using rolls, and then stretched in the transverse direction by chuck holding. Since the portion held by the chuck is definitely lost, it is inevitable that the production efficiency of the film will be reduced and that the physical properties of the resulting film will vary in length and width. On the other hand, in the tube method, an unstretched film is introduced between the delivery and take-up rolls, the film is reheated from the circumferential direction to the appropriate temperature for stretching, and expanded and stretched using internal pressure.The equipment is simple and compact, and the tenter method The production efficiency of the film is very high as there is no lost part that is retained in the chuck, and the physical properties of the film obtained are also well balanced in the length and width as it is simultaneously biaxially stretched in the length and width. By the way, polyether/ether/ketone resin is a crystalline resin, and when crystallization progresses and the degree of crystallinity becomes too high, it becomes hard and brittle, and becomes gray and opaque, making it unusable in the state of an unstretched film. Physical properties cannot be improved by stretching. For this reason, it is necessary for polyether/ether/ketone films to have a low degree of crystallinity and to improve physical properties such as film strength and optical properties by performing biaxial stretching processing. However, in the production method currently commonly used in the tube method, in which the molten resin extruded from an annular die is cooled using gas such as air, the film is hard and brittle, and breaks when introduced into the delivery roll, resulting in subsequent stretching. Processing becomes impossible. Therefore, it is no exaggeration to say that there are no examples of industrial production of simultaneously biaxially stretched polyether/ether/ketone films using the tube method. In view of these circumstances, the present inventors have developed a tube method, which uses a relatively small device compared to the tenter method and has good work efficiency and production efficiency, and which has high heat resistance and optical properties by simultaneous biaxial stretching. The technical challenge was to obtain a high-strength polyether/ether/ketone film with excellent physical properties and well-balanced length and width. As a result of intensive research into the conditions to make this possible, the method of the present invention was discovered. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a polyether/ether/ketone film that is simultaneously biaxially stretched using a tube method. That is, the present invention is a tube-shaped unstretched polyether, which is melt-extruded from an annular die and rapidly cooled.
The crystallinity is maintained at 10% or less in a method in which a ketone film is continuously introduced between the delivery and take-off Nitzpro rolls, and during this time the film is reheated from the circumferential direction, expanded by internal pressure, and simultaneously biaxially stretched. 60~140 tube-shaped unstretched film
This is a method for producing a tubular simultaneously biaxially stretched polyether/ether/ketone film, which is characterized in that the film is reheated to a temperature of °C and then stretched to an area magnification of 4 to 36 times. It is known that the degree of crystallization of a crystalline film varies significantly depending on the cooling rate after melt extrusion, and that the faster the cooling rate, the lower the crystallinity degree. In the case of polyether/ether/ketone films, the more crystallized they become, the more they become gray and opaque, and become hard and brittle. However, as mentioned above, tube-like stretching is generally done by reheating between two sets of rolls, a delivery roll and a take-up roll. Because the film is stretched by internal pressure, crystallization progresses significantly and the film becomes hard and brittle. When it is introduced into the delivery roll, the film cracks, making it impossible to carry out further stretching. Table 1 shows the results of tests on the relationship between the cooling rate of polyether/ether/ketone resins, the degree of crystallinity and stretchability of the obtained films, and the appearance of the obtained films. The degree of crystallinity used in the present invention was determined by measuring the density by a method using a density gradient tube and by comparative calculation. The specific gravity of the amorphous portion of polyether, ether, and ketone is 1.265, and the specific gravity of the crystalline portion is 1.320. The density gradient tube used to determine the degree of crystallinity of the present invention measures density in a 25°C solution consisting of liquid paraffin/carbon tetrachloride.

【表】 第1表よりフイルムの結晶化度は少なくとも冷
却速度24℃/秒以上で冷却した結晶化度10%以下
の場合に縦横同時2軸延伸が可能であり、得られ
るフイルムは光学的性質の良好な縦横機械的性質
のバランスしたフイルムが得られ、特に6%以下
の結晶化度の場合得られるフイルムの光線透過
率、光沢等の光学的性質は著しく良好なものであ
つた。結晶化度10%を越えたものはフイルムが固
くなり、延伸加工が安定して行なえなかつた。 このような低結晶化度の実現のために種々の方
法を検討したところ環状ダイスより押出したポリ
エーテル・エーテル・ケトンフイルムは気体を利
用した従来の空冷法では本発明で目標とする低い
結晶化度を得ることが極めて困難であることがわ
かつたので、本発明を実施するに際しては水等の
液体を利用した冷却方法、あるいはこれと空冷法
を併用した冷却方法によるフイルムの急冷化を採
用することが好ましい。 次に本発明の重要な構成要件である延伸加工温
度について説明すると延伸加工温度は一般に結晶
化度が大きくなればなるほど高温とする必要があ
るが、たとえば水等の液体を利用し少なくとも24
℃/秒以上の冷却速度でフイルムを冷却する等の
手段により結晶化度を低くした本発明の場合には
非常に低温で同時2軸延伸加工が可能であること
が判明した。即ち本発明において同時2軸延伸を
可能ならしめるための延伸加工温度は60〜140℃
の範囲、好ましくは80〜120℃の範囲が最適であ
り、これに対して60℃未満の場合には延伸加工中
にフイルムが破断し、安定した延伸加工が行なえ
ず、又140℃を越えた場合には延伸中に未延伸フ
イルムの結晶化が進行し、得られたフイルムの光
学的性質が低下した。延伸加工温度が80〜120℃
の範囲では非常に安定した延伸が行なわれ、又得
られるフイルムの光線透過率、光沢等の光学的性
質も著しく良好であつた。 更に本発明の他の構成要件である延伸倍率につ
いて説明するとこの延伸倍率は面積倍率(縦延伸
倍率×横延伸倍率)で4〜36倍が適当であり、特
に面積倍率9〜25倍の範囲ではバブルの安定した
生産が行なえ、フイルムの厚みムラ精度も良好な
ものが得られた。これに対して実用上面積倍率4
倍未満では延伸ムラが残り、フイルムの厚みムラ
精度が悪く、面積倍率が36倍を越えた場合は延伸
中バブルの破裂がしばしば発生し安定した生産が
行なえなかつた。 次に本発明の効果を説明すると、本発明の方法
により得られたフイルムはUL規格による連続使
用耐熱温度が高く(実験例では220℃が得られた)
ポリイミドフイルムの耐熱温度230℃とほぼ同等
の耐熱性を示し、フイルムの透明性、光沢も良好
であり、しかも縦横同時2軸延伸されている為縦
横フイルム強度は著しく強化されしかも縦横バラ
ンスした強度を有していた。第2表に本発明によ
り得られた同時2軸延伸ポリエーテル・エーテ
ル・ケトンフイルムとポリイミドフイルムとの比
較物性を示した。
[Table] From Table 1, simultaneous biaxial stretching in the vertical and horizontal directions is possible when the crystallinity of the film is at least 10% or less after cooling at a cooling rate of 24°C/sec or higher, and the resulting film has optical properties. A film with good balance of longitudinal and lateral mechanical properties was obtained, and in particular, when the degree of crystallinity was 6% or less, the optical properties of the obtained film such as light transmittance and gloss were extremely good. When the crystallinity exceeded 10%, the film became hard and could not be stably stretched. We investigated various methods to achieve such a low degree of crystallinity, and found that the polyether/ether/ketone film extruded from an annular die could not achieve the low crystallinity targeted by the present invention using the conventional air cooling method using gas. It has been found that it is extremely difficult to obtain a high temperature, so when carrying out the present invention, the film is rapidly cooled by a cooling method using a liquid such as water, or a cooling method using a combination of this and an air cooling method. It is preferable. Next, the drawing temperature, which is an important component of the present invention, will be explained. Generally speaking, the higher the degree of crystallinity, the higher the drawing temperature needs to be.
It has been found that simultaneous biaxial stretching is possible at very low temperatures in the case of the present invention, in which the degree of crystallinity is lowered by cooling the film at a cooling rate of .degree. C./second or higher. That is, in the present invention, the stretching temperature to enable simultaneous biaxial stretching is 60 to 140°C.
The optimal range is preferably 80 to 120°C; on the other hand, if the temperature is lower than 60°C, the film will break during stretching, making stable stretching impossible, and if the temperature exceeds 140°C. In some cases, crystallization of the unstretched film progressed during stretching, and the optical properties of the resulting film deteriorated. Stretching temperature is 80~120℃
Within this range, very stable stretching was carried out, and the optical properties of the resulting film, such as light transmittance and gloss, were also extremely good. Furthermore, to explain the stretching ratio, which is another component of the present invention, it is appropriate that the area ratio (longitudinal stretching ratio x lateral stretching ratio) is 4 to 36 times, especially in the area ratio of 9 to 25 times. Stable production of bubbles was achieved, and good film thickness unevenness was obtained. On the other hand, in practice, the area magnification is 4
When the area magnification is less than 36 times, stretching unevenness remains and the accuracy of film thickness unevenness is poor, and when the area magnification exceeds 36 times, bubbles often burst during stretching, making stable production impossible. Next, to explain the effect of the present invention, the film obtained by the method of the present invention has a high continuous use heat resistance temperature according to the UL standard (220 ° C was obtained in the experimental example).
It exhibits heat resistance that is almost equivalent to the heat resistance temperature of polyimide film (230℃), and the film has good transparency and gloss.Moreover, since it is simultaneously biaxially stretched vertically and horizontally, the strength of the vertical and horizontal film is significantly strengthened, and the strength is balanced in both vertical and horizontal directions. had. Table 2 shows the comparative physical properties of the simultaneously biaxially stretched polyether/ether/ketone film obtained according to the present invention and the polyimide film.

【表】 第2表に示したがポリイミドフイルムは若干吸
湿性を示す為高温多湿の雰囲気ではポリイミドフ
イルムの物性は低下するが、本発明の方法による
フイルムは高温多湿による影響を受けないという
特徴も有している。 本発明の製造方法によつて得られるフイルムは
これら特性を生かして耐熱水性絶縁テープ、電子
レンジの内張り、コンデンサー、液晶表示分野、
耐熱性フレキシブルプリント回路基材分野等に使
用可能である。 尚本発明の方法を実施するに際してフイルムの
性質改良の為に使用するアンチブロツク剤、滑
剤、熱安定剤、紫外線吸収剤、その他の添加剤の
混入はフイルムの機械的性質、光学的性質を著し
く損わない範囲において可能である。 以下実施例を挙げて本発明を具体的に説明する
が、これらの実施例は本発明を何等限定するもの
ではない。 実施例 1 ポリエーテル・エーテル・ケトン樹脂
(IMPERIAL CHEMICAL INDUSTRIES社製
−以後ICI社製と称す−)を口径50φ環状ダイス
より400℃の溶融温度で押出し、ただちに水温10
℃の水を利用した水冷装置により、冷却速度35
℃/秒で急冷し、結晶化度3%、巾82mm、厚み
135μのチユーブ状未延伸フイルムを製造した。
この未延伸フイルムを送り出しロールに導き、引
き続き設けられたインフラスタインヒーターを利
用した円筒状加熱装置により温度100℃まで加熱
後チユーブ内に空気を導入し、縦横延伸倍率共に
3倍、面積延伸倍率9倍に延伸し、引き取りロー
ルに導き続いて巻き取り装置により厚み15μ、巾
246mmのフイルムを巻き取つた。得られたフイル
ムは透明性、光沢が良好であり、又縦横強度がバ
ランスした機械的性質の改良されたフイルムであ
り、安定した製造が可能であつた。 実施例 2 ポリエーテル・エーテル・ケトン樹脂(ICI社
製)を口径50φ環状ダイスより400℃の溶融温度
で押出し、ただちに水温10℃の水を利用した水冷
装置により、冷却速度24℃/秒で急冷し結晶化度
10%、巾82mm、厚み160μのチユーブ状未延伸フ
イルムを製造した。この未延伸フイルムを送り出
しロールに導き、引き続き設けられたインフラス
タインヒーターを利用した円筒状加熱装置により
温度120℃まで加熱後チユーブ内に空気を導入し、
縦横延伸倍率共に4倍、面積延伸倍率16倍に延伸
し引き続いて巻き取り装置により厚み10μ、巾
328mmのフイルムを巻き取つた。フイルムの生産
は安定して行なわれ、縦横とも機械的性質がバラ
ンスした、光学的性質の良好なフイルムが得られ
た。 比較例 1 ポリエーテル・エーテル・ケトン樹脂(ICI社
製)を口径50φ環状ダイスより400℃の溶融温度
で押出し、水冷装置により冷却速度18℃/秒で冷
却し結晶化度47%、巾82mm、厚み150μの未延伸
フイルムを製造した。この未延伸フイルムを送り
出しロールに導き、引き続き設けられたインフラ
スタインヒーターを利用した装置により種々の温
度に加熱後チユーブ内に空気を導入し延伸を行な
おうとした安定したバブル延伸が行なえず、フイ
ルムの製造は不可能であつた。
[Table] As shown in Table 2, polyimide film exhibits some hygroscopicity, so the physical properties of polyimide film deteriorate in a high temperature and humidity atmosphere, but the film produced by the method of the present invention is also characterized in that it is not affected by high temperature and humidity. have. The film obtained by the production method of the present invention takes advantage of these characteristics to be used in the fields of hot water-resistant insulating tape, microwave oven lining, capacitors, and liquid crystal display fields.
It can be used in the field of heat-resistant flexible printed circuit substrates, etc. Incidentally, when carrying out the method of the present invention, the inclusion of anti-blocking agents, lubricants, heat stabilizers, ultraviolet absorbers, and other additives used to improve the properties of the film can significantly impair the mechanical and optical properties of the film. It is possible as long as it does not cause any damage. EXAMPLES The present invention will be specifically explained below with reference to Examples, but these Examples are not intended to limit the present invention in any way. Example 1 Polyether-ether-ketone resin (manufactured by IMPERIAL CHEMICAL INDUSTRIES, hereinafter referred to as ICI) was extruded at a melting temperature of 400°C through a 50φ annular die, and immediately heated to a water temperature of 10°C.
A water cooling device that uses water at a temperature of 35 degrees
Rapidly cooled at °C/second, crystallinity 3%, width 82mm, thickness
A 135μ tubular unstretched film was produced.
This unstretched film is guided to a delivery roll, heated to a temperature of 100°C by a cylindrical heating device using an infrastein heater, and then air is introduced into the tube. Stretched to twice its original size, taken to a take-up roll, and then passed through a winding device to a thickness of 15 μm and a width.
I wound up a 246mm film. The obtained film had good transparency and gloss, and had improved mechanical properties with well-balanced longitudinal and lateral strength, and could be stably produced. Example 2 Polyether ether ketone resin (manufactured by ICI) was extruded through a 50φ annular die at a melting temperature of 400°C, and immediately cooled at a cooling rate of 24°C/sec using a water cooling device using water at a temperature of 10°C. Crystallinity
A tube-shaped unstretched film with a width of 82 mm and a thickness of 160 μm was produced. This unstretched film is guided to a delivery roll, heated to a temperature of 120°C by a cylindrical heating device using an infrastein heater, and then air is introduced into the tube.
Stretched to 4x in both length and width and 16x in area, then rolled to a thickness of 10μ and width using a winding device.
I wound up a 328mm film. Film production was carried out stably, and a film with well-balanced mechanical properties in the longitudinal and lateral directions and good optical properties was obtained. Comparative Example 1 Polyether ether ketone resin (manufactured by ICI) was extruded through a 50φ annular die at a melting temperature of 400°C, and cooled with a water cooling device at a cooling rate of 18°C/sec to obtain crystallinity of 47%, width 82mm, An unstretched film with a thickness of 150μ was produced. This unstretched film was led to a delivery roll, heated to various temperatures by a device using an installed infrastein heater, and then air was introduced into the tube to stretch the film. However, stable bubble stretching could not be performed, and the film was impossible to manufacture.

Claims (1)

【特許請求の範囲】[Claims] 1 環状ダイスより溶融押出し、急冷したチユー
ブ状未延伸ポリエーテル・エーテル・ケトンフイ
ルムを送り出しと引き取り両ニツプロール間に連
続的に導入し、この間に円周方向よりフイルムを
再加熱し、内圧によつて膨張させ同時に2軸延伸
する方法において、結晶化度を10%以下に保持し
たチユーブ状未延伸フイルムを60〜140℃の温度
に再加熱した後、面積倍率を4〜36倍になるよう
に延伸することを特徴とするチユーブ状同時2軸
延伸ポリエーテル・エーテル・ケトンフイルムの
製造方法。
1. A tubular unstretched polyether/ether/ketone film that has been melt-extruded from an annular die and rapidly cooled is continuously introduced between the feeding and taking-off rolls, and during this time the film is reheated from the circumferential direction and heated by internal pressure. In the method of expanding and simultaneously biaxially stretching, a tubular unstretched film with crystallinity kept below 10% is reheated to a temperature of 60 to 140°C, and then stretched to an area magnification of 4 to 36 times. A method for producing a tubular simultaneously biaxially stretched polyether/ether/ketone film.
JP59073554A 1984-04-11 1984-04-11 Manufacture of tubular simultaneous biaxial orientation polyether ketone film Granted JPS60217134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073554A JPS60217134A (en) 1984-04-11 1984-04-11 Manufacture of tubular simultaneous biaxial orientation polyether ketone film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073554A JPS60217134A (en) 1984-04-11 1984-04-11 Manufacture of tubular simultaneous biaxial orientation polyether ketone film

Publications (2)

Publication Number Publication Date
JPS60217134A JPS60217134A (en) 1985-10-30
JPH0334458B2 true JPH0334458B2 (en) 1991-05-22

Family

ID=13521573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073554A Granted JPS60217134A (en) 1984-04-11 1984-04-11 Manufacture of tubular simultaneous biaxial orientation polyether ketone film

Country Status (1)

Country Link
JP (1) JPS60217134A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137419A (en) * 1984-07-31 1986-02-22 Sumitomo Bakelite Co Ltd Biaxially oriented thermoplastic polyetherether ketone film
JPS6392430A (en) * 1986-10-08 1988-04-22 Mitsui Toatsu Chem Inc Manufacture of crystallized polyether ether ketone film
JP7175307B2 (en) * 2018-04-02 2022-11-18 グンゼ株式会社 heat shrink tubing

Also Published As

Publication number Publication date
JPS60217134A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
JP6032780B2 (en) Biaxially stretched polybutylene terephthalate film
US4629778A (en) Poly(p-phenylene sulfide) film and process for production thereof
CN110421939B (en) Polyolefin hot-slip heat shrinkable film with excellent slipping performance and preparation method thereof
JPH03124427A (en) Manufacture of styrene polymer film
US4519969A (en) Stretched fluorine type film and method for manufacture thereof
US4687615A (en) Method of producing biaxially oriented tubular polyetheretherketone films
CN103737937A (en) Processing method for increase longitudinal stretching strength of polyester heat shrinkage film
JPH0334458B2 (en)
US3869534A (en) Method for manufacturing stretched polyvinylidene fluoride films
US3915933A (en) Shrinkable films
JPH03130129A (en) Manufacture of biaxially oriented nylon 6-66 copolymer film
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
JPS62121032A (en) Biaxially oriented fluorine stretched film and its manufacture
JPS60187530A (en) Preparation of heat resistant polyether ketone film or sheet
KR0173730B1 (en) Manufacturing method of biaxially oriented polyester film
JP2569471B2 (en) Method for producing toughened polyester film
JPS5838302B2 (en) Polyolefin in film
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JPS60206621A (en) Vinylidene fluoride type resin film, manufacture thereof metallized film
JPS58208019A (en) Heat treatment for poly p-phenylene sulfide film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JPS597020A (en) Manufacture of poly-p-phenylenesulfide film
KR0173732B1 (en) Manufacturing method of biaxially oriented polyester film
KR0173731B1 (en) Manufacturing method of biaxially oriented polyester film
JPH0459131B2 (en)