JPS597020A - Manufacture of poly-p-phenylenesulfide film - Google Patents

Manufacture of poly-p-phenylenesulfide film

Info

Publication number
JPS597020A
JPS597020A JP57117498A JP11749882A JPS597020A JP S597020 A JPS597020 A JP S597020A JP 57117498 A JP57117498 A JP 57117498A JP 11749882 A JP11749882 A JP 11749882A JP S597020 A JPS597020 A JP S597020A
Authority
JP
Japan
Prior art keywords
film
heat
temperature
poly
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57117498A
Other languages
Japanese (ja)
Other versions
JPH022410B2 (en
Inventor
Takashi Kawamura
孝 川村
Toshinori Sugie
杉江 敏典
Fumihiro Furuhata
古畑 文弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP57117498A priority Critical patent/JPS597020A/en
Publication of JPS597020A publication Critical patent/JPS597020A/en
Priority to US06/816,312 priority patent/US4629778A/en
Publication of JPH022410B2 publication Critical patent/JPH022410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers

Abstract

PURPOSE:To obtain the titled film having a low heat shrinkability and a high crystallinity with good productivity, by heat-treating a biaxially orientated poly- p-phenylenesulfide film at a specified temperature while it is stretched, and then heat-treating the thus treated film under specified conditions. CONSTITUTION:Poly-p-phenylenesulfide is formed into a film under pressure and heating, then after the film is immersed into water to be cooled quickly to obtain a transparent unorientated film, the film is orientated biaxially in longitudinal and lateral directions. Then the biaxially orientated film is heat-treated at a temperature in the range of Tm (Tm stands for the meltin point of the film measured by a differential scanning calorimeter)-350 deg.C while the film is stretched, and then is heat-treated at a temperature in the range of 150-350 deg.C to be shrunk by 20% or less in one direction or two directions, or shrunk or stretched by 25% or more in two directions or while the length is kept constant, so that the intended film is obtained.

Description

【発明の詳細な説明】 本発明はポリp−フェニレンスルフィドフィルムの製造
方法に関するものであり、特に結晶化度が高く、熱収縮
率が小さく・ポリp−フェニレンスルフィドフィルムの
M遣方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a poly p-phenylene sulfide film, and particularly relates to a method for producing a poly p-phenylene sulfide film that has a high degree of crystallinity and a low heat shrinkage rate. be.

従来、ポリエチレンテレフタレート(以下P E 1’
と略す)フィルムは、その機械的特性、寸法安定性、電
気特性、透明性、耐薬品性などの良さを活かして絶縁用
フィルム、磁気テープのベースフィルム、写真用ベース
フィルム、包装用フィルムなど種々の分野で使用されて
(・る。しかし、PETフィルムは耐熱性に欠点があり
、その連続使用温度は耐熱タイプのもので130℃でし
かな℃・。酬熱性に優れるフィルムとしてポリイミドフ
ィルムが上布されており、その非常にすぐれた耐熱性を
利用して宇宙、航空機用素材や高級電気絶縁用フィルム
として使用されて(・る。そ1.て省エネルギーの重要
性や種々の産業機械の小型化、軽量化、高性能化などの
要求により、その用途および使用量は年々拡大されつつ
ある。しかし、このポリイミドフィルムは溶液製膜法に
より作られるため生産性が悪く、コストも高し・と(・
う欠点ケもって〜・る。そこで、PETフィルムより耐
熱性にすぐれ、かつ溶融成形可能な生産性の良いフィル
ムとして特開昭54−142275にみられるようにポ
リp−フェニレンスルフィドフィルムが提案されて℃・
る。このポリp−フェニレンスルフィドフィルムは耐薬
品性、耐熱性にお(・−?:PETフィルムより優れて
おり、また機械的特性も良く、物性上バランスの取れた
フィルムである。しかし、ポリp−フェニレンスルフィ
ドは結晶化速度が遅(・ために通常行われるTm以下で
の熱固定では結晶化2度が低く、熱収縮率が大き〜・と
〜・う欠点をもっており、これを改善するためには長時
間の熱固定な行う必要があり、連続生産する上で不利で
あった。
Conventionally, polyethylene terephthalate (hereinafter P E 1'
(abbreviated as ) film, which takes advantage of its mechanical properties, dimensional stability, electrical properties, transparency, chemical resistance, etc., to be used in a variety of applications such as insulating films, magnetic tape base films, photographic base films, and packaging films. However, PET film has a drawback in heat resistance, and its continuous use temperature is only 130℃ for heat-resistant types.Polyimide film is superior as a film with excellent heat dissipation properties. Due to its excellent heat resistance, it is used as a material for space and aircraft and as a high-grade electrical insulation film. Due to demands for lighter weight, higher performance, etc., its applications and usage are expanding year by year.However, since this polyimide film is made by solution casting, productivity is low and costs are high. (・
With all the flaws. Therefore, poly p-phenylene sulfide film was proposed as a film that has better heat resistance than PET film and can be melt-molded and has good productivity, as seen in JP-A-54-142275.
Ru. This poly p-phenylene sulfide film has better chemical resistance and heat resistance than PET film, and also has good mechanical properties, making it a film with well-balanced physical properties. Phenylene sulfide has a slow crystallization rate (・), so when it is normally heat-fixed below Tm, the degree of crystallization is low, and the heat shrinkage rate is large. It was necessary to heat-set for a long time, which was disadvantageous for continuous production.

本発明者らはこの点に注目し、鋭意研究した結果、特定
の条件下で熱処理することにより結晶化度が高く、熱収
縮率が小さくなり、一度Tm付近までフィルムな加熱し
ても物性の低下/IC少な〜・フィルムを短時間の熱処
JWで得られることな見℃・出して本発明に到達したも
のである。
The present inventors focused on this point, and as a result of intensive research, we found that by heat treatment under specific conditions, the degree of crystallinity is high and the heat shrinkage rate is low. The present invention was achieved by discovering that a film with low IC/IC could not be obtained by heat treatment for a short time.

すなわち、本発明は縦横の二方向に延伸し、配向させた
2 i1+延伸ポリp−フェニレンスルフィドフィルム
なマスTm〜350℃の温度範囲で緊張下に熱処理し、
次℃・で150〜350℃の温度範囲で一方向ある〜・
は二方向に25%以内の制限収縮もしくは伸長または定
長下で熱処理することな特徴とするポリp−フェニレン
スルフィドフィルムの製造方法を提供するものである。
That is, the present invention is a 2i1+ stretched poly p-phenylene sulfide film stretched in two directions (vertical and horizontal) and heat-treated under tension in a temperature range of Tm to 350°C,
There is one direction in the temperature range of 150 to 350 degrees Celsius.
provides a method for producing a poly p-phenylene sulfide film characterized by heat treatment under limited shrinkage or elongation or constant length within 25% in two directions.

本発明のポリp−フェニレンスルフィドはその90モル
%以上が構成単位べ3ΣS+からなるポリマーであるこ
とが好ましく、90モル%より少な℃・と結晶性が低下
する上処耐熱性、機械的特性などの低下をきたすのみな
らず、寸法安定性にも悪影響を与える。かかるポリp−
フェニレンスルフィドは10モル%未満であれば例えば
メタ結合ビフェニル結合(%◇−@−S −> 、ナフ
タレン結合(−(す1リーs−)、スルホン結合(忰O
3(〈ΣS −)、置換フェニレンスルフィド結合((
0Σ=8−1ここでRはアルキル、ニトロ、フェニル、
アルコキシ、スルホン、ハロゲン、カルボン酸、カルボ
ン酸の金属塩などである)、グ・− および前述の3官能フ工ニレンスルフイド結合(−)な
どな含有して〜・てもよ〜・。
The poly p-phenylene sulfide of the present invention is preferably a polymer in which 90 mol% or more of the constituent unit 3ΣS+ is used. Not only does this cause a decrease in dimensional stability, but it also has an adverse effect on dimensional stability. Such poly p-
If phenylene sulfide is less than 10 mol%, it can be used, for example, as a meta-bond biphenyl bond (%◇-@-S ->, a naphthalene bond (-(S1-S-)), a sulfone bond (忰O
3(〈ΣS −), substituted phenylene sulfide bond ((
0Σ=8-1 where R is alkyl, nitro, phenyl,
It may contain alkoxy, sulfone, halogen, carboxylic acid, metal salt of carboxylic acid, etc.), group, and the above-mentioned trifunctional fluorinated nylene sulfide bond (-).

コノようなポリp−フェニレンスルフィドな押出機、プ
レス等によりシートまたはフィルム状に成形した後、液
体チッ素、水、ロール等な使用して急冷することKより
密度が1,6ろOS/2以下となり、はとんど非晶質の
未延伸フィルムが得られる。未延伸フィルムの結晶化が
進行して℃・ると延伸性h″−−低下延伸時にフィルム
の破断が生じやすくなる。
Poly p-phenylene sulfide is formed into a sheet or film using an extruder or press, and then quenched using liquid nitrogen, water, a roll, etc. to a density of 1.6~OS/2. As a result, an almost amorphous unstretched film is obtained. When crystallization of the unstretched film progresses to .degree. C., the stretchability h'' decreases and the film becomes more likely to break during stretching.

未延伸フィルムの延伸温度はポリマーの分子用や成分に
よって多少の相違はあるが、通常ポリマーのガラス転移
温度付近が望まし℃・。具体的には80〜120℃、好
ましくは90〜110℃である。延伸方法としては通常
用いられて℃・るロール法、テンター法、チューブラ−
法などによる延伸方法が便利である。延伸倍率は得られ
るフィルムの物性、生産性からみて2.5〜ZO倍、好
ましくは6.0〜5.5倍とするのが良く、同時二軸延
伸、遂次二軸延伸のどちらを用〜・でも良〜・。
The stretching temperature for an unstretched film varies somewhat depending on the polymer molecules and components, but it is usually desirable to be near the glass transition temperature of the polymer. Specifically, the temperature is 80 to 120°C, preferably 90 to 110°C. Commonly used stretching methods include the °C roll method, tenter method, and tubular method.
It is convenient to use a stretching method such as a stretching method. The stretching ratio is preferably 2.5 to ZO times, preferably 6.0 to 5.5 times, in view of the physical properties and productivity of the resulting film.Which is used: simultaneous biaxial stretching or sequential biaxial stretching. ~・But it’s okay~・.

このよりにして得られた2軸延伸フイルムは透明性が失
われずに結晶化度が上げられるためにTm−350℃、
好ましくはTm−660℃の温度範囲で通常、120秒
以内の時間で緊張下に熱処理される。ここでTmは2軸
延伸直後のフィルムの示差走査熱量計(以下、DSCと
略す)により得られた融点である。この際、350℃な
越える熱処狸温度では熱処理時間を短かくしてもフィル
ムが溶融状態になり、フィルムの形状を保つことができ
な(なる。Tm−350℃の熱処理温度であれば120
秒以内で熱処理時間ケ適度に調整することKより、フィ
ルムが溶融状態にならず熱固定ができる。
The biaxially stretched film obtained in this manner increases the crystallinity without losing transparency, so Tm - 350 ° C.
Preferably, the heat treatment is carried out under tension in a temperature range of Tm-660°C, usually for a time of 120 seconds or less. Here, Tm is the melting point obtained by a differential scanning calorimeter (hereinafter abbreviated as DSC) of the film immediately after biaxial stretching. At this time, if the heat treatment temperature exceeds 350℃, the film will become molten even if the heat treatment time is shortened, and the shape of the film cannot be maintained.
By appropriately adjusting the heat treatment time to within seconds, the film can be heat-set without becoming molten.

このようにして熱固定されたフィルムは、例えば室温か
ら徐々罠昇温する方法、高温雰囲気圧直接接触させる方
法などで熱収縮率な測定した場合、大きな値を示す事が
あり、加熱下で使用される素材としては好ましくな(・
場合がある。
Films that have been heat-set in this way may show a large value when the heat shrinkage rate is measured, for example by gradually increasing the temperature from room temperature or by directly contacting the film with high temperature atmospheric pressure, so it may not be used under heating. (・
There are cases.

しかし、このような熱固定後のフィルムを150℃〜3
50℃、好ましくは200℃〜350℃の温度範囲で一
方向ある(・は二方向に25%以内、好ましくは15%
以内の制限収縮もしくは伸長または定長下で10分以内
の時間内で適度に加熱することにより熱収縮率な小さく
し、加熱下における寸法安定性を向上させることができ
る。
However, such a film after heat setting is heated to 150℃~3
50℃, preferably 200℃ to 350℃ in one direction (・ is within 25% in two directions, preferably 15%
By appropriately heating within 10 minutes under limited shrinkage or elongation or at a constant length, the thermal shrinkage rate can be reduced and the dimensional stability under heating can be improved.

この際熱処理温度が350℃ケ越えると熱処理時間な短
かくしてもフィルムh’s溶融状態釦なり、フィルムの
形体な保つことができなくなってしまう。熱処理温度が
350 ’C以下であれば熱処理時間な10分以内の時
間内で適度の調を 義こと圧より熱処理な行うことができる。またこの際、
収縮を25%以上起すような状態で熱処理するとフィル
ムの平面性な悪くする。また25%以上の伸長下の熱処
理では得られるフィルムの熱収縮率が大きくなってしま
う。このよう圧して熱処理されたフィルムは、必要に応
じてさらに150〜550℃で定長下で熱処理すること
はさしつかえなし・。本発明における熱処理は加熱され
た気体、液体あるいは固体と熱処理前のフィルムを接触
させること圧よって行われる。又、赤外線ヒーターなど
のような輻射、超音波もしくは高周波の照射な利用する
こともできる。本発明における熱処理の「温度」および
「時間」とは媒体使用の場合には加熱媒体の温度および
加熱媒体との接触時間のことであり、また、赤外線ヒー
ター、超音波、高周波使用の場合にはフィルム温度およ
び処理時間である。このよう処して得られる本発明のフ
ィルムは結晶化度が高く、加熱下における寸法安定性が
すぐれ、また、Tm付近まで加熱しても白化やぜt・化
を起さず、物性の低下もすくな℃・。
At this time, if the heat treatment temperature exceeds 350° C., even if the heat treatment time is shortened, the film will remain in a molten state and the film will not be able to maintain its shape. If the heat treatment temperature is 350'C or less, a suitable degree of heat treatment can be achieved within a heat treatment time of 10 minutes or less. Also at this time,
If heat treatment is performed in a state that causes shrinkage of 25% or more, the flatness of the film will deteriorate. Further, heat treatment under elongation of 25% or more increases the thermal shrinkage rate of the resulting film. The film heat-treated under pressure may be further heat-treated at 150 to 550° C. under a fixed length if necessary. The heat treatment in the present invention is carried out by bringing the film before heat treatment into contact with a heated gas, liquid or solid. It is also possible to use radiation such as an infrared heater, ultrasonic waves, or high frequency irradiation. In the present invention, the "temperature" and "time" of heat treatment refer to the temperature of the heating medium and the contact time with the heating medium in the case of using a medium, and in the case of using an infrared heater, ultrasonic wave, or high frequency, film temperature and processing time. The film of the present invention obtained by this process has a high degree of crystallinity and excellent dimensional stability under heating, and even when heated to around Tm, it does not cause whitening or tarnishing, and there is no deterioration in physical properties. Sukuna ℃・.

本発明のフィルムは耐熱性、寸法安定性、機械的特性に
すぐれるため電気絶縁用フィルム、磁気記録用フィルム
として最適である。例えばフレキシブルプリント配線板
用ベースフィルム、車輌用モーター、冷凍機用モーター
などの各種回転機、ある〜・は各種静止器などの絶縁材
料として、また一般ケーブル、高圧、超高圧ケーブルの
被覆用絶縁材料、磁気テープ用ベースフィルム、コンデ
ンサー用フィルムとして有用である。その他、包装用、
農業用、写真用、粘着テープ用ベース、建材用、装飾用
などのフィルム素材として使用できる。また、他のフィ
ルムとのラミネート、金属や紙などとの組合せによる複
合材としての使用も可能である。
The film of the present invention has excellent heat resistance, dimensional stability, and mechanical properties, and is therefore most suitable as an electrically insulating film or a magnetic recording film. For example, it can be used as a base film for flexible printed wiring boards, insulating materials for various rotating machines such as vehicle motors and refrigerator motors, and various stationary devices, as well as insulating materials for covering general cables, high voltage, and ultra-high voltage cables. It is useful as a base film for magnetic tapes and a film for capacitors. Others, for packaging,
It can be used as a film material for agriculture, photography, adhesive tape bases, building materials, decorations, etc. It is also possible to use it as a composite material by laminating it with other films or by combining it with metals, paper, etc.

本発明に於ける物性の種類およびその測定方法につ〜・
で述べる。
Types of physical properties and methods of measuring them in the present invention
It will be described in

(1,1ガラス転移温度およびTm ガラス転移温度は延伸前の未延伸非晶フィルム又はシー
トな、Tmは2軸延伸直後のフィルムをそれぞれ測定用
試料としてDSCを用(・て常法により測定した。
(1,1 Glass transition temperature and Tm The glass transition temperature was measured using DSC using the unstretched amorphous film or sheet before stretching, and the Tm was measured using a film immediately after biaxial stretching, respectively, using DSC as the measurement sample (. .

(2)密度および結晶化度(Xc) 密度は臭化リチウム水溶液を用℃・て密度勾配管により
求めた。結晶化度(Xe)は上述した密度を用(・て密
度法により求めムすなわちXeは一般に次の式(11に
より求められる。
(2) Density and crystallinity (Xc) Density was determined using a lithium bromide aqueous solution at °C using a density gradient tube. The degree of crystallinity (Xe) is determined by the density method using the density described above. In other words, Xe is generally determined by the following equation (11).

式(1)にお(・てd、 dcr%damはそれぞれ試
料の密度、結晶相の密度、非晶相の密度である。ここで
der、 damはEur、Po1y、Jo、7.11
27(1971)で求められて(・る値を用いた。すな
わち、da t = 1.43017cm”、dam 
= 1.320 、lit/cm’である。
In formula (1), d and dcr%dam are the density of the sample, the density of the crystalline phase, and the density of the amorphous phase, respectively. Here, der and dam are Eur, Poly, Jo, and 7.11
27 (1971) and used the value of
= 1.320, lit/cm'.

(3)熱収縮率 熱収縮率は熱固定後のフィルムの幅5朋、長さ100m
mに切り出し、50朋の標線を設け、所定の温度に保っ
た乾燥機に弛緩状態で10分間保持した後、フィルムの
標線間隔を測定して求めた。
(3) Heat shrinkage rate The heat shrinkage rate is 5 m in width and 100 m in length of the film after heat setting.
The film was cut out to a length of 50 mm, marked with a 50 mm mark, and kept in a relaxed state for 10 minutes in a dryer kept at a predetermined temperature, and then the distance between the marks was measured.

(4)引張試験 引張試験のサンプルは熱固定後のフィルムを幅5朋、長
さ100〜150酊に切り出し、所定の温度に保った乾
燥機に弛緩状態で10分間熱処理したフィルムな用〜・
、評価方法として核熱処理前のフィルムに対する破断強
度(引張強度)、伸び、F−5値の保持率を求めた。引
張試験はテンシロン引張試験機にて試長50朋になるよ
うにグリップで保持し、引張速度200%/分で伸長し
た。この際サンプルの温度は23℃に保った。
(4) Tensile test The sample for the tensile test is a film that has been heat-set, cut out into 5 mm width and 100-150 mm length, and heat-treated in a dryer kept at a predetermined temperature for 10 minutes in a relaxed state.
As an evaluation method, the breaking strength (tensile strength), elongation, and F-5 value retention of the film before nuclear heat treatment were determined. The tensile test was carried out using a Tensilon tensile testing machine, where the sample was held with a grip to a sample length of 50 mm and stretched at a tensile rate of 200%/min. At this time, the temperature of the sample was maintained at 23°C.

◎F5値 引張試験にお℃・てフィルムの伸びが5%であるときの
引張応力である。
◎F5 value This is the tensile stress when the elongation of the film is 5% at °C in the tensile test.

(5)弛緩率 2回目の熱固定の際のフィルムの収縮の度合で表わす。(5) Relaxation rate It is expressed as the degree of shrinkage of the film during the second heat setting.

実施例1〜6、比較例1〜3 51オートクレーブにN−メチルピロリドン1.8kg
と硫化ナトリウム2.7水塩o5ゆおよび安息香酸ナト
リウム0.6ユ、水酸化ナトリウム1.6gk仕込み、
窒素雰囲気下で200℃まで約2時間かけて攪拌しなが
ら徐々に昇温し、105dの水?留出させた。反応系を
170℃に冷却した後、p−ジクロルベンゼン0.6 
kgトN−メチルピロリドン0.4kpk加え、220
’Cで2時間、次L−で250’Cで3時間反応させた
。重合終了時の内圧は6.7に9/crr?であった。
Examples 1 to 6, Comparative Examples 1 to 3 51 1.8 kg of N-methylpyrrolidone in an autoclave
and sodium sulfide 2.7 hydrate O5, sodium benzoate 0.6 yu, and sodium hydroxide 1.6 gk,
Under a nitrogen atmosphere, the temperature was gradually raised to 200°C while stirring for about 2 hours, and 105 d of water was heated to 200°C. I distilled it out. After cooling the reaction system to 170°C, p-dichlorobenzene 0.6
kg and N-methylpyrrolidone 0.4kpk added, 220
The reaction was carried out at 250'C for 2 hours and then at 250'C for 3 hours. The internal pressure at the end of polymerization is 6.7 to 9/crr? Met.

反応系を冷却後、内容物をP別し、得られた固形分な熱
水で6回、さらにアセトンで2回洗浄した後、120’
Cで3時間乾燥させて灰白色で粒状のポリマーな得へこ
のポリマーの固有粘度〔η〕をα−クロルナフタリンを
用し・て温度206℃、濃度0.4 g/10 CDl
テ測定したところ061であった。
After cooling the reaction system, the contents were separated with P, and the resulting solid content was washed six times with hot water and further twice with acetone, and then heated to 120'
The intrinsic viscosity [η] of this polymer was determined using α-chlornaphthalene at a temperature of 206°C and a concentration of 0.4 g/10 CDl.
When I measured it, it was 061.

このポリマーに310’cでプレス製膜後、水中へ急冷
して透明な厚さ400μmの未延伸シートを得た。この
シートの密度はt321.9/α3であり、はとんど非
晶質であった。このシートのガラス転移温度なりSCを
用〜・て昇温速度10℃/pninで測定したところ8
9℃であっ池この非品性未延伸シー)’に95℃で6,
5×3.5倍の同時二軸延伸を行った。このフィルムの
TmQ昇温速度10’C/min テDSCで測定した
ところ287℃であっtうこのフィルムな表−1に示す
ような種々の条件で熱固定を行い、種々の物性を測定し
Iム 表−1に示されたように本発明のフィルムは熱収縮率が
小さく、Tm付近まで加熱しても物性の低下が少なく、
耐熱性が良(・ことが判明した。
This polymer was press-formed at 310'c and then rapidly cooled in water to obtain a transparent unstretched sheet with a thickness of 400 μm. The density of this sheet was t321.9/α3, and it was mostly amorphous. The glass transition temperature or SC of this sheet was measured at a heating rate of 10°C/pnin.
6 at 95°C and then at 95°C.
Simultaneous biaxial stretching of 5×3.5 times was performed. The temperature of this film was measured at 287°C using a TmQ temperature increase rate of 10'C/min. As shown in Table 1, the film of the present invention has a small thermal shrinkage rate, and its physical properties do not deteriorate much even when heated to around Tm.
It was found that it has good heat resistance.

実施例7、比較例4 モノマートシてp−ジクロルベンゼン585g、1,2
゜4−トリクロルベンゼン2.2gを使用する他は、実
施例1〜6と同様な条件で重合を行〜・、灰白色で粒状
のポリマーな得た。このポリン5固有粘度〔η〕な実施
例1〜3と同様な条件で測定したところ0.45であっ
た。
Example 7, Comparative Example 4 Monomer and p-dichlorobenzene 585g, 1,2
Polymerization was carried out under the same conditions as in Examples 1 to 6, except that 2.2 g of 4-trichlorobenzene was used, and a grayish-white, granular polymer was obtained. The intrinsic viscosity [η] of this Porin 5 was measured under the same conditions as in Examples 1 to 3 and was found to be 0.45.

このポリマーを610℃でプレス製膜後、水中へ急冷し
、透明な厚さ400μmの未延伸シートな得た。このシ
ートの密度は1.322 g/lyn”であり、はとん
ど非晶質であった。
This polymer was press-formed at 610° C. and then rapidly cooled in water to obtain a transparent unstretched sheet with a thickness of 400 μm. The density of this sheet was 1.322 g/lyn'' and was mostly amorphous.

このシートのガラス転移温度を実施例1〜3と同様に測
定したところ90℃であった。この非品性未延伸シート
を95℃で3.5倍(MD)X4.0倍(TD)の遂次
二軸延伸を行った。このフィルムのTmを実施例1〜3
と同様に測定したところ281℃であった。
The glass transition temperature of this sheet was measured in the same manner as in Examples 1 to 3 and was found to be 90°C. This unstretched sheet was subjected to sequential biaxial stretching of 3.5 times (MD) x 4.0 times (TD) at 95°C. The Tm of this film was determined in Examples 1 to 3.
When measured in the same manner as above, the temperature was 281°C.

このフィルムを300℃で20秒間緊張下で熱固定し、
次(・で250℃で15秒間5%のリラックス処理な行
った。
This film was heat-set under tension at 300°C for 20 seconds,
Next, a 5% relaxation treatment was performed at 250°C for 15 seconds.

比較例として250℃で20秒間緊張下で熱固定した後
、同温度で15秒間5%のリラックス処理な行った。こ
れらのフィルムの物性を実施例1〜3と同様に測定し、
表−2に示した。表−2に示されるように本発明のフィ
ルムは熱収縮率が小さく、かつ耐熱性が良好であること
が判明した。
As a comparative example, after heat setting under tension at 250° C. for 20 seconds, a 5% relaxation treatment was performed at the same temperature for 15 seconds. The physical properties of these films were measured in the same manner as in Examples 1 to 3,
It is shown in Table-2. As shown in Table 2, the film of the present invention was found to have a small thermal shrinkage rate and good heat resistance.

表−2 注)熱収縮率、引張強度保持率、伸度保持率、F−5値
保持率はMD力方向長さ方向として切り出したフィルム
を用〜・た。
Table 2 Note: Heat shrinkage rate, tensile strength retention rate, elongation retention rate, and F-5 value retention rate were determined using films cut out in the MD force direction and length direction.

Claims (1)

【特許請求の範囲】[Claims] 縦横の二方向に延伸し、配向させた2軸延伸ポリp−フ
ェニレンスルフィドフィルムをi スTm ’C(Tm
 : 示差走査熱量計で測定されるフィルムの融点)〜
350℃の温度範囲にて緊張下に熱処理し、次〜・で1
50〜350’Cの温度範囲で一方向ある(・は二方向
に25%以内の制限収縮もしくは伸長または定長下で熱
処理することを特徴とするポリp−フェニレンスルフィ
ドフィルムの製造方法。
A biaxially stretched poly p-phenylene sulfide film that has been stretched and oriented in two directions (vertical and horizontal) is
: Melting point of the film measured by differential scanning calorimeter) ~
Heat treated under tension in a temperature range of 350℃, then
A method for producing a poly p-phenylene sulfide film, characterized in that heat treatment is carried out in a temperature range of 50 to 350'C under limited shrinkage or elongation or constant length within 25% in one direction (.).
JP57117498A 1982-05-20 1982-07-06 Manufacture of poly-p-phenylenesulfide film Granted JPS597020A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57117498A JPS597020A (en) 1982-07-06 1982-07-06 Manufacture of poly-p-phenylenesulfide film
US06/816,312 US4629778A (en) 1982-05-20 1986-01-06 Poly(p-phenylene sulfide) film and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117498A JPS597020A (en) 1982-07-06 1982-07-06 Manufacture of poly-p-phenylenesulfide film

Publications (2)

Publication Number Publication Date
JPS597020A true JPS597020A (en) 1984-01-14
JPH022410B2 JPH022410B2 (en) 1990-01-18

Family

ID=14713220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117498A Granted JPS597020A (en) 1982-05-20 1982-07-06 Manufacture of poly-p-phenylenesulfide film

Country Status (1)

Country Link
JP (1) JPS597020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189026A (en) * 1984-08-07 1986-05-07 バイエル・アクチエンゲゼルシヤフト Monoaxial and biaxial stretched film made of polyphenylene sulfide
JPS63227323A (en) * 1987-03-18 1988-09-21 Hitachi Ltd Method and apparatus for simultaneous biaxial stretching of sheet-like article
JP2002249736A (en) * 2001-02-22 2002-09-06 Nitto Denko Corp Adhesive tape for setting wound capacitor element
JP5059812B2 (en) * 2009-07-30 2012-10-31 京楽産業.株式会社 Game machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534967A (en) * 1978-09-05 1980-03-11 Toray Ind Inc Method of manufacturing poly-p-phenylene sulfide film
JPS5662126A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Manufacture of polyphenylene sulfide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534967A (en) * 1978-09-05 1980-03-11 Toray Ind Inc Method of manufacturing poly-p-phenylene sulfide film
JPS5662126A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Manufacture of polyphenylene sulfide film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189026A (en) * 1984-08-07 1986-05-07 バイエル・アクチエンゲゼルシヤフト Monoaxial and biaxial stretched film made of polyphenylene sulfide
JPS63227323A (en) * 1987-03-18 1988-09-21 Hitachi Ltd Method and apparatus for simultaneous biaxial stretching of sheet-like article
JPH0523582B2 (en) * 1987-03-18 1993-04-05 Hitachi Seisakusho Kk
JP2002249736A (en) * 2001-02-22 2002-09-06 Nitto Denko Corp Adhesive tape for setting wound capacitor element
JP5059812B2 (en) * 2009-07-30 2012-10-31 京楽産業.株式会社 Game machine

Also Published As

Publication number Publication date
JPH022410B2 (en) 1990-01-18

Similar Documents

Publication Publication Date Title
Cakmak et al. Processing characteristics, structure development, and properties of uni and biaxially stretched poly (ethylene 2, 6 naphthalate)(PEN) films
US4286018A (en) Biaxially oriented poly-p-phenylene sulfide films
KR930002990B1 (en) Polyimide film and preparation process of the film
US5529740A (en) Process for treating liquid crystal polymer film
JP6303046B2 (en) Method for producing graphite film
US4629778A (en) Poly(p-phenylene sulfide) film and process for production thereof
JPS597020A (en) Manufacture of poly-p-phenylenesulfide film
JPH0244706B2 (en)
JP2005330470A (en) Polybenzazol film
JPH07165915A (en) Aromatic polyamide-imide-based film
JPS58208019A (en) Heat treatment for poly p-phenylene sulfide film
JPH05169526A (en) Thermal treatment of thermoplastic polyimide stretched film
JPS595099B2 (en) Method for producing polyP-phenylene sulfide film
US4687615A (en) Method of producing biaxially oriented tubular polyetheretherketone films
JPH01158049A (en) Heat-resistant film and production thereof
JPH022409B2 (en)
JPS5944968B2 (en) Method for producing polyP-phenylene sulfide film
JPS63256422A (en) Manufacture of polyether ether ketone film
Hsiung et al. Optical Properties and Orientation Development in Uniaxially Stretched Syndiotactic Polystyrene from Amorphous Precursors: On-line Deformation Behavior
JPH044133B2 (en)
JP2909644B2 (en) Polyetherketone copolymer film
JPH06370B2 (en) Method for producing polyetheretherketone film
JPH0334458B2 (en)
JPH0564090B2 (en)
JPS6253339A (en) Production of film consisting of heterocyclic aromatic polymer