JPH044133B2 - - Google Patents

Info

Publication number
JPH044133B2
JPH044133B2 JP57085293A JP8529382A JPH044133B2 JP H044133 B2 JPH044133 B2 JP H044133B2 JP 57085293 A JP57085293 A JP 57085293A JP 8529382 A JP8529382 A JP 8529382A JP H044133 B2 JPH044133 B2 JP H044133B2
Authority
JP
Japan
Prior art keywords
film
length
width
elongation
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57085293A
Other languages
Japanese (ja)
Other versions
JPS58201617A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57085293A priority Critical patent/JPS58201617A/en
Publication of JPS58201617A publication Critical patent/JPS58201617A/en
Priority to US06/816,312 priority patent/US4629778A/en
Publication of JPH044133B2 publication Critical patent/JPH044133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0231Polyarylenethioethers containing chain-terminating or chain-branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱老化性、機械特性、耐熱寸法安定
性にすぐれた性質を有するポリp−フエニレンス
ルフイドフイルムに関するものである。 近年の電子、電気機器の技術的進歩および用途
拡大は著しく、電子機器の高性能化、信頼性の向
上、小型軽量化と低価格化が急速に進められてい
る。そのため使用されるフイルム素材に対する機
械的、電気的特性、高度な寸法安定などについて
の要求も次第に厳しくなつてきている。現在、耐
熱性フイルムとしてポリイミドが使われているが
価格の高いこと、耐薬品性の悪いことなどの短所
が多い。又、ポリエチレンテレフタレートフイル
ムも使用されている。このフイルムは低価格であ
り、機械的、電気的特性ならびに耐薬品性もすぐ
れているが、融点が260℃付近と低いため260℃前
後でのハンダ付加工法による電子部品の実装工程
を行なうことができず耐熱性に問題がある。 本発明はこれら既存のフイルムの欠点を補い機
械的特性、電気的特性及び耐熱性の各特性にバラ
ンスのとれたフイルムを提供せんとするものであ
り、特に熱時の寸法安定性に極めてすぐれた特性
を有するフイルムを提供するものである。 すなわち、本発明は繰返し単位
The present invention relates to a poly p-phenylene sulfide film having excellent heat aging resistance, mechanical properties, and heat resistant dimensional stability. 2. Description of the Related Art In recent years, technological progress and expansion of applications of electronic and electrical devices have been remarkable, and electronic devices are rapidly becoming more sophisticated, more reliable, smaller, lighter, and less expensive. For this reason, requirements for mechanical and electrical properties, high dimensional stability, etc. for the film materials used are becoming increasingly strict. Currently, polyimide is used as a heat-resistant film, but it has many disadvantages such as high price and poor chemical resistance. Polyethylene terephthalate film has also been used. This film is inexpensive and has excellent mechanical and electrical properties as well as chemical resistance, but its melting point is low at around 260°C, making it difficult to mount electronic components by soldering at around 260°C. There is a problem with heat resistance. The present invention aims to compensate for the drawbacks of these existing films and provide a film that is well-balanced in mechanical properties, electrical properties, and heat resistance, and in particular has extremely excellent dimensional stability under heat. The purpose of the present invention is to provide a film having these characteristics. That is, the present invention

【式】を90モル%以上含むポリp −フエニレンスルフイルドフイルムであつて、そ
のポリマーの溶液粘度が0.12dl/g以上であり、
かつこのフイルムより縦方向および横方向に巾10
mm、長さ100〜150mmに切り出し、270℃で10分間
弛緩状態で熱処理した後、23℃、200%/分の速
度で伸長した時の引張強度、伸度5%時の反応
(以下、F−5値とする)、伸度の各値が該熱処理
前のフイルムを同条件で引張試験したときの引張
強度、F−5値、伸度の各値と比較し、それぞれ
60%以上、80%以上、80〜120%の保持率を有す
る2軸配向ポリp−フエニレンスルフイドフイル
ムを提供するものである。 本発明に使用する重合体は一般式
A poly p-phenylene sulfide film containing 90 mol% or more of [Formula], the solution viscosity of the polymer is 0.12 dl/g or more,
Width 10 in the vertical and horizontal directions from this film
mm, length 100 to 150 mm, heat treated at 270°C for 10 minutes in a relaxed state, and then stretched at 23°C at a rate of 200%/min. Tensile strength, reaction at 5% elongation (hereinafter referred to as F -5 value), each value of elongation was compared with each value of tensile strength, F-5 value, and elongation when the film before heat treatment was subjected to a tensile test under the same conditions.
The present invention provides a biaxially oriented poly p-phenylene sulfide film having a retention rate of 60% or more, 80% or more, and 80 to 120%. The polymer used in the present invention has the general formula

【式】で示される単位を90モル% 以上含むものであり、その重合方法は芳香族ジハ
ロゲン化物を硫化して合成する方法、チオフエノ
ール塩を脱塩する方法などがある。工業的にはp
−ジクロルベンゼンなどのp−ジハロベンゼンと
硫化ソーダをN−メチルピロリドン等のアミド系
極性溶媒中で縮重合反応を行つて得る方法が最も
好ましい。又、本発明のフイルムのポリマー成分
はその溶液粘度がα−クロルナフタリンを溶剤と
して温度206℃、濃度0.4g/100mlの時の値が
0.12dl/g以上、好ましくは0.12〜1.0dl/gであ
る。このような溶液粘度がポリフエニレンスルフ
イド系ポリマーを得るのに例えば次の3つの方法
が挙げられる。第1には重合時に酢酸リチウム、
酢酸ナトリウム、酢酸カルシウム、安息香酸ナト
リウム、安息香酸リチウムなどのカルボン酸アル
カリ金属塩、アルカリ土類金属塩などをモノマー
の10〜150モル%程度の量を添加して、生成ポリ
マーの分子量を上げる方法がある。第2には重合
時にモノマーとしてp−ジクロベンゼンなどの2
官能性化合物以外に例えば1,2,4−トリクロ
ルベンゼンを使用しポリマーに多少架橋構造を導
入して溶液粘度を上昇させる方法があり、主とし
て第1の方法と併用して用いられる。この場合3
官能性モノマーの主モノマーに対する混合比は多
くとも10モル%以下、好ましくは1モル%以下で
あることがこのましい。第3の方法としては重合
した低溶液粘度のポリマーを200℃から融点以下
の温度範囲で空気中にさらすことにより酸化架橋
を促進させ、ポリマーの溶液粘度を上昇する方法
がある。しかし、この方法も第1の方法と併用す
る場合は好ましい場合もあるが、重合直後の溶液
粘度があまり低いポリマーを本法で酸化架橋して
使用することは本発明にとつて好ましくない。例
えば溶液粘度0.10のものを酸化架橋によつて溶液
粘度0.30dl/g以上のポリマーとして使用しても
ほとんど延伸できないポリマーとなる。尚、第2
および第3の方法は本発明の原料としてのポリマ
ーに架橋構造を適度に導入する場合には好ましい
が、あまり極端に架橋構造を導入するとポリマー
が溶融時および延伸時にゴム弾性を示すようにな
り、平面性の悪いフイルムしか得られなかつた
り、延伸性が悪くなつたりして本発明にあるよう
な特性をもつフイルムが得られなくなる場合が多
い。 本発明を満足するためにはパラフエニレンスル
フイド単位が90モル%以上ポリマーに存在するこ
とが必要であり、10モル%未満であれば例えばメ
タ結合
It contains 90 mol% or more of the unit represented by the formula, and its polymerization methods include a method of synthesizing by sulfiding an aromatic dihalide and a method of desalting a thiophenol salt. Industrially p
The most preferred method is to perform a polycondensation reaction of p-dihalobenzene such as -dichlorobenzene and sodium sulfide in an amide polar solvent such as N-methylpyrrolidone. Furthermore, the solution viscosity of the polymer component of the film of the present invention is as follows when using α-chlornaphthalene as a solvent at a temperature of 206°C and a concentration of 0.4 g/100 ml.
It is 0.12 dl/g or more, preferably 0.12 to 1.0 dl/g. For example, the following three methods can be used to obtain a polyphenylene sulfide polymer having such a solution viscosity. First, lithium acetate during polymerization,
A method of increasing the molecular weight of the resulting polymer by adding carboxylic acid alkali metal salts, alkaline earth metal salts, etc. such as sodium acetate, calcium acetate, sodium benzoate, lithium benzoate, etc. in an amount of about 10 to 150 mol% of the monomer. There is. Secondly, 2 such as p-diclobenzene is used as a monomer during polymerization.
In addition to functional compounds, there is a method of increasing the solution viscosity by introducing some crosslinked structure into the polymer using, for example, 1,2,4-trichlorobenzene, which is mainly used in combination with the first method. In this case 3
The mixing ratio of the functional monomer to the main monomer is preferably at most 10 mol %, preferably 1 mol % or less. A third method is to expose a polymer having a low solution viscosity to air at a temperature ranging from 200° C. to below the melting point to promote oxidative crosslinking and increase the solution viscosity of the polymer. However, although this method may be preferable when used in combination with the first method, it is not preferable for the present invention to use a polymer whose solution viscosity immediately after polymerization is too low after being oxidatively crosslinked by this method. For example, even if a polymer having a solution viscosity of 0.10 is used as a polymer having a solution viscosity of 0.30 dl/g or more by oxidative crosslinking, the polymer becomes almost impossible to stretch. Furthermore, the second
The third method is preferable when a moderate amount of crosslinked structure is introduced into the polymer as a raw material of the present invention, but if the crosslinked structure is introduced too drastically, the polymer will exhibit rubber elasticity when melted and stretched. In many cases, a film with poor flatness or stretchability may be obtained, making it impossible to obtain a film with the characteristics of the present invention. In order to satisfy the present invention, it is necessary that paraphenylene sulfide units exist in the polymer at 90 mol% or more, and if it is less than 10 mol%, for example, meta bonds

【式】エーテル結合[Formula] Ether bond

【式】ビフエニル結 合[Formula] Biphenyl linkage If

【式】ナフタレン結合[Formula] Naphthalene bond

【式】スルホン結合[Formula] Sulfone bond

【式】置換フエニ スルフイド結合[Formula] Substituted Feni sulfide bond

【式】ここでRは アルキル、ニトロ、フエニル、アルコキシ、スル
ホン、ハロゲン、カルボン酸、カルボン酸の金属
塩などである)、および前述の3官能フエニルス
ルフイド結合
[Formula] where R is alkyl, nitro, phenyl, alkoxy, sulfone, halogen, carboxylic acid, metal salt of carboxylic acid, etc.), and the aforementioned trifunctional phenyl sulfide bond.

【式】などを含有し ていてもよい。 本発明の原料として上記のようなポリマーが使
用されるが、これに滑剤、酸化防止剤、紫外線吸
収剤、可塑剤、着色剤などの添加剤を混合した
り、また本発明の目的をそこなわない範囲のポリ
マーや無機の充填剤を調合して使用することは一
向に差しつかえない。 本発明のフイルムを製造するには、まず上記原
料を押出機、プレス等によりシートまたはフイル
ム状に形成した後液体窒素、水、ロール等を使用
して急冷することにより密度が1.330g/cm3以下
であるほとんど非晶質の未延伸フイルムを得る。
未延伸フイルムの結晶化が進行していると延伸性
が低下し、延伸時にフイルムの破断が生じやすく
なる。 次に延伸を行う。延伸温度はポリマーの分子量
や成分によつて多少の相違はあるが、通常ポリマ
ーのガラス転移温度付近が望ましい。具体的には
80〜120℃、好ましくは90〜110℃である。延伸方
法として通常用いられているロール法、テンター
法、チユーブラー法などによる延伸方法が便利で
ある。延伸倍率は得られるフイルムの物性および
生産性から見て2.5〜7倍、好ましくは2.5〜6倍
とするのがよく、同時2軸延伸或いは逐次延伸の
どちらを用いてもよい。 このようにして2軸延伸されたフイルムは密度
を上昇させ寸法安定性、耐熱性、機械強度などを
向上させるため、特に本発明のフイルムが必須に
保有すべき機械特性を満足させるために熱処理を
行い、結晶化させる必要がある。熱処理条件とし
ては融点(Tm)以上350℃以下、好ましくはTm
〜340℃の温度範囲で120秒以下の時間で緊張下に
行う必要がある。この熱処理により耐熱性、寸法
安定性に優れたポリp−フエニレンスルフイドフ
イルムが得られる。ここで融点(Tm)は2軸延
伸直後のフイルムのDSC(示差走査熱量計)によ
り得られた融点である。この際350℃を越える熱
処理温度では熱処理時間を短くしてもフイルムが
溶融状態になりフイルムの形状を保つことができ
なくなる。Tm〜350℃の温度範囲であれば120秒
以内で熱処理時間を適度に調整することによりフ
イルムが溶融状態にならず熱固定ができる。 本発明のフイルムを得るにあたつて必要に応じ
て上述の如き熱処理工程の前後に150〜350℃の温
度範囲で、好ましくは200〜340℃の温度範囲で一
方向あるいは二方向に25%以内、好ましくは15%
以内の制限収縮もしくは伸長または定長下、10分
以内の時間内で適度にフイルムを処理することに
より、熱収縮を小さくし加熱下における寸法安定
性を向上させることもできる。 上記熱処理は加熱された気体、液体あるいは固
体と熱処理前のフイルムとを接触させることによ
つて行われる。又、赤外線ヒーターなどのような
幅射、超音波もしくは高周波の照射を利用するこ
ともできる。本発明における熱処理の「温度」お
よび「時間」とは媒体使用の場合には加熱媒体の
温度および加熱媒体への接触時間のことであり、
又、赤外線ヒーター、超音波、高周波使用の場合
にはフイルム温度および処理時間である。 実用的な意味での耐熱性というのは種々の意味
を有しているが、最も重要なものの一つに、ハン
ダ浸漬時の寸法安定性がある。電子あるいは電気
部品を機器に実装する方法としては、ハンダ付け
が最も一般的な方法である。このハンダ付工程の
際、寸法変化が起る材料では精密な寸法精度を要
する電子、電気機器に用いることができないので
ある。 本発明者らはこのハンダ浸漬時の寸法安定性を
良好にするために各種組成のポリマー、フイルム
製造条件および最終フイルムの寸法安定性の関係
について詳細に検討した。その結果、270℃、10
分間弛緩状態で熱処理したフイルムの強伸度保持
率がある一定の値以上となる本発明のフイルムは
特異的に優れたハンダ浸漬時における寸法安定性
を示している。すなわち、本発明のフイルムはそ
の縦方向および横方向に巾10mm、長さ100〜150mm
に切り出し、270℃で10分間弛緩状態で熱処理し
た後、23℃、200%/分の速度で伸長した時の引
張強度、F−5値、伸度の各値が該熱処理前のフ
イルムを前記条件で伸長したときの引張強度、F
−5値、伸度の各値に対してそれぞれ60%以上、
80%以上、80〜120%、好ましくはそれぞれ60〜
110%、80〜110%、90〜120%の保持率を有する
ことによりすぐれたハンダ浸漬時における寸法安
定性を示す。 このような機械特性を有するポリp−フエニレ
ンスルフイルムの製造法は前述の通りであるが、
特に延長温度、延伸倍率などの延伸条件とともに
結晶化のための熱処理条件が重要である。最適処
理条件はポリマーの組成により若干異なつてくる
が、
[Formula] etc. may be included. Although the above polymers are used as raw materials for the present invention, additives such as lubricants, antioxidants, ultraviolet absorbers, plasticizers, colorants, etc. may be mixed therein, or the purpose of the present invention may be impaired. There is absolutely no problem in mixing and using polymers and inorganic fillers that do not exist in this range. To produce the film of the present invention, the above raw materials are first formed into a sheet or film using an extruder, press, etc., and then rapidly cooled using liquid nitrogen, water, a roll, etc. to a density of 1.330 g/cm 3 A nearly amorphous unstretched film having the following properties is obtained.
If the crystallization of the unstretched film progresses, the stretchability will decrease and the film will be more likely to break during stretching. Next, stretching is performed. Although the stretching temperature varies somewhat depending on the molecular weight and components of the polymer, it is usually desirable to set it around the glass transition temperature of the polymer. in particular
The temperature is 80-120°C, preferably 90-110°C. Stretching methods that are commonly used such as a roll method, tenter method, and tubular method are convenient. The stretching ratio is preferably 2.5 to 7 times, preferably 2.5 to 6 times, in view of the physical properties and productivity of the resulting film, and either simultaneous biaxial stretching or sequential stretching may be used. In order to increase the density and improve the dimensional stability, heat resistance, mechanical strength, etc. of the biaxially stretched film in this way, heat treatment is particularly necessary to satisfy the mechanical properties that the film of the present invention must have. and crystallize it. The heat treatment conditions are above the melting point (Tm) and below 350℃, preferably Tm
It must be performed under tension at a temperature range of ~340°C for a time of no more than 120 seconds. By this heat treatment, a poly p-phenylene sulfide film having excellent heat resistance and dimensional stability is obtained. Here, the melting point (Tm) is the melting point obtained by DSC (differential scanning calorimeter) of the film immediately after biaxial stretching. At this time, if the heat treatment temperature exceeds 350°C, the film becomes molten and cannot maintain its shape even if the heat treatment time is shortened. If the temperature is in the temperature range from Tm to 350°C, the film can be heat-set within 120 seconds without becoming molten by appropriately adjusting the heat treatment time. In obtaining the film of the present invention, if necessary, the temperature range is 150 to 350°C, preferably 200 to 340°C, before and after the heat treatment process as described above, and within 25% in one or both directions. , preferably 15%
By appropriately treating the film under limited shrinkage or elongation or at a constant length within 10 minutes, thermal shrinkage can be reduced and dimensional stability under heating can be improved. The above heat treatment is performed by bringing a heated gas, liquid or solid into contact with the film before heat treatment. Further, it is also possible to use radiation such as an infrared heater, ultrasonic waves, or high frequency radiation. In the present invention, the "temperature" and "time" of heat treatment refer to the temperature of the heating medium and the contact time to the heating medium when a medium is used,
Also, in the case of using an infrared heater, ultrasonic wave, or high frequency, there are also film temperature and processing time. Heat resistance in a practical sense has various meanings, but one of the most important is dimensional stability during solder immersion. Soldering is the most common method for mounting electronic or electrical components on devices. Materials whose dimensions change during this soldering process cannot be used in electronic and electrical equipment that requires precise dimensional accuracy. In order to improve the dimensional stability during solder immersion, the present inventors conducted detailed studies on the relationship between polymers of various compositions, film manufacturing conditions, and the dimensional stability of the final film. As a result, 270℃, 10
The film of the present invention, in which the strength and elongation retention of the film heat-treated in a relaxed state for a minute or more is a certain value or more, exhibits uniquely excellent dimensional stability when immersed in solder. That is, the film of the present invention has a width of 10 mm in the vertical and horizontal directions and a length of 100 to 150 mm.
The tensile strength, F-5 value, and elongation values when the film was cut out, heat-treated at 270°C for 10 minutes in a relaxed state, and then stretched at 23°C at a rate of 200%/min were as follows. Tensile strength when elongated under the conditions, F
-5 value, 60% or more for each value of elongation,
80% or more, 80~120%, preferably 60~ each
It exhibits excellent dimensional stability during solder immersion by having retention rates of 110%, 80-110%, and 90-120%. The method for producing poly p-phenylene sulfilic film having such mechanical properties is as described above.
In particular, stretching conditions such as extension temperature and stretching ratio as well as heat treatment conditions for crystallization are important. The optimal processing conditions will vary slightly depending on the composition of the polymer, but

【式】なる繰返し単位を90モル %以上含むポリマー、あるいはこれを主成分とし
て少量の添加剤、ブレンドポリマーを含有するポ
リマー組成物を原料として前述の如き製造条件に
より得た本発明に示す機械特性を有するフイルム
は優れたハンダ耐熱性を示す。 本発明のフイルムは優れたハンダ耐熱性を有し
ているが、長期耐熱性にも優れF種合格(IEC規
格 pub86)の耐熱フイルムとして使用可能であ
る。 本発明のフイルムは電気絶縁用フイルムとして
最適である。例えばフレキシブルプリント配線用
ベースフイルム;車両用モーター、冷凍機用モー
ター、発電機などの各種回転機あるいは各種静止
機などの絶縁材料として、また一般ケーブル、高
圧、超高圧ケーブルの被覆用絶縁材料;磁気テー
プ用ベースフイルム;コンデンサーフイルムとし
て有用である。また乾式および油浸式トランスの
絶縁材料としても適している。更に、電気絶縁材
料以外でも、プロセツシングの工程で高温にさら
され、かつ寸法安定性を要求される複写用フイル
ム、トレーシング用フイルム、高温で調理する際
の食品包装材などにも使われる。その他装飾用、
建材用、写真用フイルム、磁気デイスク用ベース
やスピーカーの振動板などの音響用途、電池の隔
膜、ホツトスタンピングのベース材などにも有用
である。また他のフイルムとのラミネート、金属
や紙などとの組成せによる複合材としての使用も
可能である。 以下に実施例により本発明を説明する。 なお、実施例中の引張試験は、次の条件で行つ
た。 縦方向および横方向に巾10mm、長さ100〜150mm
に切り出し、23℃の測定温度で200%押分の速度
で伸長した。 実施例 1 5lオートクレープにN−メチルピロリドン1.8
Kgと硫化ナトリウム2.7水塩0.5Kgおよび安息香酸
ナトリウム0.6Kg、水酸化ナトリム1.6gを仕込
み、窒素雰囲気下で200℃まで約2時間かけて撹
拌しながら徐々に昇温し、105mlの水を留出させ
た。反応系を170℃に冷却した、後、p−ジクロ
ベンゼン0.6KgとN−メチルピロリドン0.4Kgを加
え、220℃で2時間、次いで250℃で3時間反応さ
せた。重合終了時の内圧は6.7Kg/cm2であつた。
反応系を冷却後、内容物を濾別し、固形分を熱水
で3回、さらにアセトンで2回洗浄した後、120
℃で3時間乾燥させ、灰色状、粒状のポリマーを
得た。このポリマーの溶液粘度α−クロルナフタ
リンを用いて、温度206℃、濃度0.4g/100mlで
測定したところ0.29dl/gであつた。 このポリマーを310℃でプレス製膜後、水中に
入れて急冷し、透明な厚さ400ミクロンの未延伸
シートを得た。このシートの密度は1.321g/cm2
であり、ほとんど非晶質であつた。このシートの
ガラス転移温度をDSCを用いて昇温速度10℃/
分で測定したところ90℃であつた。この非晶性未
延伸シートを94℃で3.5×3.5倍の同時2軸延伸を
行いフイルムを得た。このフイルムのTmを昇温
速度10℃/分でDSCで測定したところ285℃であ
つた。このフイルムを295℃で20秒間定長下で熱
固定し、次いで250℃で20秒間、収縮率5%の弛
緩処理を行つた。最終フイルムの厚みは33ミクロ
ンであつた。また密度は1.366g/cm3であつた。 このフイルムの引張特性は次の通りであつた。 引張強度(縦/横):23/22(Kg/mm2) F−5値(縦/横):11/11(Kg/mm2) 伸度(縦/横):62/63(%) このフイルムを270℃の雰囲気下で10分間弛緩
状態で放置した後、前と同様に引張特性を測定
し、その保持率を求めたところ次の通りであつ
た。 引張強度保持率(縦/横):85/83(%) F−5値保持率(縦/横):91/90(%) 伸度保持率(縦/横):110/112(%) また270℃の雰囲気下で10分間弛緩状態で放置
する前のフイルムの熱収縮率、ハンダ耐熱性を測
定したところ表−1の通りであつた。
The mechanical properties shown in the present invention obtained by using a polymer containing 90 mol% or more of the repeating unit of the formula, or a polymer composition containing this as a main component and a small amount of additives and a blend polymer as a raw material under the production conditions described above. A film having this property exhibits excellent solder heat resistance. The film of the present invention has excellent solder heat resistance, and also has excellent long-term heat resistance and can be used as a heat-resistant film that passes Class F (IEC standard pub86). The film of the present invention is most suitable as an electrically insulating film. For example, base film for flexible printed wiring; insulating material for various rotating machines such as vehicle motors, refrigerator motors, and generators, and various stationary machines; insulating material for covering general cables, high voltage, and ultra-high voltage cables; magnetic Base film for tape; useful as a capacitor film. It is also suitable as an insulating material for dry type and oil-immersed transformers. Furthermore, in addition to electrical insulating materials, it is also used in copying films, tracing films that are exposed to high temperatures during the processing process and require dimensional stability, and food packaging materials used in high-temperature cooking. For other decorations,
It is also useful for building materials, photographic film, acoustic applications such as magnetic disk bases and speaker diaphragms, battery diaphragms, and hot stamping base materials. It can also be used as a composite material by laminating it with other films or by combining it with metals, paper, etc. The present invention will be explained below with reference to Examples. In addition, the tensile test in Examples was conducted under the following conditions. Width 10mm in vertical and horizontal directions, length 100-150mm
It was cut out and elongated at a measurement temperature of 23°C at a rate of 200% extrusion. Example 1 1.8 N-methylpyrrolidone in a 5l autoclave
Kg, 0.5 Kg of sodium sulfide hexahydrate, 0.6 Kg of sodium benzoate, and 1.6 g of sodium hydroxide were charged, and the temperature was gradually raised to 200°C under a nitrogen atmosphere while stirring for about 2 hours, and 105 ml of water was distilled. I let it out. After the reaction system was cooled to 170°C, 0.6 kg of p-diclobenzene and 0.4 kg of N-methylpyrrolidone were added, and the reaction was carried out at 220°C for 2 hours and then at 250°C for 3 hours. The internal pressure at the end of polymerization was 6.7 Kg/cm 2 .
After cooling the reaction system, the contents were filtered, and the solid content was washed three times with hot water and twice with acetone.
It was dried at ℃ for 3 hours to obtain a gray, granular polymer. The solution viscosity of this polymer was measured using α-chlornaphthalene at a temperature of 206° C. and a concentration of 0.4 g/100 ml, and found to be 0.29 dl/g. This polymer was press-formed at 310°C and then quenched in water to obtain a transparent unstretched sheet with a thickness of 400 microns. The density of this sheet is 1.321g/cm 2
and was almost amorphous. The glass transition temperature of this sheet was determined using DSC at a heating rate of 10℃/
When measured in minutes, it was 90°C. This amorphous unstretched sheet was simultaneously biaxially stretched 3.5×3.5 times at 94° C. to obtain a film. The Tm of this film was measured by DSC at a heating rate of 10°C/min and found to be 285°C. This film was heat-set at 295° C. for 20 seconds at a constant length, and then subjected to relaxation treatment at 250° C. for 20 seconds at a shrinkage rate of 5%. The final film thickness was 33 microns. Further, the density was 1.366 g/cm 3 . The tensile properties of this film were as follows. Tensile strength (length/width): 23/22 (Kg/mm 2 ) F-5 value (length/width): 11/11 (Kg/mm 2 ) Elongation (length/width): 62/63 (%) After this film was left in a relaxed state for 10 minutes in an atmosphere at 270°C, its tensile properties were measured in the same manner as before, and the retention rate was determined as follows. Tensile strength retention rate (length/width): 85/83 (%) F-5 value retention rate (length/width): 91/90 (%) Elongation retention rate (length/width): 110/112 (%) Furthermore, the heat shrinkage rate and solder heat resistance of the film were measured before being left in a relaxed state for 10 minutes in an atmosphere of 270°C, and the results were as shown in Table 1.

【表】【table】

【表】 このフイルムは加熱時の寸法安定性が非常にす
ぐれており、フレキシブルプリント配線板のベー
スフイルムとして有用である。 比較例 1 実施例1で使用した熱固定前のフイルムを250
℃で20秒間定長下で熱固定し、次いで同温度で20
秒間収縮率5%の弛緩処理を行つた。このフイル
ムの引張特性は次の通りであつた。 引張強度(縦/横):20/22(Kg/mm2) F−5値(縦/横):10/10(Kg/mm2) 伸度(縦/横):61/58(%) このフイルムを270℃の雰囲気下で10分間弛緩
状態で放置した後、前と同様に引張特性を測定
し、その保持率を求めたところ次の通りであつ
た。 引張強度保持率(縦/横):47/51(%) F−5値保持率(縦/横):73/75(%) 伸度保持率(縦/横):131/125(%) また、270℃の雰囲気下で10分間弛緩状態で放
置する前のフイルムの熱収縮率、ハンダ耐熱性を
測定したところ表−2の通りであつた。
[Table] This film has excellent dimensional stability during heating and is useful as a base film for flexible printed wiring boards. Comparative Example 1 The film used in Example 1 before heat setting was
Heat set at a constant temperature for 20 seconds at ℃, then at the same temperature for 20 seconds.
Relaxation treatment was performed at a contraction rate of 5% per second. The tensile properties of this film were as follows. Tensile strength (length/width): 20/22 (Kg/mm 2 ) F-5 value (length/width): 10/10 (Kg/mm 2 ) Elongation (length/width): 61/58 (%) After this film was left in a relaxed state for 10 minutes in an atmosphere at 270°C, its tensile properties were measured in the same manner as before, and the retention rate was determined as follows. Tensile strength retention rate (length/width): 47/51 (%) F-5 value retention rate (length/width): 73/75 (%) Elongation retention rate (length/width): 131/125 (%) Further, the heat shrinkage rate and solder heat resistance of the film were measured before being left in a relaxed state for 10 minutes in an atmosphere at 270°C, and the results were as shown in Table 2.

【表】 実施例 2 モノマーとしてp−ジクロルベンゼン585g、
1,2,4−トリクロルベンゼン2.1gを使用す
る以外は実施例1と同様な条件で重合を行い、灰
白色、粒状のポリマーを得た。このポリマーの溶
液粘度を実施例1と同様な条件で測定したところ
0.42dl/gであつた。 このポリマーを310℃でプレス製膜後、水中に
入れて急冷し透明な厚さ400ミクロンの未延伸シ
ートを得た。このシートの密度を測定したところ
1.322g/cm2であり、ほとんど非晶質であつた。
このシートのガラス転移温度を実施例1と同様に
測定したところ91℃であつた。この非晶性未延伸
シートを95℃で、3.5×3.5倍の同時2軸延伸を行
いフイルムを得た。このフイルムのTmを実施例
1と同様に測定したところ279℃であつた。この
フイルムを305℃で20秒間定長下で熱固定し、次
いで260℃で15秒間、収縮率5%の弛緩処理を行
つた。最初フイルムの厚みは約33ミクロンであ
り、密度は1.364g/cm3であつた。このフイルム
の引張特性の結果を以下に示す。 引張強度(縦/横):19/20(Kg/mm2) F−5値(縦/横):10/10(Kg/mm2) 伸度(縦/横):58/57(%) このフイルムを270℃の雰囲気下で10分間弛緩
状態で放置した後、同様に引張特性を測定してそ
の保持率を求めたところ次の通りであつた。 引張強度保持率(縦/横):86/85(%) F−5値保持率(縦/横):95/93(%) 伸度保持率(縦/横):109/111(%) また270℃の雰囲気下で10分間弛緩状態で放置
する前のフイルムの熱収縮率、ハンダ耐熱性を測
定したところ、250℃での熱収縮率は0.6%であ
り、又260℃、30秒のハンダ浸漬による一方向の
収縮率は0.7%であり、本発明のフイルムは加熱
時の寸法安定性が非常にすぐれていることが判明
した。 比較例 2 実施例2で使用した熱固定前のフイルムを240
℃で20秒間定長下で熱固定し、次いで250℃で15
秒間収縮率5%の弛緩処理を行つた。このフイル
ムの密度は1.348g/cm3であつた。このフイルム
の引張特性の結果は次の通りである。 引張強度(縦/横):17/18(Kg/mm2) F−5値(縦/横):10/10(Kg/mm2) 伸度(縦/横):51/49(%) このフイルムを270℃の雰囲気下で10分間弛緩
状態で放置した後、同様に引張特性を測定し、そ
の保持率を求めたところ次の通りであつた。 引張強度保持率(縦/横):53/51(%) F−5値保持率(縦/横):75/74(%) 伸度保持率(縦/横):131/135(%) また、270℃の雰囲気下で10分間弛緩状態で放
置する前のフイルムの熱収縮率、ハンダ耐熱性を
測定したところ、250℃での熱収縮率は9.3%であ
り、又260℃、30秒のハンダ浸漬による一方向の
収縮率は11%であり、フイルムにしわが発生し
た。このフイルムは加熱時の寸法安定性が悪く、
ハンダ処理を行うフレキシブルプリント配線板と
しては不向きであつた。 比較例 3 実施例2で使用した熱固定前のフイルムを270
℃で20秒間定長下で熱固定し、次いで250℃で15
秒間収縮率5%の弛緩処理を行つた。このフイル
ムの密度は1.353g/cm3であつた。このフイルム
の引張特性の結果は次の通りである。 引張強度(縦/横):17/18(Kg/cm2) F−5値(縦/横):10/10(Kg/cm2) 伸度(縦/横):54/52(%) このフイルムを270℃の雰囲気下で10分間弛緩
状態で放置した後、同様に引張特性を測定し、そ
の保持率を求めたところ次の通りであつた。 引張強度保持率(縦/横):57/55(%) F−5値保持率(縦/横):76/75(%) 伸度保持率(縦/横):127/131(%) また270℃の雰囲気下で10分間弛緩状態で放置
する前のフイルムの熱収縮率、ハンダ耐熱性を測
定したところ、250℃での熱収縮率は3.4%であ
り、又260℃、30秒でのハンダ浸漬による一方向
の収縮率4.1%であり寸法安定性に問題のあるこ
とが判明した。
[Table] Example 2 585 g of p-dichlorobenzene as a monomer,
Polymerization was carried out under the same conditions as in Example 1 except that 2.1 g of 1,2,4-trichlorobenzene was used to obtain a grayish-white, granular polymer. The solution viscosity of this polymer was measured under the same conditions as in Example 1.
It was 0.42 dl/g. This polymer was press-formed at 310°C and then quenched in water to obtain a transparent unstretched sheet with a thickness of 400 microns. When we measured the density of this sheet
It was 1.322 g/cm 2 and was almost amorphous.
The glass transition temperature of this sheet was measured in the same manner as in Example 1 and was found to be 91°C. This amorphous unstretched sheet was simultaneously biaxially stretched 3.5×3.5 times at 95° C. to obtain a film. The Tm of this film was measured in the same manner as in Example 1 and was found to be 279°C. This film was heat-set at 305° C. for 20 seconds at a constant length, and then subjected to relaxation treatment at 260° C. for 15 seconds at a shrinkage rate of 5%. The initial film thickness was approximately 33 microns and the density was 1.364 g/cm 3 . The results of the tensile properties of this film are shown below. Tensile strength (length/width): 19/20 (Kg/mm 2 ) F-5 value (length/width): 10/10 (Kg/mm 2 ) Elongation (length/width): 58/57 (%) After this film was left in a relaxed state for 10 minutes in an atmosphere at 270°C, its tensile properties were measured in the same manner and the retention rate was determined as follows. Tensile strength retention rate (length/width): 86/85 (%) F-5 value retention rate (length/width): 95/93 (%) Elongation retention rate (length/width): 109/111 (%) In addition, when we measured the heat shrinkage rate and solder heat resistance of the film before leaving it in a relaxed state for 10 minutes in an atmosphere at 270℃, the heat shrinkage rate at 250℃ was 0.6%, and the heat shrinkage rate at 260℃ for 30 seconds was measured. The shrinkage rate in one direction due to solder immersion was 0.7%, indicating that the film of the present invention has excellent dimensional stability during heating. Comparative Example 2 The film used in Example 2 before heat setting was
Heat set under constant length for 20 seconds at 250 °C, then 15 seconds at 250 °C.
Relaxation treatment was performed at a contraction rate of 5% per second. The density of this film was 1.348 g/cm 3 . The results of the tensile properties of this film are as follows. Tensile strength (length/width): 17/18 (Kg/mm 2 ) F-5 value (length/width): 10/10 (Kg/mm 2 ) Elongation (length/width): 51/49 (%) After this film was left in a relaxed state for 10 minutes in an atmosphere at 270°C, its tensile properties were measured in the same manner, and the retention rate was determined as follows. Tensile strength retention rate (length/width): 53/51 (%) F-5 value retention rate (length/width): 75/74 (%) Elongation retention rate (length/width): 131/135 (%) In addition, when we measured the heat shrinkage rate and solder heat resistance of the film before leaving it in a relaxed state for 10 minutes in an atmosphere at 270°C, the heat shrinkage rate at 250°C was 9.3%, and at 260°C for 30 seconds. The shrinkage rate in one direction due to solder immersion was 11%, and wrinkles appeared in the film. This film has poor dimensional stability when heated;
It was unsuitable for use as a flexible printed wiring board that undergoes soldering. Comparative Example 3 The film used in Example 2 before heat setting was
Heat set under constant length for 20 seconds at 250 °C, then 15 seconds at 250 °C.
Relaxation treatment was performed at a contraction rate of 5% per second. The density of this film was 1.353 g/cm 3 . The results of the tensile properties of this film are as follows. Tensile strength (length/width): 17/18 (Kg/cm 2 ) F-5 value (length/width): 10/10 (Kg/cm 2 ) Elongation (length/width): 54/52 (%) After this film was left in a relaxed state for 10 minutes in an atmosphere at 270°C, its tensile properties were measured in the same manner, and the retention rate was determined as follows. Tensile strength retention rate (length/width): 57/55 (%) F-5 value retention rate (length/width): 76/75 (%) Elongation retention rate (length/width): 127/131 (%) In addition, when we measured the heat shrinkage rate and solder heat resistance of the film before leaving it in a relaxed state for 10 minutes in an atmosphere at 270℃, the heat shrinkage rate at 250℃ was 3.4%, and the heat shrinkage rate at 260℃ for 30 seconds was measured. It was found that the shrinkage rate in one direction due to solder immersion was 4.1%, and there was a problem with dimensional stability.

Claims (1)

【特許請求の範囲】 1 繰返し単位【式】を90モル% 以上含むポリp−フエニレンスルフイドフイルム
であつて、そのポリマーの溶液粘度が0.12dl/g
以上であり、かつこのフイルムより縦方向および
横方向に巾10mm、長さ100〜150mmに切り出し、
270℃で10分間弛緩状態で熱処理した後、23℃、
200%/分の速度で伸長した時の引張強度、伸度
5%時の応力、伸度の各値が該熱処理前のフイル
ムを前記条件で伸長した時の引張強度、伸長5%
時の応力、伸度の各値と比較し、それぞれ60%以
上、80%以上、80〜120%の保持率を有すること
を特徴とする2軸配向ポリp−フエニレンスルフ
イドフイルム。
[Scope of Claims] 1. A poly p-phenylene sulfide film containing 90 mol% or more of the repeating unit [Formula], wherein the solution viscosity of the polymer is 0.12 dl/g.
above, and cut this film into a piece with a width of 10 mm and a length of 100 to 150 mm in the vertical and horizontal directions,
After heat treatment at 270℃ for 10 minutes in a relaxed state, 23℃,
The tensile strength when stretched at a speed of 200%/min, the stress at 5% elongation, and the elongation are the tensile strength and elongation when the film before heat treatment is stretched under the above conditions.
1. A biaxially oriented poly p-phenylene sulfide film having a retention rate of 60% or more, 80% or more, and 80 to 120%, respectively, when compared with the respective values of stress and elongation.
JP57085293A 1982-05-20 1982-05-20 Polyp-phenylenesulfide film Granted JPS58201617A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57085293A JPS58201617A (en) 1982-05-20 1982-05-20 Polyp-phenylenesulfide film
US06/816,312 US4629778A (en) 1982-05-20 1986-01-06 Poly(p-phenylene sulfide) film and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57085293A JPS58201617A (en) 1982-05-20 1982-05-20 Polyp-phenylenesulfide film

Publications (2)

Publication Number Publication Date
JPS58201617A JPS58201617A (en) 1983-11-24
JPH044133B2 true JPH044133B2 (en) 1992-01-27

Family

ID=13854529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57085293A Granted JPS58201617A (en) 1982-05-20 1982-05-20 Polyp-phenylenesulfide film

Country Status (1)

Country Link
JP (1) JPS58201617A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255978A (en) * 1984-06-01 1985-12-17 Toray Ind Inc Metallized film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142275A (en) * 1978-04-28 1979-11-06 Toray Ind Inc Transparent biaxially oriented poly-p-phenylene sulfide film
JPS5662128A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Preparation of poly-p-phenylene sulfide film
JPS5662127A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Poly-p-phenylene sulfide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142275A (en) * 1978-04-28 1979-11-06 Toray Ind Inc Transparent biaxially oriented poly-p-phenylene sulfide film
JPS5662128A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Preparation of poly-p-phenylene sulfide film
JPS5662127A (en) * 1979-10-26 1981-05-27 Toray Ind Inc Poly-p-phenylene sulfide film

Also Published As

Publication number Publication date
JPS58201617A (en) 1983-11-24

Similar Documents

Publication Publication Date Title
US4470944A (en) Process for producing an aromatic polyimide film
JP2622678B2 (en) Melt-moldable crystalline polyimide polymer
US5939498A (en) High modulus polyimide blend
US4629778A (en) Poly(p-phenylene sulfide) film and process for production thereof
JPH03503065A (en) Method for lowering dielectric constant of polyimide using diamic acid additive
EP0082724B1 (en) A polyamide acid, a process for its production and a polyimide produced therefrom
JPH04277526A (en) Fluorinated polyimide polymer
JPH04261466A (en) Polyimide film and its manufacture
JPS6335406B2 (en)
JPH0243287B2 (en)
KR20150076676A (en) Aromatic polyamide resin and Aromatic polyamide film using that
JPH07165915A (en) Aromatic polyamide-imide-based film
JPH044133B2 (en)
KR20160146113A (en) Preparation method for polyimide film using microwave
JPH01158049A (en) Heat-resistant film and production thereof
JPH0235658B2 (en)
JPH06136156A (en) Aromatic polyamide film and its production
JPS62152828A (en) Preparation of para-phenylene sulfide block copolymer-biaxially drawn film
JPH022410B2 (en)
JPS5944968B2 (en) Method for producing polyP-phenylene sulfide film
KR20170121131A (en) Preparation method for polyimide film using microwave
CN109337070B (en) Resin composition
JPS6340811B2 (en)
JPS5998134A (en) Production of polyphenylene sulfide
KR100277161B1 (en) Novel aromatic polyimide resin powder with improved processability and preparation method thereof