JPH05169526A - Thermal treatment of thermoplastic polyimide stretched film - Google Patents

Thermal treatment of thermoplastic polyimide stretched film

Info

Publication number
JPH05169526A
JPH05169526A JP33681391A JP33681391A JPH05169526A JP H05169526 A JPH05169526 A JP H05169526A JP 33681391 A JP33681391 A JP 33681391A JP 33681391 A JP33681391 A JP 33681391A JP H05169526 A JPH05169526 A JP H05169526A
Authority
JP
Japan
Prior art keywords
film
stretching
stretched film
stretched
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33681391A
Other languages
Japanese (ja)
Inventor
Hitoshi Katsuyama
仁之 勝山
Masumi Saruwatari
益巳 猿渡
Yasuhiko Ota
靖彦 太田
Kazunari Okada
一成 岡田
Yasuko Honchi
靖子 本地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP33681391A priority Critical patent/JPH05169526A/en
Publication of JPH05169526A publication Critical patent/JPH05169526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To ensure that a thermoplastic polyimide biaxially stretched film having a specific structure has outstanding size stability and thermal resistance against solder by treating the film at a specified temperature with the concurrent process of shrinking it restrictively at a specific percentage in an opposite single or dual direction to a stretching direction. CONSTITUTION:An unstretched film obtained by melting and molding thermoplastic polyimide having a repetitive structural unit as shown by a separately provided formula is stretched in a single direction or a dual direction which forms a right angle, and this stretched film is thermally treated under a tense condition. In this case, the stretched film is thermally treated at a temperature of 250 deg.C or higher and not higher than a melting point of stretched film with the concurrent process of shrinking the film to the 5 to 20% limits in an opposite single or dual direction to the stretching direction of the film. The stretched film is thermally treated to the 10 to 15% shrinkage limits in either of the opposite directions to the stretching direction as a biaxially stretched film. In addition, the film can be thermally treated with the simultaneous process of shrinking it to the 6 to 14% limits in the opposite two directions to the stretching direction respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定の構造を有する熱
可塑性ポリイミドを溶融成形し、延伸して得られた延伸
フィルムの熱処理方法に関する。より詳細には、280
℃以上の高温における加熱収縮率が低く、かつ、優れた
寸法安定性、半田耐熱性等を有する熱可塑性ポリイミド
延伸フィルムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a stretched film obtained by melt-molding a thermoplastic polyimide having a specific structure and stretching it. More specifically, 280
The present invention relates to a method for producing a stretched thermoplastic polyimide film having a low heat shrinkage rate at a high temperature of ℃ or higher and having excellent dimensional stability, solder heat resistance and the like.

【0002】[0002]

【従来の技術】近年、種々の産業機械、家庭用機器は小
型化、軽量化が進み、それらを構成する部品については
これまで以上に耐熱性、機械的特性、寸法安定性の点
で、長期にわたる信頼性が要求されている。特に、電子
工業分野における配線基板は、端子の高密度化に伴い、
半田耐熱性などの高温における寸法安定性に要求される
条件はますます過酷になってきている。かかる要求に合
った素材として、例えば、ゼネラルエレクトリック社製
の熱可塑性ポリイミド(商品名;ウルテムなど)があ
る。しかし、該ポリイミドからなるフィルムは、ガラス
転移温度を越える温度では、フィルムの機械的強度が低
下し、さらに高温になると不透明となり脆くなるなど上
記要求を満足するための充分な耐熱性を有していない。
2. Description of the Related Art In recent years, various industrial machines and household appliances have been reduced in size and weight, and the components constituting them have been improved in heat resistance, mechanical characteristics and dimensional stability for a long time. There is a demand for reliability. In particular, the wiring board in the electronic industry field, with the high density of terminals,
The conditions required for dimensional stability at high temperatures, such as solder heat resistance, are becoming more severe. As a material that meets such requirements, for example, there is thermoplastic polyimide (trade name: Ultem, etc.) manufactured by General Electric Company. However, the film made of the polyimide has sufficient heat resistance to satisfy the above requirements such that the mechanical strength of the film decreases at a temperature exceeding the glass transition temperature and becomes opaque and brittle at higher temperatures. Absent.

【0003】かかる問題を解決することを目的に、本発
明者らは、特開平3−205432号に係わる特許出願
において、特定の構造を有する熱可塑性ポリイミドから
なる延伸フィルムおよびその製造方法を提案している。
該発明の特徴は、上記式(1)で表される繰り返し構造
単位を有する熱可塑性ポリイミドからなる未延伸フィル
ムを特定の条件で一軸または二軸延伸し、次いで250
℃以上、融点未満の温度で緊張下に熱固定することにあ
る。しかし、この方法で得られたポリイミドフィルム
は、例えば、二軸延伸フィルムである場合、加熱収縮率
が延伸した二方向で不均一となることがあり、また、半
田耐熱温度が260℃程度であることなど、高温におけ
る寸法安定性の点で必ずしも充分であるとはいえない。
In order to solve such a problem, the present inventors proposed a stretched film made of a thermoplastic polyimide having a specific structure and a method for producing the same in a patent application relating to JP-A-3-205432. ing.
A feature of the present invention is that an unstretched film made of a thermoplastic polyimide having a repeating structural unit represented by the above formula (1) is uniaxially or biaxially stretched under specific conditions, and then 250
It is to heat-set under tension at a temperature of ℃ or higher and lower than the melting point. However, when the polyimide film obtained by this method is, for example, a biaxially stretched film, the heat shrinkage may be non-uniform in the two stretched directions, and the solder heat resistance temperature is about 260 ° C. Therefore, it cannot be said that the dimensional stability at high temperatures is sufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
式(1)で表される繰り返し構造単位を有する熱可塑性
ポリイミドを溶融成形し、延伸して得られた延伸フィル
ムに280℃以上の高温における加熱収縮率が低く、か
つ、優れた寸法安定性、半田耐熱性等の特性を付与する
ことのできる熱処理方法を提供することにある。
An object of the present invention is to obtain a stretched film obtained by melt-molding and stretching a thermoplastic polyimide having a repeating structural unit represented by the above formula (1) and having a temperature of 280 ° C. or higher. It is an object of the present invention to provide a heat treatment method which has a low heat shrinkage ratio at a high temperature and can impart excellent properties such as dimensional stability and solder heat resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これらの
課題を解決すべく鋭意検討した結果、上記式(1)で表
される繰り返し構造単位を有する熱可塑性ポリイミドか
ら得られた延伸フィルムを緊張下で熱処理するに際し、
特定の範囲で制限収縮させながら熱処理することにより
上記課題が解決できることを見出し、本発明に到った。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have found that a stretched film obtained from a thermoplastic polyimide having a repeating structural unit represented by the above formula (1). When heat treating under tension,
The present invention has been found out that the above problems can be solved by performing heat treatment while performing limited shrinkage within a specific range.

【0006】すなわち、本発明は、式(1)〔化2〕That is, the present invention is based on the formula (1)

【0007】[0007]

【化2】 で表される繰り返し構造単位を有する熱可塑性ポリイミ
ドを溶融成形して得られた未延伸フィルムを、一方向ま
たは直角をなす二方向に延伸して延伸フィルムとし、次
いで、緊張下で該延伸フィルムを熱処理する方法におい
て、該延伸フィルムを延伸方向と逆の一方向または二方
向に5〜20%制限収縮させながら250℃以上、該延
伸フィルムの融点未満の温度で熱処理することを特徴と
する熱可塑性ポリイミド延伸フィルムの熱処理方法であ
る。
[Chemical 2] An unstretched film obtained by melt-molding a thermoplastic polyimide having a repeating structural unit represented by: a stretched film by stretching in one direction or in two directions forming a right angle, and then the stretched film under tension. In the heat treatment method, the stretched film is heat-treated at a temperature of 250 ° C. or higher and lower than the melting point of the stretched film while being subjected to 5 to 20% limited shrinkage in one direction or two directions opposite to the stretching direction. This is a heat treatment method for a stretched polyimide film.

【0008】以下、本発明について詳細に説明する。本
発明で使用する熱可塑性ポリイミドは、既に耐熱性のポ
リイミドとして知られている上記式(1)で表される繰
り返し構造単位を有するものである。このポリイミドは
ピロメリット酸二無水物と4、4’−ビス(3−アミノ
フェノキシ)ビフェニルとの重合反応により、ポリアミ
ド酸を経由し、イミド化することによって得ることがで
きる。
The present invention will be described in detail below. The thermoplastic polyimide used in the present invention has a repeating structural unit represented by the above formula (1) which is already known as a heat resistant polyimide. This polyimide can be obtained by imidizing via a polyamic acid by a polymerization reaction of pyromellitic dianhydride and 4,4′-bis (3-aminophenoxy) biphenyl.

【0009】このポリイミドは酸無水物として5モル%
未満であれば、ピロメリット酸二無水物に他の酸無水物
を混合して用いてもよい。また、ジアミンとして5モル
%未満であれば、4、4’−ビス(3−アミノフェノキ
シ)ビフェニルに他のジアミンを混合して用いてもよ
い。他の酸無水物またはジアミンを5モル%以上含有さ
せて得たポリイミドは結晶性が低下し、非晶鎖部分が増
加するので、延伸によって分子配向させても、熱処理に
よる固定が不充分となり、寸法安定性が低下するので好
ましくない。
This polyimide has an acid anhydride content of 5 mol%.
If it is less than the above, other acid anhydrides may be mixed with pyromellitic dianhydride. If the diamine content is less than 5 mol%, 4,4′-bis (3-aminophenoxy) biphenyl may be mixed with another diamine. Polyimide obtained by containing other acid anhydride or diamine in an amount of 5 mol% or more has a reduced crystallinity and an increased amorphous chain portion, so even if the molecule is oriented by stretching, fixation by heat treatment becomes insufficient, It is not preferable because the dimensional stability decreases.

【0010】本発明で使用するポリイミドは、これらの
芳香族テトラカルボン酸二無水物と芳香族ジアミンと
を、通常の公知の方法、例えば、モノマー同志またはモ
ノマーを有機溶媒中に懸濁または溶解させた後、加熱ま
たは化学的に脱水し、生成物を分離、精製する一般的な
方法により得ることが出来る。
The polyimide used in the present invention can be obtained by subjecting these aromatic tetracarboxylic dianhydrides and aromatic diamines to a conventional and known method, for example, by suspending or dissolving the monomers or the monomers in an organic solvent. After that, the product can be obtained by a general method of heating or chemically dehydrating, separating and purifying the product.

【0011】本発明の方法は、上記ポリイミドを原料と
して用い、一般に溶融成形法により非晶性のフイルムを
製造し、これを冷却キャストして未延伸フィルムを得、
さらに一軸方向または二軸方向に延伸し、次いで、得ら
れた延伸フィルムを特定の条件において熱処理して熱固
定して、高温における優れた寸法安定性、半田耐熱性お
よび低加熱収縮率等を有する熱可塑性ポリイミド延伸フ
ィルムを得る方法である。本発明方法の特徴は、上記の
ようにして得られた延伸フィルムを、特定の条件下で熱
処理することにある。
In the method of the present invention, an amorphous film is generally produced by the melt molding method using the above-mentioned polyimide as a raw material, and the film is cooled and cast to obtain an unstretched film.
Further stretched uniaxially or biaxially, and then heat-treating the obtained stretched film under specific conditions to have excellent dimensional stability at high temperature, solder heat resistance and low heat shrinkage ratio. It is a method for obtaining a stretched thermoplastic polyimide film. The feature of the method of the present invention resides in that the stretched film obtained as described above is heat-treated under specific conditions.

【0012】以下、本発明において使用するポリイミド
フィルムの製造方法を詳細に説明する。原料として使用
されるポリイミドは、上記の酸無水物とジアミンを重合
反応させ、ついでイミド化して得られるものである。好
ましいものとして、400℃、200sec-1の剪断速
度のもとで100〜60万ポイズの範囲のものが挙げら
れる。100ポイズ未満のポリイミドは、溶融成形時に
ゲル化しやすく、フィルムの面状態を損ない、機械強度
も低下する傾向があり、脆く、延伸が困難である等の問
題が生じるので、好ましくは上記範囲の溶融粘度を有す
るポリイミドが多用される。
The method for producing the polyimide film used in the present invention will be described in detail below. The polyimide used as a raw material is obtained by polymerizing the above-mentioned acid anhydride and diamine and then imidizing them. Preferred are those in the range of 100 to 600,000 poise under a shear rate of 400 ° C. and 200 sec −1 . Polyimides less than 100 poise tend to gel during melt molding, tend to impair the surface state of the film, tend to reduce mechanical strength, and become brittle and difficult to stretch. A polyimide having viscosity is often used.

【0013】これらのポリイミドを用い、溶融押出法、
カレンダー法等によって未延伸のフィルムを作成する。
その最も好ましい作成方法としては、300〜450℃
の温度で押出機等により溶融し、スリット状ノズルより
押出し、100〜250℃の表面温度を有するキャステ
ィングロール上で冷却し未延伸フイルム (無定形のフイ
ルム) を得る方法が挙げられる。
Using these polyimides, the melt extrusion method,
An unstretched film is prepared by a calendar method or the like.
The most preferable method is 300 to 450 ° C.
Examples of the method include melting at a temperature of 2 ° C. with an extruder or the like, extruding through a slit nozzle, and cooling on a casting roll having a surface temperature of 100 to 250 ° C. to obtain an unstretched film (amorphous film).

【0014】延伸・熱処理される未延伸フイルムは、そ
の密度が1.350g/cm 以下であることが望まし
く、1.350を越えるとフィルムが脆くなり後工程の
延伸時に延伸破れが発生するので好ましくない。この未
延伸フイルムの延伸は、230〜320℃の範囲で一方
向または直角をなす二方向に1.5〜10倍延伸するも
のであり、延伸処理の特定条件によってつぎの態様に分
けられる。 230〜300℃の範囲で一方向に1.5〜5.0倍
延伸する方法 (以下、一軸延伸法と言う) 。 240〜300℃の範囲で一方向に1.5〜3.0倍
延伸し、ついで該延伸方向と直角方向に250〜320
℃の範囲で1.5〜3.0倍延伸する方法 (以下、逐次
二軸延伸法と言う) 。 250〜300℃の範囲で互いに直角をなす二方向に
面積倍率が2〜10倍で同時に延伸する方法 (以下、同
時二軸延伸法と言う) 。 上記の各延伸法において、延伸中におけるフィルムの
水分含有率が0.1%以上3%未満とすることにより、
150℃以上ガラス転移温度未満の温度範囲で延伸する
方法等である。
The unstretched film to be stretched and heat-treated preferably has a density of 1.350 g / cm 3 or less, and if it exceeds 1.350, the film becomes brittle and stretch breakage occurs during stretching in the subsequent step, which is preferable. Absent. The unstretched film is stretched in the range of 230 to 320 ° C. in one direction or two directions at right angles by 1.5 to 10 times, and is divided into the following modes depending on the specific conditions of the stretching process. A method of stretching 1.5 to 5.0 times in one direction in the range of 230 to 300 ° C. (hereinafter, referred to as uniaxial stretching method). 1.5 to 3.0 times in one direction in the range of 240 to 300 ° C., and then 250 to 320 in the direction perpendicular to the stretching direction.
A method of stretching 1.5 to 3.0 times in the range of ° C (hereinafter referred to as a sequential biaxial stretching method). A method of simultaneously stretching in an area ratio of 2 to 10 in two directions perpendicular to each other in the range of 250 to 300 ° C. (hereinafter, referred to as simultaneous biaxial stretching method). In each of the above stretching methods, the water content of the film during stretching is 0.1% or more and less than 3%,
It is a method of stretching in a temperature range of 150 ° C. or more and less than the glass transition temperature.

【0015】各態様のさらなる詳細は次のとおりであ
る。 一軸延伸法 前記の未延伸フイルムを特定温度範囲で一方向に延伸す
る方法である。一軸延伸の具体的条件は、230〜30
0℃、好ましくは250〜290℃の温度範囲で、一方
向に1.5〜5.0倍延伸するものである。このような
条件で未延伸フィルムを一軸配向させる。延伸温度が2
30℃未満では延伸が困難であり、300℃を越えると
フィルムが透明性を失い、脆化し、延伸することができ
ないので好ましくない。また、延伸倍率が1.5倍未満
では、後の熱処理工程でしわが入ったり、脆いフィルム
が得られ好ましくなく、5.0倍を越えると延伸中に高
度に配向し、延伸時に破れを起こしたりするなど不都合
な問題が起きて好ましくない。
Further details of each aspect are as follows. Uniaxial Stretching Method This is a method of stretching the unstretched film in one direction within a specific temperature range. Specific conditions for uniaxial stretching are 230 to 30.
It is stretched 1.5 to 5.0 times in one direction in a temperature range of 0 ° C., preferably 250 to 290 ° C. Under such conditions, the unstretched film is uniaxially oriented. Stretching temperature is 2
If it is less than 30 ° C, stretching is difficult, and if it exceeds 300 ° C, the film loses transparency, becomes brittle, and cannot be stretched, which is not preferable. Further, if the stretching ratio is less than 1.5 times, wrinkles may be generated in the subsequent heat treatment step, and a brittle film may be obtained, which is not preferable. It is not preferable because it causes inconvenient problems such as rustling.

【0016】延伸させる手段としては一対以上のロール
群を用いて延伸する方法、テンターを用いて延伸する方
法、ロールを用いた圧延による延伸方法、チャック式の
バッチ式延伸機により延伸する方法等の従来技術を用い
ることができる。延伸時の延伸速度は1〜100000
%/minの範囲が好ましい。また、延伸前にフィルム
を結晶化が進行しない程度に予熱することは、円滑な延
伸ができて好ましい。
As a means for stretching, a method of stretching using a pair of rolls, a method of stretching using a tenter, a method of stretching by rolling using rolls, a method of stretching by a chuck type batch type stretching machine, etc. Conventional techniques can be used. The stretching speed during stretching is 1 to 100,000.
The range of% / min is preferable. Further, it is preferable to preheat the film to such an extent that crystallization does not proceed before stretching, because smooth stretching can be performed.

【0017】逐次二軸延伸法 前記の未延伸フィルムを特定温度範囲で一方向に延伸
し、その後、該方向と直角方向に特定温度範囲で延伸
し、ついで熱固定して二軸延伸フィルムを製造する方法
である。二軸延伸の具体的条件は、一段目の延伸が24
0〜300℃、好ましくは250〜290℃の温度範囲
で、一方向に1.5〜3.0倍延伸し、二段目の延伸が
一段目の延伸方向と直角方向に、250〜320℃、好
ましくは260〜310℃の温度範囲で、1.5〜3.
0倍延伸する。このような条件で未延伸フィルムを二軸
配向させる。
Sequential Biaxial Stretching Method The above unstretched film is stretched in one direction within a specific temperature range, then stretched in a specific temperature range in a direction perpendicular to the direction, and then heat-set to produce a biaxially stretched film. Is the way to do it. The specific condition for biaxial stretching is that the first stage stretching is 24
In the temperature range of 0 to 300 ° C., preferably 250 to 290 ° C., the film is stretched in one direction by 1.5 to 3.0 times, and the second stage is stretched in a direction perpendicular to the first stage stretching direction at 250 to 320 ° C. , Preferably in the temperature range of 260 to 310 ° C., 1.5 to 3.
Stretch 0 times. The unstretched film is biaxially oriented under such conditions.

【0018】延伸させる手段としては、テンターを用い
て延伸する方法、バッチ式延伸機により延伸する方法等
の従来技術を用いることができる。その際、一段目の延
伸温度が240℃未満では延伸が困難であり、300℃
を越えるとフィルムが透明性を失い脆化し延伸すること
が出来ないので好ましない。また、延伸倍率が1.5倍
未満では後での熱処理工程でしわが入ったり、脆いフィ
ルムが得られたりして好ましくなく、3.0倍を越える
と延伸中に高度に配向し、二段目の延伸時に破れを起こ
したりするなど不都合な問題が起きて好ましくない。ま
た、二段目の延伸温度が250℃未満では延伸が困難で
あり破れが多発し、また320℃を越えるとフィルムの
脆化、フィルムの破れ等のトラブルが発生し好ましくな
い。また延伸倍率は配向の効果、フィルムの破れなどか
ら1.5〜3.0倍が好ましい。延伸時の延伸速度は1
〜100000%/minの範囲が好ましい。また、延
伸前にフィルムを結晶化が進行しない程度に予熱するこ
とは、円滑な延伸ができて好ましい。
As the stretching means, conventional techniques such as a stretching method using a tenter and a batch stretching machine can be used. At that time, if the stretching temperature of the first step is less than 240 ° C, stretching is difficult,
If it exceeds, the film loses transparency, becomes brittle, and cannot be stretched. Further, if the draw ratio is less than 1.5 times, it is not preferable because wrinkles are formed in the subsequent heat treatment step or a brittle film is obtained, and if it exceeds 3.0 times, it is highly oriented during the drawing, and two-stage stretching is performed. Inconvenient problems such as breakage during stretching of the eyes occur, which is not preferable. Further, if the stretching temperature at the second stage is less than 250 ° C., stretching is difficult and tearing frequently occurs. If it exceeds 320 ° C., problems such as embrittlement of the film and tearing of the film occur, which is not preferable. The stretching ratio is preferably 1.5 to 3.0 times in view of the effect of orientation, film breakage, and the like. Stretching speed during stretching is 1
The range of -100,000% / min is preferable. Further, it is preferable to preheat the film to such an extent that crystallization does not proceed before stretching, because smooth stretching can be performed.

【0019】同時二軸延伸法 前記の未延伸フィルムを特定温度範囲で互いに直角をな
す二方向に面積倍率が2〜10倍の範囲で同時に延伸
し、次いで250℃以上融点未満の温度で熱固定して二
軸延伸ポリイミドフィルムを製造する方法である。同時
二軸延伸の具体的条件は、未延伸フィルムを250〜3
00℃、好ましくは260〜290℃の温度範囲、面積
倍率で2〜10倍の範囲で延伸ことにより二軸延伸フィ
ルムが得られる。このような条件で未延伸フィルムを二
軸配向させる。延伸温度が250℃未満では延伸応力が
高く延伸が不可能であり、300℃を越えると上記逐次
二軸延伸における一段目の延伸時と同様になり好ましく
ない。また、延伸倍率がその面積比で2倍未満では後で
の熱処理工程でしわになったり脆いフィルムが得られた
りして好ましくなく、10倍を越える倍率では延伸でき
ない。これらの延伸方法において、延伸速度は1 〜10
0000%/minの範囲が好ましい。また、延伸前に
フィルムを結晶化が進行しない程度に予熱することはス
ムーズな延伸ができて好ましい。
Simultaneous Biaxial Stretching Method The above unstretched film is simultaneously stretched in two directions perpendicular to each other in a specific temperature range in an area ratio of 2 to 10 times, and then heat set at a temperature of 250 ° C. or higher and lower than the melting point. Is a method for producing a biaxially stretched polyimide film. The specific conditions of the simultaneous biaxial stretching are as follows:
A biaxially stretched film can be obtained by stretching at a temperature range of 00 ° C., preferably 260 to 290 ° C., and an area ratio of 2 to 10 times. The unstretched film is biaxially oriented under such conditions. If the stretching temperature is less than 250 ° C., the stretching stress is high and stretching is impossible, and if it exceeds 300 ° C., the same as in the first stage stretching in the above-mentioned sequential biaxial stretching is not preferable. Further, if the stretching ratio is less than 2 times in area ratio, wrinkles or a brittle film is obtained in the subsequent heat treatment step, which is not preferable, and stretching cannot be carried out at a ratio exceeding 10 times. In these stretching methods, the stretching speed is 1 to 10
The range of 0000% / min is preferable. Further, it is preferable to preheat the film to such an extent that crystallization does not proceed before stretching, because smooth stretching can be performed.

【0020】延伸する際の未延伸フイルムの含水率を
特定する方法:この態様は本発明に使用するポリイミド
を未延伸のポリイミドフィルムにして、延伸・熱固定を
するに際して、水分含有率を特定の範囲に調整して、従
来非常に難しいとされたガラス転移温度未満の温度で延
伸し、優れた性能のポリイミドフィルムを製造する方法
である。即ち、延伸中に、少なくとも0.1%の水分を
含有した未延伸フィルムを150℃以上ガラス転移温度
未満の範囲で延伸する方法である。本延伸方法に供する
未延伸フィルムは延伸中の水分含有率が少なくとも0.
1%であることが好ましい。その水分含有率が0.1%
未満ではフィルムの剛性が増し、延伸時の張力が増大し
て延伸が困難となったり、あるいはミクロボイドの発生
によりフィルムが失透し機械強度が著しく低下するなど
の問題が生じ好ましくない。水分含有率の上限は特に限
定されないが通常3%未満である。特に好ましい水分含
有率は0.2〜2%である。本延伸方法で用いるポリイ
ミドは通常の雰囲気に置いた状態では0.5%以上の水
分を含有し、温水中に浸漬することで約3%の水分を吸
収させることができる。
Method for specifying the water content of the unstretched film during stretching: In this embodiment, the polyimide used in the present invention is an unstretched polyimide film, and when stretching and heat setting, the water content is specified. It is a method of producing a polyimide film having excellent performance by adjusting the content within the range and stretching at a temperature lower than the glass transition temperature which has been considered to be very difficult in the past. That is, it is a method of stretching an unstretched film containing at least 0.1% of water during stretching in the range of 150 ° C. or higher and lower than the glass transition temperature. The water content during stretching of the unstretched film used in the present stretching method is at least 0.
It is preferably 1%. Its water content is 0.1%
If it is less than the above range, the rigidity of the film is increased, the tension at the time of stretching is increased to make it difficult to stretch, or the film is devitrified due to the generation of microvoids and the mechanical strength is significantly lowered, which is not preferable. The upper limit of the water content is not particularly limited, but is usually less than 3%. A particularly preferable water content is 0.2 to 2%. The polyimide used in the present stretching method contains 0.5% or more of water in a state of being placed in a normal atmosphere, and can be absorbed in warm water to absorb about 3% of water.

【0021】本延伸方法における延伸温度は150℃以
上ガラス転移温度未満の温度範囲で、延伸倍率は1.2
〜2.5倍が好ましい。ガラス転移温度を越えた温度で
の延伸は延伸時の水分含有率の低下がおこり、また極度
の配向が起こったりして延伸が困難になる。本延伸方法
は上記フィルムを1対以上のロール群を用いたロール延
伸方法、テンター方式、あるいはバッチ式延伸機によっ
て一軸延伸あるいは二軸延伸することができる。この延
伸方法において、延伸速度はフィルムの長さの増加率が
10〜10000%/minの範囲が好ましい。このよ
うにして得られた延伸フィルムは密度を上昇させ、寸法
安定性、機械的特性を向上させるために熱処理される。
In the present stretching method, the stretching temperature is in the range of 150 ° C. or higher and lower than the glass transition temperature, and the stretching ratio is 1.2.
It is preferably about 2.5 times. Stretching at a temperature exceeding the glass transition temperature causes a decrease in the water content during stretching, and also causes extreme orientation, which makes stretching difficult. In this stretching method, the film can be uniaxially stretched or biaxially stretched by a roll stretching method using one or more pairs of rolls, a tenter system, or a batch stretching machine. In this stretching method, the stretching speed is preferably such that the rate of increase in the length of the film is 10 to 10,000% / min. The stretched film thus obtained is heat-treated in order to increase the density and improve the dimensional stability and mechanical properties.

【0022】以下、本発明における延伸フィルムの熱処
理方法について詳細に説明する。上記方法により得られ
たポリイミド延伸フィルムは、250℃以上、該延伸フ
ィルムの融点未満の温度、好ましくは270〜370
℃、さらに好ましくは310〜370℃の範囲で 1〜5
000秒間、緊張下、制限収縮させながら熱処理され
る。熱処理温度が250℃未満の場合、加熱不足であり
熱固定されないか、または熱固定が不充分であり、寸法
安定性、半田耐熱性が劣るものとなるので好ましくな
い。また、融点を越える場合、軟化によりフィルムが変
形するため好ましくない。
The heat treatment method for the stretched film in the present invention will be described in detail below. The stretched polyimide film obtained by the above method has a temperature of 250 ° C. or higher and a temperature lower than the melting point of the stretched film, preferably 270 to 370.
℃, more preferably 1 to 5 in the range of 310 to 370 ℃
It is heat-treated for 000 seconds under tension while being subjected to limited shrinkage. When the heat treatment temperature is lower than 250 ° C., it is not preferable because the heating is insufficient and the heat setting is not performed, or the heat setting is insufficient and the dimensional stability and the solder heat resistance are deteriorated. On the other hand, if it exceeds the melting point, the film is deformed by softening, which is not preferable.

【0023】本発明の熱処理方法において、延伸フィル
ムを熱処理する際、該フィルムの延伸方向と逆方向の一
方向または二方向に、該フィルムに張力をかけ緊張させ
た状態で特定の範囲で収縮させながら熱処理する。延伸
フィルムの延伸方向と逆方向の一方向とは、一軸延伸フ
ィルムについては、その延伸方向と逆方向のことであ
り、二軸延伸フィルムについては、延伸された二方向の
いずれか一方の方向の逆方向のことである。また、延伸
方向と逆方向の二方向とは、二軸延伸フィルムのそれぞ
れの延伸方向と逆方向のことである。すなわち、本発明
の熱処理方法を一軸延伸フィルムに適用する場合は、該
延伸方向と逆方向に緊張下で制限収縮させながら熱処理
する。また、二軸延伸フィルムに適用する場合は、該延
伸方向のいずれか一方の方向の逆方向、または、該延伸
方向とそれぞれ逆の二方向に緊張下で制限収縮させなが
ら熱処理する。
In the heat treatment method of the present invention, when a stretched film is heat-treated, the film is contracted in a specific range in a tensioned state by applying tension to the film in one or two directions opposite to the stretching direction of the film. While heat treatment. One direction of the stretched direction and the opposite direction of the stretched film, for uniaxially stretched film, is the direction opposite to the stretched direction, for biaxially stretched film, one of the two directions stretched. It is the opposite direction. In addition, the two directions opposite to the stretching direction are directions opposite to the respective stretching directions of the biaxially stretched film. That is, when the heat treatment method of the present invention is applied to a uniaxially stretched film, the heat treatment is performed in a direction opposite to the stretching direction while subjecting to limited shrinkage under tension. When applied to a biaxially stretched film, it is heat-treated while being subjected to limited shrinkage under tension in a direction opposite to either one of the stretching directions or in two directions opposite to the stretching direction.

【0024】上記いずれの方法で熱処理する場合におい
ても、その制限収縮率は5〜20%の範囲であることが
好ましい。さらに好ましい範囲は、一方向に制限収縮さ
せる場合は、10〜15%であり、二方向に制限収縮さ
せる場合は、6〜14%である。制限収縮率が5%未満
では、熱処理中のフィルム自身の加熱収縮により働く引
張応力の緩和が不充分であり、フィルムにしわが入った
り、破れる場合があるので好ましくない。しかも、得ら
れたフィルムの残存応力により加熱収縮率が大きくな
り、半田耐熱性も劣るものとなる。また、得られたフィ
ルムの加熱収縮が二方向で不均一となる。制限収縮率が
20%を越えると熱処理中にフィルムがたるむ等して平
板性の劣るフィルムとなるので好ましくない。
In the case of heat treatment by any of the above methods, the limiting shrinkage rate is preferably in the range of 5 to 20%. A more preferable range is 10 to 15% in the case of limited shrinkage in one direction, and 6 to 14% in the case of limited shrinkage in two directions. If the limiting shrinkage ratio is less than 5%, the relaxation of the tensile stress caused by the heat shrinkage of the film itself during heat treatment is insufficient, and the film may be wrinkled or broken, which is not preferable. In addition, the residual stress of the obtained film increases the heat shrinkage rate, resulting in poor solder heat resistance. Further, the heat shrinkage of the obtained film becomes non-uniform in two directions. If the limiting shrinkage ratio exceeds 20%, the film becomes inferior in flatness due to sagging during heat treatment, which is not preferable.

【0025】上記範囲に緊張下で制限収縮させる方法と
して、例えば、下記の方法が例示される。 緊張下で一方向に制限収縮する方法:テンター延伸機
またはバッチ式延伸機が好ましく用いられる。テンター
延伸機を用いる場合は、フィルムの幅方向の一方向の制
限収縮下での熱処理に好適である。バッチ式延伸機を用
いる場合は、一軸延伸フィルムの一方向、二軸延伸フィ
ルムのいずれかの一方向の制限収縮下での熱処理に好適
である。いずれの場合も、フィルムの収縮速度が10〜
10000%/min.となるように、チャック間隔等
を狭くしながら所定の収縮率まで熱処理する。フィルム
の収縮速度が10000%/min.を越えるとフィル
ムにしわが発生したり、破れることがあり好ましくな
い。
The following method is exemplified as a method of restricting shrinkage to the above range under tension. Method of limiting shrinkage in one direction under tension: A tenter stretching machine or a batch type stretching machine is preferably used. When a tenter stretching machine is used, it is suitable for heat treatment under limited shrinkage in one direction in the width direction of the film. When a batch type stretching machine is used, it is suitable for heat treatment under restricted shrinkage in one direction of a uniaxially stretched film or in one direction of a biaxially stretched film. In either case, the shrinkage rate of the film is 10 to
10000% / min. The heat treatment is performed to a predetermined shrinkage ratio while narrowing the chuck spacing and so on. The shrinkage rate of the film is 10,000% / min. If it exceeds, the film may be wrinkled or torn, which is not preferable.

【0026】緊張下で二方向に制限収縮する方法:バ
ッチ式延伸機が好ましく用いられる。フィルムの収縮速
度が10〜10000%/min.となるように、チャ
ック間隔を二方向同時に所定の間隔まで狭めながら熱処
理する。フィルムの収縮速度が10000%/min.
を越えるとフィルムにしわが発生したり、破れることが
あり好ましくない。このような方法で熱処理された延伸
フィルムの寸法安定性、半田耐熱性等の高温における特
性が向上し、かつ、透明性も良好であるので、主として
高温下で用いられる電気絶縁用資材、記録媒体用資材、
誘電体用資材等に有用である。
Method of limiting shrinkage in two directions under tension: A batch-type stretching machine is preferably used. The shrinkage rate of the film is 10 to 10000% / min. So that the chuck spacing is narrowed in two directions at the same time to a predetermined spacing, heat treatment is performed. The shrinkage rate of the film is 10,000% / min.
If it exceeds, the film may be wrinkled or torn, which is not preferable. The stretched film heat-treated by such a method has improved properties at high temperatures such as dimensional stability and solder heat resistance, and also has good transparency, so that it is mainly used as an electrical insulating material and recording medium at high temperatures. Materials,
It is useful as a dielectric material.

【0027】[0027]

【実施例】以下、実施例により本発明を更に詳しく説明
する。なお、実施例において記述したポリイミドフィル
ムの特性値の測定方法を以下に示す。
The present invention will be described in more detail with reference to the following examples. In addition, the measuring method of the characteristic value of the polyimide film described in the Example is shown below.

【0028】(1)加熱収縮率 JIS C−2318に規定される方法に準じ、260
℃または280℃において1時間加熱した後の収縮率
を、互いに直角をなすフィルムの流れ方向(以下、Xと
いう)および該方向と直角をなす方向(以下、Yとい
う)の二方向について測定した。
(1) Heat shrinkage rate 260 according to the method specified in JIS C-2318.
The shrinkage ratio after heating at 0 ° C. or 280 ° C. for 1 hour was measured in two directions, that is, a film flow direction perpendicular to each other (hereinafter, referred to as X) and a direction perpendicular to the direction (hereinafter, referred to as Y).

【0029】(2)半田耐熱性 試料を260℃または280℃の半田浴の表面に30秒
間浮遊させ、試料の変形状態を評価した。変形が無けれ
ば○、変形したものは×と表示した。 二軸延伸フィルムの製造例 一般式(1)で表される繰り返し構造単位を有する熱可
塑性ポリイミド(三井東圧化学株式会社製:商品名;N
ew−TPI)の粉末を180℃で24時間乾燥し、2
5mmベント式押出機により400℃で直径2mmのノ
ズルより押出し冷却した後カットしてペレットを得た。
このペレットを180℃で24時間乾燥し、25mm押
出機により410℃で溶融し、幅150mmのスリット
ダイ(間隔0.4mm)より押出し、220℃のロール
で引き取り厚さ約100μmの未延伸フィルムを得た。
該未延伸フィルムをバッチ式延伸機(岩本製作所(株)
製:形式;BIX−703)に装着し、280℃で5分
間予熱後、X方向に2.7倍延伸し、その直後に、Y方
向に3倍延伸し、厚さ約15μmの二軸延伸フィルムを
得た。
(2) Solder heat resistance The sample was floated on the surface of a solder bath at 260 ° C. or 280 ° C. for 30 seconds, and the deformation state of the sample was evaluated. When there is no deformation, it is indicated by ○, and when it is deformed, it is indicated by ×. Production Example of Biaxially Stretched Film Thermoplastic polyimide having a repeating structural unit represented by the general formula (1) (manufactured by Mitsui Toatsu Chemicals, Inc .: trade name; N
ew-TPI) powder was dried at 180 ° C. for 24 hours, and 2
It was extruded from a nozzle having a diameter of 2 mm at 400 ° C. by a 5 mm vent type extruder, cooled, and then cut to obtain pellets.
The pellets are dried at 180 ° C. for 24 hours, melted at 410 ° C. by a 25 mm extruder, extruded from a slit die having a width of 150 mm (spacing 0.4 mm), and taken up by a roll at 220 ° C. to obtain an unstretched film having a thickness of about 100 μm. Obtained.
The unstretched film is processed by a batch stretching machine (Iwamoto Seisakusho Co., Ltd.)
Manufacturing: Type: BIX-703), preheated at 280 ° C. for 5 minutes, stretched 2.7 times in the X direction, immediately after that, stretched 3 times in the Y direction, and biaxially stretched to a thickness of about 15 μm. I got a film.

【0030】実施例1〜3 上記方法により得られた二軸延伸フィルムを、〔表1〕
に示す所定の熱処理温度まで昇温後、張力下で〔表1〕
に示す条件下で制限収縮させながら熱処理を行った。得
られた熱処理二軸延伸フィルムの加熱収縮率および半田
耐熱性を評価し、その結果を〔表1〕に示す。実施例で
得られたフィルムは、260℃では加熱収縮が認められ
ず、280℃においても加熱収縮率は低く、かつ、X、
Y二方向における差異も小さいものであった。また、半
田耐熱性は260℃および280℃において共に良好で
あった。
Examples 1 to 3 The biaxially stretched film obtained by the above method is shown in [Table 1].
After raising the temperature to the prescribed heat treatment temperature shown in Table 1, under tension [Table 1]
Under the conditions shown in (1), the heat treatment was performed while the shrinkage was restricted. The heat-shrinkage rate and solder heat resistance of the obtained heat-treated biaxially stretched film were evaluated, and the results are shown in [Table 1]. In the films obtained in Examples, heat shrinkage was not observed at 260 ° C., the heat shrinkage rate was low even at 280 ° C., and X,
The difference in the two Y directions was also small. The solder heat resistance was good at both 260 ° C and 280 ° C.

【0031】実施例4〜5 上記方法により得られた二軸延伸フィルムについて、
〔表1〕に示す所定の熱処理温度まで昇温後、張力下で
〔表1〕に示す条件下で一方向にのみ制限収縮させなが
ら熱処理を施した。得られた熱処理二軸延伸フィルムの
加熱収縮率および半田耐熱性を評価し、その結果を〔表
1〕に示す。加熱収縮率が小さく、かつ、280℃での
半田耐熱性が良好なフィルムであった。
Examples 4 to 5 Regarding the biaxially stretched film obtained by the above method,
After the temperature was raised to the predetermined heat treatment temperature shown in [Table 1], the heat treatment was performed under tension under the conditions shown in [Table 1] while performing the limited shrinkage in only one direction. The heat-shrinkage rate and solder heat resistance of the obtained heat-treated biaxially stretched film were evaluated, and the results are shown in [Table 1]. The film had a small heat shrinkage and good solder heat resistance at 280 ° C.

【0032】比較例1 上記方法により得られた二軸延伸フィルムについて、制
限収縮率をX方向、Y方向それぞれ3%とした以外、実
施例1と同様にして熱処理を行なった。得られた熱処理
二軸延伸フィルムの加熱収縮率および半田耐熱性を評価
し、その結果を〔表1〕に示す。260℃で加熱収縮が
認められ、280℃ではその傾向がさらに大きくなっ
た。また、280℃での半田耐熱性が劣るものであっ
た。
Comparative Example 1 The biaxially stretched film obtained by the above method was heat-treated in the same manner as in Example 1 except that the restricted shrinkage rate was 3% in each of the X and Y directions. The heat-shrinkage rate and solder heat resistance of the obtained heat-treated biaxially stretched film were evaluated, and the results are shown in [Table 1]. Heat shrinkage was observed at 260 ° C, and the tendency was further increased at 280 ° C. Further, the solder heat resistance at 280 ° C. was poor.

【0033】比較例2 上記方法により得られた二軸延伸フィルムについて、制
限収縮率をX方向、Y方向それぞれ25%とした以外、
実施例2と同様にして熱処理を試みた。しかし、熱処理
中にフィルムにしわが発生し平板性が劣るフィルムとな
った。得られた熱処理二軸延伸フィルムの加熱収縮率お
よび半田耐熱性を評価したが、いずれも実施例のものと
比べ特性が劣っていた。
Comparative Example 2 With respect to the biaxially stretched film obtained by the above-mentioned method, except that the limiting shrinkage rate was 25% in each of the X and Y directions,
Heat treatment was tried in the same manner as in Example 2. However, wrinkles were generated in the film during the heat treatment, resulting in a film having poor flatness. The heat-shrinkage rate and solder heat resistance of the obtained heat-treated biaxially stretched film were evaluated, but the properties were inferior to those of the examples.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の方法で得られる熱可塑性ポリイ
ミド延伸フィルムは、280℃以上の高温において優れ
た寸法安定性を示す延伸フィルムである。具体的には、
260℃では加熱収縮を示さず、280℃における加熱
収縮率が小さい。また、280℃における半田耐熱性に
も優れている。そのため、高温下で用いられる電線被
覆、モーターおよびトランス等のライナー電気絶縁用資
材、記録媒体用ベースフィルム等の精密部品資材、フレ
キシブルプリント回線基板、コンデンサー等の電気、電
子部品等に好適に用いることができる。
The thermoplastic polyimide stretched film obtained by the method of the present invention is a stretched film exhibiting excellent dimensional stability at a high temperature of 280 ° C. or higher. In particular,
No heat shrinkage is shown at 260 ° C, and the heat shrinkage rate at 280 ° C is small. It also has excellent solder heat resistance at 280 ° C. Therefore, it is suitable for use in electric wire coatings used under high temperatures, materials for electrical insulation of liners such as motors and transformers, materials for precision components such as base films for recording media, electrical and electronic components such as flexible printed circuit boards and capacitors. You can

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 79:00 B29L 7:00 4F C08L 79:08 (72)発明者 岡田 一成 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 本地 靖子 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location // B29K 79:00 B29L 7:00 4F C08L 79:08 (72) Inventor Issei Okada Aichi Prefecture 2-1, Tango-dori, Minami-ku, Nagoya-shi Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Yasuko, 2-1-1, Tango-dori, Minami-ku, Nagoya-shi, Aichi Mitsui Toatsu Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 式(1)〔化1〕 【化1】 で表される繰り返し構造単位を有する熱可塑性ポリイミ
ドを溶融成形して得られた未延伸フィルムを、一方向ま
たは直角をなす二方向に延伸して延伸フィルムとし、次
いで、緊張下で該延伸フィルムを熱処理する方法におい
て、該延伸フィルムを延伸方向と逆の一方向または二方
向に5〜20%制限収縮させながら250℃以上、該延
伸フィルムの融点未満の温度で熱処理することを特徴と
する熱可塑性ポリイミド延伸フィルムの熱処理方法。
1. Formula (1) [Chemical Formula 1] An unstretched film obtained by melt-molding a thermoplastic polyimide having a repeating structural unit represented by: a stretched film by stretching in one direction or in two directions forming a right angle, and then the stretched film under tension. In the heat treatment method, the stretched film is heat-treated at a temperature of 250 ° C. or higher and lower than the melting point of the stretched film while being subjected to 5 to 20% limited shrinkage in one direction or two directions opposite to the stretching direction. Heat treatment method for stretched polyimide film.
【請求項2】 前記延伸フィルムが二軸延伸フィルムで
あり、延伸方向のいずれか一方の逆方向に10〜15%
制限収縮させながら熱処理する請求項1記載の熱処理方
法。
2. The stretched film is a biaxially stretched film, and 10% to 15% in either direction opposite to the stretching direction.
The heat treatment method according to claim 1, wherein the heat treatment is performed while the shrinkage is limited.
【請求項3】 前記延伸フィルムが二軸延伸フィルムで
あり、該延伸方向の逆の二方向にそれぞれ6〜14%制
限収縮させながら熱処理する請求項1記載の熱処理方
法。
3. The heat treatment method according to claim 1, wherein the stretched film is a biaxially stretched film, and the heat treatment is performed while the shrinkage is restricted by 6 to 14% in each of two directions opposite to the stretching direction.
JP33681391A 1991-12-19 1991-12-19 Thermal treatment of thermoplastic polyimide stretched film Pending JPH05169526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33681391A JPH05169526A (en) 1991-12-19 1991-12-19 Thermal treatment of thermoplastic polyimide stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33681391A JPH05169526A (en) 1991-12-19 1991-12-19 Thermal treatment of thermoplastic polyimide stretched film

Publications (1)

Publication Number Publication Date
JPH05169526A true JPH05169526A (en) 1993-07-09

Family

ID=18302920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33681391A Pending JPH05169526A (en) 1991-12-19 1991-12-19 Thermal treatment of thermoplastic polyimide stretched film

Country Status (1)

Country Link
JP (1) JPH05169526A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352983A (en) * 2003-05-07 2004-12-16 Du Pont Toray Co Ltd Method for production of polyimide film
WO2007116685A1 (en) * 2006-03-31 2007-10-18 Kurashiki Boseki Kabushiki Kaisha Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
JP2008188792A (en) * 2007-02-01 2008-08-21 Kurabo Ind Ltd Flexible laminated sheet having thermoplastic polyimide layer and its manufacturing method
WO2012155083A1 (en) * 2011-05-12 2012-11-15 Sabic Innovative Plastics Ip B.V. Amorphous polyetherimide films for capacitors, methods of manufacture, and articles manufactured therefrom
US9567445B2 (en) 2013-08-28 2017-02-14 Sabic Global Technologies B.V. Polycarbonate films for capacitors, methods of manufacture, and articles manufactured therefrom
US9659711B2 (en) 2013-05-31 2017-05-23 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
US10077345B2 (en) 2013-05-31 2018-09-18 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
KR20190065977A (en) * 2017-12-04 2019-06-12 코오롱인더스트리 주식회사 Mothod of Producing Polyimide film and Polyimide film thereby
WO2019112311A1 (en) * 2017-12-04 2019-06-13 코오롱인더스트리 주식회사 Method for manufacturing polyimide-based film and polyimide-based film manufactured thereby

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352983A (en) * 2003-05-07 2004-12-16 Du Pont Toray Co Ltd Method for production of polyimide film
WO2007116685A1 (en) * 2006-03-31 2007-10-18 Kurashiki Boseki Kabushiki Kaisha Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
JP2008188792A (en) * 2007-02-01 2008-08-21 Kurabo Ind Ltd Flexible laminated sheet having thermoplastic polyimide layer and its manufacturing method
WO2012155083A1 (en) * 2011-05-12 2012-11-15 Sabic Innovative Plastics Ip B.V. Amorphous polyetherimide films for capacitors, methods of manufacture, and articles manufactured therefrom
US10077345B2 (en) 2013-05-31 2018-09-18 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
US9659711B2 (en) 2013-05-31 2017-05-23 Sabic Global Technologies B.V. Capacitor films, methods of manufacture, and articles manufactured therefrom
US9567445B2 (en) 2013-08-28 2017-02-14 Sabic Global Technologies B.V. Polycarbonate films for capacitors, methods of manufacture, and articles manufactured therefrom
KR20190065977A (en) * 2017-12-04 2019-06-12 코오롱인더스트리 주식회사 Mothod of Producing Polyimide film and Polyimide film thereby
WO2019112311A1 (en) * 2017-12-04 2019-06-13 코오롱인더스트리 주식회사 Method for manufacturing polyimide-based film and polyimide-based film manufactured thereby
CN111432999A (en) * 2017-12-04 2020-07-17 可隆工业株式会社 Method for producing polyimide film and polyimide film produced thereby
JP2021501709A (en) * 2017-12-04 2021-01-21 コーロン インダストリーズ インク Method of manufacturing polyimide film and polyimide film manufactured from this
EP3722069A4 (en) * 2017-12-04 2021-08-18 Kolon Industries, Inc. Method for manufacturing polyimide-based film and polyimide-based film manufactured thereby
JP2022009334A (en) * 2017-12-04 2022-01-14 コーロン インダストリーズ インク Method for manufacturing polyimide-based film and polyimide-based film manufactured therefrom
US11577449B2 (en) 2017-12-04 2023-02-14 Kolon Industries, Inc. Method for manufacturing polyimide-based film and polyimide-based film manufactured thereby
EP4317273A3 (en) * 2017-12-04 2024-05-08 Kolon Industries, Inc. Method for manufacturing polyimide-based film

Similar Documents

Publication Publication Date Title
US5260407A (en) Polyimide film and preparation process of the film
JP5819459B2 (en) Polyimide film
JPS61264028A (en) Polyimide film having high dimensional stability and production thereof
JP5723580B2 (en) Polyimide film
JPH11323127A (en) Polyimide mixture and production of polyimide mixture film
JPH05169526A (en) Thermal treatment of thermoplastic polyimide stretched film
KR102194519B1 (en) Polyamide films and process for preparation
JP2003020349A (en) Polyamide film and its production method
JPH02248433A (en) Heat-resistant polyamide film
JP2003176370A (en) Polyimide film, method for producing the same and metallic wiring board using the same as base
JP3944874B2 (en) Polyimide film, method for producing the same, and metal wiring board using the same
JPH06136156A (en) Aromatic polyamide film and its production
JP2011021097A (en) Transparent heat-resistant film
JP3924526B2 (en) Method for producing biaxially oriented polyimide film
JPH05154909A (en) Biaxially stretched polyimide film and manufacture thereof
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JPH03134052A (en) Orientated polyester film
JP2006083205A (en) Polyimide film, its manufacturing process and metal wiring board using it as substrate
JPH02164532A (en) Flexible circuit board
JPH11165350A (en) Biaxially orientated polyester film for flexible printing substrate, and manufacture thereof
JPS58214208A (en) Electrically insulating film
JP2003082124A (en) Polyetherketoneketone film and method for manufacturing the same
JPH06107818A (en) Thermoplastic polyimide film for capacitor
JP2003082125A (en) Biaxially orientated polyetherketoneketone film and flexible printed circuit board using the same
CN118076481A (en) Polyamide film laminate